©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE
 PAPERS

PRACTICE SET 06

Paper 1 Physics Chemistry

1. The osmotic pressure of 5% solution of urea at 273 K is
A. 18.40 atm
B. 18.61 atm
C. 18.59 atm
D. 18.86 atm
2. In which one of the following cases, ΔH and ΔU are not equal to each other?
A. The reaction involves no gaseous reactant product
B. The number of moles of gaseous reactants and gaseous products is not equal to each other
C. The number of moles of gaseous reactants and gaseous products is equal to each other
D. The process is carried out in a closed vessel

Answer: B

- Watch Video Solution

3. The number of atoms in 4.25 g of NH_{3} is approximately
A. 6.023×10^{23}
B. $4 \times 6.023 \times 10^{23}$
C. 1.7×10^{24}
D. $4.25 \times 6.023 \times 10^{23}$

Answer: A

- Watch Video Solution

4. In the presence of catalyst, the activation energy of the reaction is lowered by 2 kcal at $27^{\circ} \mathrm{C}$. The rate of reaction will increased by
A. 2 times
B. 4 times
C. 28 times
D. 20 times

Answer: C

5. In the table given below, dimensions and angles of various crystals are given. Complete the table by filling the blanks.

Type of Crystal Dimensions Angles

1. Cubic	$a=b=c$	$\alpha=\beta=\gamma=p$
2. Tetragonal	\underline{q}	$\alpha=\beta=\gamma=90^{\circ}$
3. Orthorhombic	$a \neq b \neq c$	r

4. Hexagonal	\underline{s}	$\alpha=\beta=90^{\circ}, \gamma=t$		
\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	\boldsymbol{t}

(a) $90^{\circ} \quad a=b \neq c \quad \alpha=\beta=\gamma=90^{\circ} \quad a=b \neq c \quad 120^{\circ}$
$\begin{array}{ll}\text { (b) } 120^{\circ} \quad a=b=c \quad & \alpha=90^{\circ} \\ & \beta=\gamma=120^{\circ}\end{array} \quad \begin{array}{ll} & a \neq b \neq c \quad 90^{\circ}\end{array}$
(c) $90^{\circ} \quad a \neq b=c \quad \alpha=\beta=\gamma=120^{\circ} \quad a \neq b \neq c \quad 90^{\circ}$
(d) $120^{\circ} \quad a \neq b \neq c \quad \alpha \neq \beta \neq \gamma \neq 90^{\circ} \quad a \neq b=c \quad 120^{\circ}$
A.

$$
p-90^{\circ}, q-a=b \neq c, r-\alpha=\beta=\gamma=90^{\circ}, s-a=b \neq c, t-1
$$

B.

$$
p-120^{\circ}, q-a=b=c, r-\alpha=90^{\circ}, \beta=\gamma=120^{\circ}, s-a \neq b \neq
$$

C.

$$
p-90^{\circ}, q-a \neq b=c, r-\alpha=\beta=\gamma=120^{\circ}, s-a \neq b \neq c, t-
$$

D.

$$
p-120^{\circ}, q-a \neq b \neq c, r-\alpha \neq \beta \neg a m m a \neq 90^{\circ}, s-a \neq b=c
$$

Answer: A

- Watch Video Solution

6. An element (X) forms compounds of the formuls $X C l_{3}, X_{2} O_{5}$ and $C a_{3} X_{2}$, but does not form $X C l_{5}$. Which of the following is the element X ?
A. B
B. Al
C. N
D. P

Answer: C

- Watch Video Solution

7. Aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ on reaction with $C I_{2}$, gives
A. $N a_{2} S_{4} O_{6}$
B. NaHSO 4
C. NaCl
D. NaOH

Answer: B

8. Which of the following states is strong reducing agent?
A. $C r(+I I I)$
B. $C r(+V I)$
C. $M o(+V I)$
D. $M o(+I I I)$

Answer: D

- Watch Video Solution

9.3 - methyloctance can be represented in which of the following forms ?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
B.

(c)

C.
D. All of the above

Answer: D
10. 2-ethoxy propane can be obtained by heating ethyl bromide with
A. sodium iso-propoxide
B. sodium n-propoxide
C. iso-propyl bromide
D. n-propyl bromide

Answer: A

- Watch Video Solution

11. Which is not affected by temperature?
A. Normality
B. Formality
C. Malarity
D. Molality

Answer: D

D Watch Video Solution

12. For the change C (diamond) $\rightarrow \mathrm{C}$ (graphite), $\Delta H=-1.89 \mathrm{KJ}$, if 6 g of diamond and 6 g of graphite are seperately burnt to yield CO_{2} the heat liberated in first case is :
A. less than in the second case by 1.89 kJ
B. less than in the second case by 11.34 kJ
C. less than in the second case by 14.34 kJ
D. more than in the second case by 0.945 kJ

Answer: A

- Watch Video Solution

13. In $H_{2}-O_{2}$ fuel cell, the reaction occurring at cathode is
A. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
B. $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 e^{-} \rightarrow 4 \mathrm{OH}^{-}$
D. $H^{+}+e^{-} \rightarrow \frac{1}{2} H_{2}$

Answer: C

- Watch Video Solution

14. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$. The rate of reaction in terms of $\mathrm{N}_{2} \mathrm{O}_{5}$ will be
A. $-\frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}$
B. $-\frac{1}{4} \frac{d\left[N_{2} O_{5}\right]}{d t}$
C. $-\frac{1}{2} \frac{d\left[N_{2} O_{5}\right]}{d t}$
D. $-\frac{1}{3} \frac{d\left[N_{2} O_{5}\right]}{d t}$

Answer: C

15. Semiconductors are manufactured by addition of impurities of
A. s-block elements
B. actinoids
C. lanthanoids
D. p-block elements

Answer: D

- Watch Video Solution

16. Select the correct statement.
A. In the decomposition of an oxide into oxygen and gaseous metal, entropy increased
B. Decomposition of an oxide is an endothermic change
C. To make ΔG° negative, temperature should be high enough so that $T \Delta S^{\circ}>\Delta H^{\circ}$
D. All are correct statement

Answer: D

- Watch Video Solution

17. Which of the following is incorrect match for hybridisation and geometry?
A. Hybridisation- $d s p^{2}$,Geometry-Planar
B. Hybridisation- $d^{3} s$ and $s p^{3}$, Geometry-Tetrahedral
C. Hybridisation- $d^{2} s p^{3}$ and $s p^{3} d^{2}$, Geometry-Octahedral
D. Hybridisation- $d^{3} s$,Geometry-Planar

Answer: D

18. The first ionisation enthalpies of the lanthanoids are around (A) \qquad , the second about (B) \qquad comparable with those of (C) \qquad here, A, B and

C refers to
A. A-600 kJ/mol, B-1200kJ/mol,C-calcium
B. A-1200 kJ/mol, B-600kJ/mol, C-strontium
C. A-1200 kJ/mol, B-600 kJ/mol, C-lanthanum
D. A-600 kJ/mol, B-1200kJ/mol, C-lutetium

Answer: A

- Watch Video Solution

19. The number of primary, secondary and tertiary carbons in 3,4dimethylheptane are
A. 4,3 and 2
B. 2,3 and 4
C. 4,2 and 3
D. 3,4 and 2

Answer: A

- Watch Video Solution

20. Aliphatic aldehyde can be oxidised by
A. Tollen's reagent
B. Fehling's solution
C. Benedict's solution
D. All of these

Answer: D

21. Equation of state is
A. $M \times V=w p R T$
B. $\frac{M T}{R}=\frac{w V}{p}$
C. $\frac{w R}{p}=\frac{V M}{T}$
D. None of these

Answer: C

- Watch Video Solution

22. The heat of combustion of solid benzoic acid at constant volume is -321.30 kJ at $27^{\circ} \mathrm{C}$. The heat of combustion at constant pressure is
A. $-321.30-300 R$
B. $-321.30+300 R$
C. $-321.30-150 R$
D. $-321.30+900 R$

- Watch Video Solution

23. For a cell given below
$A g\left|A g^{+}\right|\left|C u^{2+}\right| C u$
$A g^{+}+e^{-} \rightarrow A g, E^{\circ}=x$
$C u^{2+}+2 e^{-} \rightarrow C u, E^{\circ}=y$ then $E_{\text {cell }}^{\circ}$ is
A. $x+2 y$
B. $2 \mathrm{x}+\mathrm{y}$
C. $y-x$
D. $y-2 x$

Answer: C

- Watch Video Solution

24. In the following redox reaction,
$x \mathrm{UO}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+y \mathrm{H}^{+} \rightarrow \mathrm{aUO}_{2}^{2+}+z \mathrm{Cr}^{3+}+b \mathrm{H}_{2} \mathrm{O}$
the value of coefficients x, y and z respectively, are
A. 3,8,2
B. 3,8,7
C. $3,2,4$
D. 3,1,8

Answer: A

- Watch Video Solution

25. Iron is obtained on large scale from haematite $\mathrm{Fe}_{2} \mathrm{O}_{3}$
A. by reduction
B. by oxidation
C. by reduction followed by oxidation
D. by oxidation followed by reduction

Answer: A

- Watch Video Solution

26. The element(s) of group-16 which exhibit(s) allotropy is/are
A. 0
B. S
C. Te
D. All of these

Answer: D

- Watch Video Solution

27. Pick out incorrect statements abou noble gases.
A. Ar is used in metallurgical processes
B. he is used in cryscopy to obtain the very low temperature required
for superconductivity and lasers
C. he is used in weather balloons and airships
D. He cannot be used in preference to nitrogen $\left(N_{2}\right)$ to dilute the oxygen in the gas cylinders used by divers

Answer: D

- Watch Video Solution

28. The atomic number of $5 f$ series range from
A. 80 to 103
B. 90 to 103
C. 58 to 72
D. 57 to 71

Answer: B

- Watch Video Solution

29. The chloro compound which is used as a fire extinguisher is
A. CHI_{3}
B. CCl_{4}
C. CHBr_{3}
D. CHCl_{3}

Answer: B

Watch Video Solution

30. Aldol condensation between following compounds, followed by dehydration gives emthyl vinkyl ketone:
A. HCHO and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
B. HCHO and $\mathrm{CH}_{3} \mathrm{CHO}$
C. Two molecular of $\mathrm{CH}_{3} \mathrm{CHO}$
D. Two molecular of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Answer: A

- Watch Video Solution

31. The compound with the highest boiling point is:
A. n-hexane
B. n-pentane
C. 2,2-dimethylpropane
D. 2-methylbutane

Answer: A

32. The solubility of $\mathrm{Na}_{2}, \mathrm{SO}_{4}, \mathrm{BeSO}_{4}, \mathrm{MgSO}_{4}$ and BaSO_{4} will follow the order
A. $\mathrm{BeSO}_{4}>\mathrm{MgSO}_{4}>\mathrm{Na}_{2} \mathrm{SO}_{4}>\mathrm{BaSO}_{4}$
B. $\mathrm{BeSO}_{4}>\mathrm{Na}_{2} \mathrm{SO}_{4}>\mathrm{MgSO}_{4}>\mathrm{BaSO}_{4}$
C. $\mathrm{MgSO}_{4}>\mathrm{BeSO}_{4}>\mathrm{Na}_{2} \mathrm{SO}_{4}>\mathrm{BaSO}_{4}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}>\mathrm{BeSO}_{4}>\mathrm{MgSO}_{4}>\mathrm{BaSO}_{4}$

Answer: D

- Watch Video Solution

33. Match list I with List II and select the correct answer using the codes given below the lists.

List I (Pair of isomers)	List II (Type of isomerism)
A. (I) $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cr}(\mathrm{CN})_{6}$ (II) $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{CO}(\mathrm{CN})_{6}$	1. Ionisation
B. (III) $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Br}_{2}$ (IV) $\left[\mathrm{PtBr}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$	2. Hydrate
C. $(\mathrm{V})\left[\mathrm{Co}(\mathrm{SCN})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$ (VI) $\mathrm{Co}(\mathrm{NCS})\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{2}$	3. Coordination
D. VII$)\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (VIII) $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}_{4}\right) \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]$	4. Geometrical 5. Linkage isomerism

A. $A-4, B-1, C-5, D-2$
B. $A-1, B-3, C-2, D-5$
C. $A-3, B-1, C-5, D-2$
D. $A-1, B-3, C-5, D-2$

Answer: C

D Watch Video Solution

34. Which one of the alkali metals forms only the normal oxide, $\mathrm{M}_{2} \mathrm{O}$, on heating in air ?
A. Rb
B. K
C. Li
D. Na

Answer: D

- Watch Video Solution

35. Two moles of acetic acid are heated with $\mathrm{P}_{2} \mathrm{O}_{5}$. The product formed is
A. 2 moles of ethyl alcohol
B. formic anhydride
C. acetic anhydride
D. 2 moles of methyl cyanide

Answer: C

36. Solubility of enthylamine in water is due to
A. low molecular weight
B. ethyl group is present in ethyl alcohol
C. formation of H-bonding with water
D. being a derivative of ammonia

Answer: C

- Watch Video Solution

37. which of the following is produced by reducing RCN in sodium and alcohol?
A. $\mathrm{RCONH} \mathrm{N}_{2}$
B. RCOONH 4
C. $\mathrm{RCH}_{2} \mathrm{NH}_{2}$
D. $\left(\mathrm{RCH}_{2}\right)_{3} N$

Answer: C

- Watch Video Solution

38. Osteomalacia in adults are produced by the deficiency of vitamin
A. B_{6}
B. H
C. D
D. E

Answer: C

- Watch Video Solution

39. PHBV stands for
A. Poly β-hydroxybutyrate valerate
B. poly hydroxy butyrate-co- β-hydroxy valerate
C. Poly β-hydroxy butyrate-co- β-hydroxy valerate
D. Poly α-hydroxy butyrate-co- β-hydroxy valerate

Answer: C

- Watch Video Solution

40. Arrange the following free radicals in the order of decreasing stability: methyl (I), vinyl (II), allyl (III), benzyl (IV)
A. IgtIIgtIIIgtIV
B. IIIgtIIgtlgtIV
C. IgtlgtIVgtIII
D. IVgtIIIgtIgtII

Answer: D

41. Which of the following is the strongest oxidant?
A. F_{2}
B. $B r_{2}$
C. $C l_{2}$
D. l_{2}

Answer: A

- Watch Video Solution

42. $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HA}+\mathrm{OH}^{-}$represents the hydrolysis reaction. This indicates that the salt is made up of
A. strong acid and weak base
B. strong base and weak acid
C. weak acid and weak base
D. stronga acid and strong base

Answer: B

D Watch Video Solution

43. Crystal field stabilization energy for high spin d^{4} octahedral complex is
A. $-1.8 \Delta_{0}$
B. $-1.6 \Delta_{0}+P$
C. $-1.2 \Delta_{0}$
D. $-0.6 \Delta_{0}$

Answer: D

44. Phenol is used as a starting material for the manufacture of a drug known as
A. phenyl
B. bakelite
C. aspirin
D. dettol

Answer: C

- Watch Video Solution

45. Which of the following is strongest acid?
A. $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \cdot \mathrm{CHClCOOH}$
D. $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{COOH}$
46. In the reaction

A.
(a)

(b)

B.
(c)

C.
(d)

Answer: A

- Watch Video Solution

A. Molisch test
B. carbylamine test
C. Baeyer's test
D. haloform test

Answer: A

- Watch Video Solution

48. Which of the following represent terylene (or dacron)?
A. $\left(-\mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\stackrel{O}{o} \mathrm{overst}(| |)(\mathrm{C})-\mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{\text { O|| }}{\mathrm{C}}\right) n_{n}$
B. $\left(-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\right)_{n}$

D. $\left(-\mathrm{CH}_{2}-\underset{C_{6}}{\substack{\mathrm{C} \\ C_{5}}} \mathrm{H}-\mathrm{CH}_{2}-\underset{C_{6}}{\mathrm{C} H_{5}} \mathrm{C}_{n} \mathrm{H}-\right)_{n}$

D Watch Video Solution

49. The most commonly used agent (s) for hyperacidity is
A. magnesium carbonate
B. magnesium hydroxide
C. aluminium phosphate
D. all of these

Answer: D

- Watch Video Solution

50. Which type of graph gives straight line in Langmuir adsorption isotherm?
A. $\frac{x}{m} \rightarrow \frac{1}{p}$
B. $\frac{m}{x} \rightarrow \frac{1}{p}$
C. $\log _{10} \frac{x}{m} \rightarrow \frac{1}{p}$
D. $\log _{10} \frac{x}{m} \rightarrow p$

Answer: B

- Watch Video Solution

