©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE
 PAPERS

SOLUTIONS AND COLLIGATIVE PROPERTIES

Example

1. 10 g if NaOh us dissolved in 200 mL of solution. Calculate the strength.
A. $\frac{40 g}{L}$
B. $\frac{50 g}{L}$
C. $\frac{30 g}{L}$
D. $\frac{20 g}{L}$
2. Calculate the molarity of Kl if the density of 20% (mass/mass) aqueous Kl is $1.202 \mathrm{~g} \mathrm{~mL}^{-1}$
A. $0.004 M$
B. $1.25 M$
C. $0.25 M$
D. $1.45 M$

Answer: D

- Watch Video Solution

3. Calculate the volume of 2 M HCI solution requited to prepare 3 L of 3 M HCl solution.
B. 3.5 L
C. 2.5 L
D. 8.5 L

Answer: A

- Watch Video Solution

4. If the density of lake water is $1.25 \mathrm{~g} \mathrm{~mL} L^{-1}$ and it contains 92 g of $N a^{+}$ ions per kg of water, calculate the molality of Na^{+}ions in the lake.
A. 2 m
B. 4 m
C. 8 m
D. 10 m

Answer: B

5. The normality of a solution formed by mixing 0.45 N and 0.60 N N OH in the ratio of $2: 1$ by volume is
A. 0.15 N
B. 0.8 N
C. 0.5 N
D. 0.45 N

Answer: C

- Watch Video Solution

6. The partial pressure of ethane over a solution containing $6.56 \times 10^{-3} \mathrm{~g}$ of ethane is 1 bar. If the solution contains $5 \times 10^{-2} g$ of ethane, then what will be the partial pressure of gas ?
A. 4.2 bar
B. 7.6 bar
C. 8.9 bar
D. 9.8 bar

Answer: B

- Watch Video Solution

7. The vapour pressure of a pure liquid A is 40 mmHg at 310 K . The vapour pressure of this liquid in a solution with liquid B is 32 mmHg . The mole fraction of A in the solution, if it obeys Raoult's law, is:
A. 0.5
B. 0.6
C. 0.7
D. 0.8

Answer: D

8. The vapore pressure of 100 g of water reduces from 17.53 mm to 17.22 mm when 17.10 g of substance ' X ' is dissolved in it. Substance X can be
A. methanol
B. glucose
C. carbon dioxide
D. cannot predict

Answer: B

- Watch Video Solution

9. Calculate the boiling point of solution containing 0.456 g of camphor (molar mass $=152$) dissolved in $31.4 g$ of acetone (boiling point $\left.=56.30^{\circ} \mathrm{C}\right)$, if the molar elevation constant per 100 g of acetone is $17.2^{\circ} \mathrm{C}$.
A. $56.46^{\circ} \mathrm{C}$
B. $36.56^{\circ} \mathrm{C}$
C. $56.14^{\circ} \mathrm{C}$
D. $72.52^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

10. Calculate the amount of KCl which must be added to 1 kg of water so that the freezing point is depressed by $2 K$. (K_{f} for water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$.
A. 80.25 g
B. 80.75 g
C. 80.15 g
D. 81.15 g

Answer: C

- Watch Video Solution

11. Osmotic pressure of a urea solution at $10^{\circ} \mathrm{C}$ is 500 mm . Osmotic pressure of the solution become 105.3 mm . When it is diluted and temperature raised to $25^{\circ} \mathrm{C}$. The extent of dilution is
A. 4 times
B. 3 times
C. 5times
D. 2 times

Answer: C

12. Determine the osmotic pressure of a solution prepared by dissolving 25 mg of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 2 L of water at $25^{\circ} \mathrm{C}$, assuming that it is completely dissociated.
A. $5.27 \times 10^{-4} \mathrm{~atm}$
B. $5.27 \times 10^{-3} \mathrm{~atm}$
C. $5.27 \times 10^{-2} \mathrm{~atm}$
D. $5.27 \times 10^{-1} \mathrm{~atm}$

Answer: B

- Watch Video Solution

13. Determine the amount of $\mathrm{CaCl}(i=2.47)$ dissolved in 2.5 L of water such that its osmotic pressure is 0.75 atm at $27^{\circ} \mathrm{C}$.
A. 3.42 g
B. 4.28 g
C. 5.25 g
D. 6.24 g

Answer: A

- Watch Video Solution

Exercise 1 Types Of Solutions And Concentration Of Solutions

1. On dissolving sugar in water at room temperature solution feels cool to touch. Under which of the following cases dissolution of sugar will be most rapid ?
A. Sugar crystals in cold water
B. Sugar crystals in cold water
C. Powdared sugar in cold water
D. powdered sugar in hot water

Answer: D

- Watch Video Solution

2. At equlibirium the rate of dissolutiono of a solid solute in a valatile liquid slvent is
A. less than the rate of crstallisation
B. greater than the rate of crystallisation
C. equal to the rate of crystallisation
D. zero

Answer: C

D Watch Video Solution

3. Identify the solute and solvent in the option given below, for a solution as amalgam of mercury with sodium.
A.

Solid Liquid
Solute Solvent
B.

Solid Solid
Solute Solvent
C.

Liquid Solid
Solute Solvent
D. Solid Gas

Answer: C

- Watch Video Solution

4. Match the following Columns and choose the correct option from codes given below.

Column I
A. Chloroform mixed with nitrogen ges. 1. Gaseous solution
B. Ethanol disolved in water.
C. Amalgam pf merciry with soldium.
2. Solid solution
3. Liquid solution

A $A B C$
$\begin{array}{lll}1 & 2 & 3\end{array}$
A $B \quad C$
B. ${ }_{1} \quad 3 \quad 2$
C. $\begin{array}{lll}A & B & C \\ 2 & 1 & 3\end{array}$
D. $\begin{array}{lll}A & B & C \\ 2 & 3 & 1\end{array}$

Answer: B

- Watch Video Solution

5. Match the tererms given is Column I with the type of solutions given in

Column II.

ColumnI
A. Soda water
B. Sugar solution
C. German silver
D. Air
E. Hydrogen gas in palladium.

ColumnII

1. A solution of gas in solid.
2. A slution of gas in gas.
3. A solution of solid in liquid.
4. A solution of solid in solid.
5. A solution of gas in liquid.
6. A solution of liquid in solid.

A $\begin{array}{lllll}A & B & C & D & E\end{array}$
A. $\begin{array}{lllll}5 & 6 & 4 & 2 & 1\end{array}$
$\begin{array}{lllll}A & B & C & D & E\end{array}$
B.
$\begin{array}{lllll}5 & 3 & 4 & 2 & 1\end{array}$
$\begin{array}{lllll}A & B & C & D & E\end{array}$
C. $\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
D. $\begin{array}{lllll}A & B & C & D & E \\ 1 & 2 & 3 & 4 & 6\end{array}$
6. In which ratio of volumes 0.4 M HCl and 0.9 M HCl are to be mixed such that the concentration of the resultant solution becomes 0.7 M ?
A. $4: 9$
B. 2: 3
C. 3: 2
D. 1: 1

Answer: B

- Watch Video Solution

7. The volume of water to be added to $100 \mathrm{~cm}^{3}$ of $0.5 \mathrm{NH}_{2} \mathrm{SO}_{4}$ to get decinormal concentration is
A. $400 \mathrm{~cm}^{3}$
B. $450 \mathrm{~cm}^{3}$
C. $500 \mathrm{~cm}^{3}$
D. $100 \mathrm{~cm}^{3}$

Answer: A

- Watch Video Solution

8. The molarity of a solution having 18 g of glucose dissolved in 500 g of water is
A. $0.5 m$
B. $0.2 m$
C. $2 m$
D. $1 m$

Answer: B

9. What is the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required to prepare 5.0 L of a 2.0 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 10
B. 5.0
C. 20
D. 2.5

Answer: A

- Watch Video Solution

10. 20 mL of HCl soution requires 19.85 mL of 0.01 M NaOH solution for complete neutralization. The molarity of HCl solution is \qquad M.
A. 0.0099
B. 0.0099
C. 0.99
D. 0.1 M

Answer: A

- Watch Video Solution

11. Which of the following concentration terms is/are independent of temperature ?
A. Molality
B. Molality and mole fraction
C. Molality and mole fraction
D. Molality and normality

Answer: B

- Watch Video Solution

12. Glucose solution is 25% by weight of solution. Its per cent concentration by weight of solvent is
A. 20%
B. 25%
C. 33.3%
D. 16.66%

Answer: C

- Watch Video Solution

13. Mole fraction of the solute in a 1 molal aqueous solution is :
A. 1.7700
B. 1.7770
C. 0.0177
D. 0.0344

Answer: C

D Watch Video Solution

14. How many grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is/are to be dissolved to prepare 200 mL aqueous solution having concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ions is 1 M at $25^{\circ} \mathrm{C}$ temperature?
A. $4.9 g$
B. $19.6 g$
C. $9.8 g$
D. $0.98 g$

Answer: C

15. Which one of the following gases has the lowest value of Henry law constant?
A. N_{2}
B. He
C. CO_{2}
D. O_{2}

Answer: C

- Watch Video Solution

16.25.3 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ions, Na^{+}and carbonate ions, CO_{3}^{2-} are respectively (Molar mass of $\mathrm{NaCO}_{3}=106 \mathrm{gmol}^{-1}$)
A. $0.477 M$ and $0.477 M M$
B. $0.955 M$ and 1.910
C. $1.910 M$ and $0.955 M$
D. $1.90 M$ and $1.910 M$

Answer: C

- Watch Video Solution

17. A 5.2 molal aqueous of methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$, is supplied. What is the molefraction of methyl alcohol in the solution?
A. 1.100
B. 0.190
C. 0.086
D. 0.050

Answer: C

18. A mixture of ethane and ethene occupies 41 L at atm and 500 K . The mixture reacts compeletly with $10 / 3$ mole of oxygen to produce CO_{2} and water. The mole fraction of ethane and ethene in the mixture are ($\mathrm{R}=0.0821 \mathrm{Latm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ respectively
A. $0.50,0.50$
B. $0.75,0.25$
C. $0.67,0.33$
D. $0.25,0.75$

Answer: C

- Watch Video Solution

19. The molarity of a $0.2 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution will be :
A. $0.1 M$
B. $0 M$
C. $0.4 M$
D. 0.2

Answer: A

- Watch Video Solution

20. The sum of mole fractions of A, B and C in an aqueous solution containing 0.2 moles of each A, B and C is
A. 0.6
B. 0.2
C. 1.0
D. 1.2

Answer: C

21. Dissolving $120 g$ of urea (mol wt $=60$) in 1000 g of water gave a solution of density $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is
A. $1.78 M$
B. 2.00 M
C. 2.05 M
D. 2.22 M

Answer: C

- Watch Video Solution

22.4.0g of caustic soda is dissolved in 100 cc of solution. The normality of solution is
A. 0.1 N
B. 0.5 N
C. 4.0 N
D. 1.0 N

Answer: D

- Watch Video Solution

23. Calculate the mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ required in making 2.5 kg of 0.25 molal aqueous solution.
A. 37.5 g
B. 73.5 g
C. 53.7 g
D. $75.3 g$

Answer: A

24. $25 \mathrm{~cm}^{3}$ of oxalic acid completely neutralised 0.064 g of soldium hydroxied. molarity of the oxalic acid solution is
A. 0.064
B. 0.045
C. 0.015
D. 0.032

Answer: D

- Watch Video Solution

25. The volume of 0.1 M oxalic acid that can be completely oxidised by 20 mL of $0.025 \mathrm{MKMnO}_{4}$ solution is
A. $25 m L$
B. $12.5 m L$
C. $37.5 m L$
D. $125 m L$

Answer: B

- Watch Video Solution

26. The molarity of a solution containing 5.0 g of NaOH in 250 mL solution is :
A. 0.1
B. 0.5
C. 1.0
D. 2.0

Answer: B

27. $10 \mathrm{~cm}^{3}$ of 0.1 N monobasic acid requires $15 \mathrm{~cm}^{3}$ of sodium hydroxide solution whose normality is
A. 1.5 N
B. 0.15 N
C. 0.066 N
D. 0.66 N

Answer: C

- Watch Video Solution

28. A mixture has 18 g water and 414 g ethanol. The mole fraction of water in mixture is (assume ideal behaviour of the mixture) \qquad .
A. 0.1
B. 0.4
C. 0.7
D. 0.9

Answer: A

- Watch Video Solution

29. An aqueous solution of glucose is 10% in strength ,The volume in which 1 g mole of it dissolved will be
A. 9 N
B. 0.3 N
C. $3 N$
D. $1 N$

Answer: A

30. An aqueous solution of glucose is 10% in strength ,The volume in which 1 g mole of it dissolved will be
A. $18 L$
B. $9 L$
C. 0.9 L
D. $1.8 L$

Answer: D

- Watch Video Solution

31. The volume strength of $1.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{O}_{2}$ solution is
A. 4.8
B. 8.4
C. 3.0
D. 8.0

Answer: B

- Watch Video Solution

32. 5 litre of a solution contains 25 mg of CaCO_{3}. What is its concentration in ppm? (mol.wt of CaCO_{3} is 100)
A. 25
B. 1
C. 5
D. 2500

Answer: C

- Watch Video Solution

33. Mole fraction of solute in benzene is 0.2 then what is the value of molality of solute?
A. 3.2
B. 2
C. 4
D. 3.6

Answer: A

- Watch Video Solution

34. Volume of 3.6 M NaOH required to neutralise $30 \mathrm{~cm}^{3}$ of $0.4 M \mathrm{HCl}$ is
A. $20 \mathrm{~cm}^{3}$
B. $40 \mathrm{~cm}^{3}$
C. $45 \mathrm{~cm}^{3}$
D. $30 \mathrm{~cm}^{3}$

Answer: A

35. The density (in $g m L^{-1}$) of a $3.60 M$ sulphuric acid solution that is $29 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (Molar mass $=98 \mathrm{gmol}^{-1}$) by mass will be
A. 1.64
B. 1.88
C. 1.22
D. 1.45

Answer: C

- Watch Video Solution

36. Calculate the mole fraction of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ in a solution containing 20% of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ by mass.
A. 0.92
B. 0.76
C. 0.82
D. 0.36

Answer: A

- Watch Video Solution

37. How many moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ would be in 50 g of the substance ?
A. 0.083 mol
B. 0.952 mol
C. 0.481 mol
D. 0.140 mol

Answer: D

- Watch Video Solution

38. The density of $3 M$ sodium of thiosulphate solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ is $1.25 \mathrm{gmL}^{-1}$. Calculate
a. The precentage by weight of sodium thiosulphate.
b. The mole fraction of sodium thiosulphate.
c. The molalities of $N a^{\oplus}$ and $S_{2} O_{3}^{2-}$ ions.
A. 12.65%
B. 37.92%
C. 0.87%
D. 63.21%

Answer: B

- Watch Video Solution

39. A sample ofsea water contains $5 \times 10^{-3} g$ of dissolved oxygen in 1 kg of the sample. The concentration of O_{2} in that sea water sample in ppm
A. 5×10^{-4}
B. 5×10^{-3}
C. 5
D. 5×10^{-1}

Answer: C

- Watch Video Solution

40. Vapour pressure of pure A is 70 mm of Hg at $25^{\circ} \mathrm{C}$. If it forms an ideal solution with B in which mole fraction of A is 0.8 and vapour pressure of the solution is 84 mm of Hg at $25^{\circ} \mathrm{C}$, then the vapour pressure of pure B at $25^{\circ} \mathrm{C}$ is
A. 56 mm
B. 70 mm
C. 140 mm
D. 28 mm

Answer: C

- Watch Video Solution

41. The mole fraction of ethyl alcohol in its solution with methyl alcohol is
0.80 . The vapour pressure of ethyl alcohol in the solution is 40 mm of Hg .

What is its vapour pressure in solution if the solution is ideal ?
A. 25 mm
B. 30 mm
C. 32 mm
D. 20 mm

Answer: C

42. Which of the following azeotropic solutions has the boiling point less than boiling point of the constituents A and B ?
A. CHCI_{3} and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
B. CS_{2} and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CHO}$ and CS_{2}

Answer: C

- Watch Video Solution

43. At $25^{\circ} \mathrm{C}$, the total pressure of an ideal solution obtained by mixing 3 mole of A and 2 mole of B, is 184 torr. What is the vapour pressure (in torr) of pure B at the same temperature (Vapour pressure of pure A at $25^{\circ} \mathrm{C}$ is 200 torr) ?
A. 180
B. 160
C. 16
D. 100

Answer: B

- Watch Video Solution

44. An aqueous solution of methanol in water has vapour pressure
A. equal to that of water
B. equal to that of methanol
C. more than that of water
D. less than that of water

Answer: C

45. Two liquids X and Y form an ideal solution. The mixture has a vapour pressure of 400 mm at 300 K when mixed in the molar ratio 1:1. when mixed in the molar ratio of 1:2 at the same temperatre the vapour pressure of the mixture is 350 mm . The vapour pressure of the two pure liquids X and Y respectively are
A. $250 \mathrm{~mm}, 550 \mathrm{~mm}$
B. $350 \mathrm{~mm}, 450 \mathrm{~mm}$
C. $350 \mathrm{~mm}, 700 \mathrm{~mm}$
D. $550 \mathrm{~mm}, 250 \mathrm{~mm}$

Answer: D

- Watch Video Solution

46. A solution of acetone in ethnol
A. shows a negative deviation from Raoult's law
B. shows a positive deviation from Raoult's law
C. behaves like an ideal solution
D. obeys Raoult's law

Answer: B

- Watch Video Solution

47. Equal masses of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is:
A. $\frac{2}{3}$
B. $\frac{1}{3} \times \frac{273}{298}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: C

48. One component of a solution follows Raoult's over the entire range $0 \leq x_{1} \leq 1$. The second component must follow Raoult's law in the range when x_{2} is
A. close to zero
B. close to 1
C. $0 \leq x_{2} \leq 0.5$
D. $0 \leq x_{2} \leq 1$

Answer: D

- Watch Video Solution

49. On a humid day in summer, the mole fraction of gaseous $\mathrm{H}_{2} \mathrm{O}$ (water vapour) in the air at $25^{\circ} C$ can be as high as 0.0287 . Assuming a total pressure of 0.977atm. What is the partial pressure of dry air ?
A. 94.9atm
B. 0.949atm
C. 949atm
D. 0.648 atm

Answer: B

- Watch Video Solution

50. The vapour pressure of two liquids ' P ' and ' Q ' are 80 and 60 torr respectively. The total vapour pressure of solution obtained by mixing 3 mole of P and 2 mol of Q would be
A. 68torr
B. 140torr
C. 48torr
D. 72torr

Answer: D

- Watch Video Solution

51. At 300 K the vapour pressure of an ideal solution containing 1 mole of liquid A and 2 moles of liquid B is 500 mm of Hg . The vapour pressure of the solution increases by 25 mm of Hg , if one more mole of B is added to the above ideal solution at 300 K . Then the vapour pressure of A in its pure state is
A. 300 mm of Hg
B. 400 mm of Hg
C. 500 mm of Hg
D. 600 mm of Hg

Answer: A

- Watch Video Solution

52. A mixture of ethyl alcohol and propyl alcohol has a vapour pressure of 290 mm at 300K. The vapour pressure of propyl alcohol is 200 mm . if the mole fraction of ethyl alcohol is 0.6 , its vapour pressure (in mm) at the same temperature will be
A. 350
B. 300
C. 700
D. 360

Answer: A

- Watch Video Solution

53. A solution containing components A and B follows Raoult's law, when
A. A-B attraction force is greater than $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$
B. A-B attraction force remains same as A-A and B-B
C. A - B attraction force remains same as A-A and B-B
D. volume of solution is different from sum of volumes of solute and solvent

Answer: C

- Watch Video Solution

54. At $80^{\circ} \mathrm{C}$ the vapour pressure of pure liquid 'A' is 520 mm Hg and that of pure liquid ' B ' is 1000 mm Hg . If a mixture solution of ' A ' and ' B ' boils at $80^{\circ} C$ and 1 atm pressure, the amount of ' A ' in the mixture is (1 atm $=760 \mathrm{mmHg})$
A. 52 mole per cent
B. 34 mole per cent
C. 48 mole per cent
D. 50 mole per cent

Answer: D

- Watch Video Solution

55. Relative loweringof vapour pressure of a dilute solution is 0.2 . What is the mole fraction of non-volatile solute?
A. 0.8
B. 0.5
C. 0.3
D. 0.2

Answer: D

- Watch Video Solution

56. Which of the following will show a negative deviation from Raoult's
A. Acetone-benzene
B. Acetone-ethanol
C. Benzene-methanol
D. Acetone-chloroform

Answer: D

- View Text Solution

57. Mole fraction of vapour of A above solution in mixture of A and $B\left(X_{A}=0.4\right)$ will be $\left(P_{A}^{\circ}=100 \mathrm{~mm}, P_{B}^{\circ}=200 \mathrm{~mm}\right)$:
A. 0.4
B. 0.25
C. 0.85
D. None of these

Answer: B

58. In which case Raoult's law is not applicable ?
A. 1 m NaCl
B. 1 M urea
C. 1M glicose
D. 1 M sucrose

Answer: A

- Watch Video Solution

59. Which of the following liquid pairs shows a positive deviation from Raoult's law?
A. Water-nitric acid
B. Benzene-methanol
C. Water-hydrochloric acid
D. Acetone-chloroform

Answer: B

- Watch Video Solution

60. If two substances A and B have $p_{A}^{\circ}: p_{B}^{\circ}=1: 2$ and have mole fraction in solution as 1:2 then mole fraction of A in vapour phase is
A. 0.33
B. 0.25
C. 0.52
D. 0.2

Answer: D

61. Relative lowering in vapour pressure of solution containing nonvolatile solute is directly proportional to mole fraction of solute. Above statement is
A. Henry's law
B. Dulong and petit's law
C. Raoult's law
D. Le-Chatelier's principle

Answer: C

- Watch Video Solution

62. The vapour pressure of pure benzene at a certain temperature is 640 mm of Hg . A non-volatile non-electrolyte solid weighing 2.175 g added 39.0 g of benzene. The vapour pressure of the solution is 600 mm of $H g$. What is the molecular weight of solid substance?
A. 6.96
B. 65.3
C. 63.8
D. None of these

Answer: B

- Watch Video Solution

63. If M is molecular of solvent, K_{b} is molal elevation constant, T_{b} is its boiling point, P° is its vapour pressure at temperature T and P_{s} is vapour pressure of its solution having a non-volatile solute at $T \mathrm{~K}$, then
A. $\frac{p^{\circ}-p_{s}}{p^{\circ}}=\frac{\Delta T_{b}}{K_{b}} \times M$
B. $\frac{p^{\circ}-p_{s}}{p^{\circ}}=\frac{K_{b}}{T_{b} \times M}$
C. $\frac{p^{\circ}-p_{s}}{p^{\circ}}=\frac{K_{b}}{T_{b}} \times \frac{M}{1000}$
D. $\frac{p^{\circ}-p_{s}}{p^{\circ}}=\frac{\Delta T_{b}}{K_{b}} \times \frac{M}{1000}$

Answer: D

64. Solute is non-volatile and solvent molecule is volatile. Which of the following has maximum contribution in vapour phase?
A. Solute
B. solvent
C. Solute and solvent both
D. None of these

Answer: B

- Watch Video Solution

65. When two liquids A and B are mixed, their boiling points become greater than both of them. The mixture is :
A. Ideal solution
B. Normal solution
C. Negative deviation with non-ideal solution
D. Positive deviation with non-ideal solution

Answer: C

- Watch Video Solution

66. Vapour pressure of $C C L_{4}$ at $25^{\circ} C$ is 143 mmHg 0.05 g of a nonvolatile solute (mol.wt. $=65$) is dissolved in $100 \mathrm{mlCCL}_{4}$. find the vapour pressure of the solution (density of $C C L_{4}=158 \mathrm{~g} / \mathrm{cm}^{2}$)
A. 94.39 mm
B. 141.93 mm
C. 134.44 mm
D. 199.34 mm

Answer: B

67. The vapour pressure of two liquids P and Q are 100 and 50 torr, respectively. The total vapour pressure of solution obtained by mixing 3 moles of P and 2 moles of Q would be
A. 140 torr
B. 20 torr
C. 68 torr
D. 80 torr

Answer: D

- Watch Video Solution

68. Which of the following plot obeys the Raoult's law for all concentration?
A.
B.
c.
D.

Answer: C

- View Text Solution

69. At $40^{\circ} \mathrm{C}$ the vapour pressure of pure liquids, benzene and toluene, are 160 mm Hg and 60 mmHg respectively. At the same temperature, the vapour pressure of an equimolar solution of the liquids, assuming the ideal solution will be:
A. 140 mm Hg
B. 110 mm Hg
C. 220 mm Hg
D. 100 mm Hg

Answer: B

- Watch Video Solution

70. The solution which shows large positive deviation from Raoult's law form
A. maximum boiling azeotrope kat a specific composition
B. miximum freezing azeotrope at a specific composition
C. minimum boiling azeotrope at a specific composition
D. minimum freezing azeotrope at a specific composition

Answer: C

D Watch Video Solution

71. $1 \times 10^{3} \mathrm{~m}$ solution of $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{4}$ in $\mathrm{H}_{2} \mathrm{O}$ shows depression in freezing point by $0.0054^{\circ} \mathrm{C}$. The structure of the compound will be
(given $K_{f}\left(H_{2} O\right)=1.860 \mathrm{~km}^{-1}$)
A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{4}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Cl}_{3}$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl} l_{3}\right] \mathrm{Cl}$

Answer: C

- Watch Video Solution

72. What happens to freezing point of benzene when nephthalens is added?
A. Increases
B. Decreases
C. Remains unchanged
D. First decreases and then increases

Answer: B

- Watch Video Solution

73. A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass $=60 \mathrm{gmol}^{-1}$) in the same solvent. If the densities of both the solutions are assumed to be equal to $1.0 \mathrm{gcm}^{-3}$, molar mass of the substance will be:
A. $90.0 \mathrm{~g} \mathrm{~mol}^{-1}$
B. $115.0 \mathrm{~g} \mathrm{~mol}^{-1}$
C. $105.0 \mathrm{~g} \mathrm{~mol}^{-1}$
D. $210.0 \mathrm{~g} \mathrm{~mol}^{-1}$

Answer: D

74. The difference between the boiling point and freezing point of an aqueous solution containing sucrose (molecular mass $=342 \mathrm{gmol}^{-1}$) in 100 g of water is 105.04 . If K_{f} and K_{b} of water are 1.86 and $0.51 \mathrm{Kgmol}^{-1}$ respectively, the weight of sucrose in the solution is about
A. 34.2 g
B. 342 g
C. 7.2 g
D. 72 g

Answer: D

- Watch Video Solution

75. A 6% of urea is isotonic with
A. 1 M solution of glucose
B. $0.05 M$ solution of glucose
C. 6% solution of glucose
D. 25% solution of glucose

Answer: A

- Watch Video Solution

76. Which of the following is not a colligative property?
A. Depression in freezing point
B. Elevation in boiling point
C. Optical activity
D. Relative lawering in vapour pressure

Answer: C

77. In an osmotic pressure measurement experiment, a 5% solution of compount ' X ' is found to be kisotonic with a 2% acetic acid solution. The gram molecular mass of ' X ' is
A. 24
B. 61.5
C. 151.5
D. 300

Answer: C

- Watch Video Solution

78. A solution of urea boils at $100 \cdot 18^{\circ} \mathrm{C}$ at the atmospheric pressure. If K_{f} and K_{b} for water are 1.86 and $0.512 \mathrm{Kkgmol}^{-1}$ respectively, the above solution will freeze at,
A. $-6.54^{\circ} \mathrm{C}$
B. $6.54^{\circ} \mathrm{C}$
C. $0.654^{\circ} \mathrm{C}$
D. $-0.654^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

79. The molal elevation constant of water $=0.52 \mathrm{Km}^{-1}$. The boiling point of 1.0 molal aqueous KCl solution (assuming complete dissociation of $K C l$) should be
A. $98.96^{\circ} \mathrm{C}$
B. $100.52^{\circ} \mathrm{C}$
C. $101.04^{\circ} \mathrm{C}$
D. $107.01^{\circ} \mathrm{C}$

Answer: C

80. A solution containing 4 g of polyvinyl chloride polymer in 1 L of dioxane was found to have an osmotic pressure of $4.1 \times 10^{-4} \mathrm{~atm}$ at $27^{\circ} \mathrm{C}$. The approximate molecular weight of the polymer is
A. 1500
B. 10000
C. 2.4×10^{5}
D. 2×10^{12}

Answer: C

- Watch Video Solution

81. If α is the degree of dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the van't Hoff's factor (i) used for calculating the molecular mass is
A. $1+2 \alpha$
B. $1-2 \alpha$
C. $1-\alpha$
D. $1+\alpha$

Answer: A

- Watch Video Solution

82. At $25^{\circ} \mathrm{C}$, the highest osmotic pressure is exhibited by 0.1 M solution of:
A. urea
B. glucose
C. KCl
D. CaCl_{2}
83. Calculate the molal depression constant of a solvent which has freezing point $16.6^{\circ} \mathrm{C}$ and latent heat of fusion $180.75 \mathrm{~J} \mathrm{~g}^{-1}$:
A. 2.68
B. 3.86
C. 4.68
D. 2.86

Answer: B

- Watch Video Solution

84. The freezing point of 1% of lead nitrate solution in water will be :
A. $2^{\circ} C$
B. $1^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{C}$
D. below $0^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

85. The relative lowering of vapour pressure of an aqueous solution containing a non-volatile solute, is 0.0125 . The molality of the solution is
A. 0.70
B. 0.50
C. 0.90
D. 0.80

Answer: A

86. KBr is 180% dissociated in aqueous solution of 0.5 m concentration. (Given, K_{f} for water $=1.86 \mathrm{Kkg} \mathrm{mol}^{-1}$). The solution freezes at
A. $271.326 K$
B. 272 K
C. 270.5 K
D. 268.5 K

Answer: A

- Watch Video Solution

87. The vapour pressure of water at $23^{\circ} \mathrm{C}$ is 19.8 mm of Hg 0.1 mol of glucose is dissolved in $178.2 g$ of water. What is the vapour pressure (in mm Hg) of the resultant solution?
A. 19.0
B. 19.602
C. 19.402
D. 19.202

Answer: B

- Watch Video Solution

88. Benzoic acid is dissolved in benzene, van't Hoff factor will be
A. 1
B. 0.5
C. 1.5
D. 2

Answer: B

- Watch Video Solution

89. Mark the correct option for the K_{f}.
I. K_{f} depends on nature of solvent.
II. K_{f} is also known as freezing point depression constant or molal depression constant.
III. K_{f} is known as cryoscopic constant.
IV. Unit of $K_{f}=K k g \mathrm{~mol}^{-1}$.
v. $M_{2}=\frac{K_{f} \times W_{1} \times 1000}{\Delta T_{f} \times W_{2}}$. where $W-(2)$ is the mass of solute haveing molar mass of M_{2} present in W_{1} gram of solvent.
A. I, II and III
B. I, II, III and IV
C. I. II, III, IV and V
D. II, III, IV and V

Answer: B

- Watch Video Solution

90. Osmotic pressure present in the fluid inside the blood cell is equivalent to
A. $0.9 \%(m / V) N a C l$ solution
B. less than $0.9 \%(m / V) N a C l$ solution
C. more than $0.9 \%(m / V) N a C l$ solution
D. $0.9 \%(m / V) \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution

Answer: A

- Watch Video Solution

91. Match the laws given in Column I with expressions given in Column II.

Select an appropriate answer from the codes given belwo.

Column I
A. Raoult's law
B. Henry's law
C. Elevation of boiling point
D. Depression infresing point
E. Osmotic pressure
. $A \quad B \quad C \quad D \quad E$
A. $\begin{array}{lllll}5 & 3 & 2 & 1 & 4\end{array}$
$\begin{array}{lllll}A & B & C & D & E\end{array}$
$\begin{array}{lllll}5 & 3 & 4 & 1 & 2\end{array}$
$\begin{array}{lllll}A & B & C & D & E\end{array}$
$\begin{array}{lllll} \\ \text { C. } & 5 & 4 & 1 & 2\end{array}$
D. $\begin{array}{lllll}A & B & C & D & E \\ 3 & 5 & 2 & 1 & 4\end{array}$

Answer: C

- Watch Video Solution

92. Lowering of vapour pressure is highest for
A. $0.1 \mathrm{MBaCl} l_{2}$
B. 0.1 M glucose
C. $0.1 \mathrm{MMgSO}_{4}$
D. urea

Answer: A

93. If the elevation in boiling point of a solution of 10 g of solute (molecular weight $=100$) in 100 g of water is ΔT_{b}, the ebullioscopic constant of water is
A. 10
B. $100 T_{b}$
C. ΔT_{b}
D. $\frac{\Delta T_{b}}{10}$

Answer: C

- Watch Video Solution

94. The vapour pressure of water at $20^{\circ} \mathrm{Cis} 17.54 \mathrm{~mm}$. When 20 g of non ionic substance is dissolved in 100 g of water, the vapour pressure is lowered by 0.30 mm . What is the molecular mass of the substance?
A. 200.8
B. 206.88
C. 210.5
D. 215.2

Answer: B

- Watch Video Solution

95. The osmotic pressure of a 5% (weight/volume) solution of cane sugar at $150^{\circ} \mathrm{C}$ is
A. 3.078 atm
B. 4.078 atm
C. 5.078 atm
D. 2.45 atm

Answer: C

96. The freezing point of 0.1 M solution of glucose is $-1.86^{\circ} \mathrm{C}$. If an equal volume of 0.3 M glucose solution is added, the freezing point of the mixture will be
A. $-7.44^{\circ} \mathrm{C}$
B. $-5.58^{\circ} \mathrm{C}$
C. $-3.72^{\circ} \mathrm{C}$
D. $-2.79^{\circ} \mathrm{C}$

Answer: C

Watch Video Solution

97. At $10^{\circ} \mathrm{C}$, the osmotic pressure of urea solution is 500 mm . The solution is diluted and the temperature is raised to $25^{\circ} C$.when the
osmotic pressure is found to be 105.3 mm . Determine the extent of dilution.
A. $V_{\text {final }}=5 V_{\text {initial }}$
B. $V_{\text {initial }}>V_{\text {final }}$
C. $V_{\text {final }}=4 V_{\text {initial }}$
D. $V_{\text {final }}=6 V_{\text {initial }}$

Answer: A

- Watch Video Solution

98. An aqueous solution freezes at
$-0.186^{\circ} C\left(K_{f}=1.86^{\circ}, K_{b}=0.512^{\circ}\right.$. What is the elevation in boiling point?
A. 0.186
B. 0.512
C. 0.86
D. 0.0512

Answer: B

- Watch Video Solution

99. Colligative properties of a solution depends upon
A. nature of solute
B. nature of both solute and solvent
C. number of solute particles
D. number of solvent particles

Answer: C

- Watch Video Solution

100. In coparison to a 0.01 M solution of glucose, the depression in freezing point of a $0.01 \mathrm{M} \mathrm{MgCl}_{2}$ solution is......
A. the same
B. about twice
C. about three times
D. about six times

Answer: C

- Watch Video Solution

101. Which of the following aqueous solution should have the highest boiling point?
A. 1.0 MNaOh
B. $1.0 \mathrm{MNa}_{2} \mathrm{SO}_{4}$
C. $1.0 \mathrm{MNH}_{4} \mathrm{NO}_{3}$
D. $1.0 \mathrm{MKNO}_{3}$

Answer: B

- Watch Video Solution

102. In which case van't Hoff factor is maximum ?
A. $K C l, 50 \%$ ionised
B. $\mathrm{K}_{2} \mathrm{SO}_{4}, 40 \%$ ionised
C. $\mathrm{FeCI}_{3}, 30 \%$ ionised
D. $S n C I_{4}, 20 \%$ ionised

Answer: C

- Watch Video Solution

103. Ratio of $\Delta T_{b} / K_{b}$ for $6 \% A B_{2}$ and $9 \% A_{2} B\left(A B_{2}\right.$ and $A_{2} B$ both are non-electrolytes) is $1 \mathrm{~mol} / \mathrm{kg}$ in both cases. Hence, atomic masses of A and B are respectively :
A. 60,90
B. 40,40
C. 40,10
D. 10,40

Answer: C

- Watch Video Solution

104. 60 g of urea is dissolved in 1100 g solution. To keep $\Delta T / K_{f}$ as $1 \mathrm{~mol} / \mathrm{kg}$, water separated in the form of ice is
A. 40 g
B. 60 g
C. 100 g
D. 200 g

Answer: B

- Watch Video Solution

105. Osmotic pressure of insulin solution at 298 K is found to be 0.0072 atm . Hence, height of water Column due to this pressure is
A. 0.76 cm
B. 0.70 cm
C. 7.4 cm
D. 76 cm

Answer: C

106. Which of the following is not a colligative property ?
A. Depression in freezing point
B. Osmotic pressrue
C. Elevation of boilling point S
D. Freezing point

Answer: D

- Watch Video Solution

107. K_{f} for water is $1.86 \mathrm{Kkgmol}^{-1}$. IF your automobile radiator holds
1.0 kg of water, how many grams of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ must you add to get the freezing point of the solution lowered to $-2.8^{\circ} \mathrm{C}$?
A. 72 g
B. 93 g
C. 39 g
D. 27 g

Answer: B

- Watch Video Solution

108. The highest osmotic pressure corresponds to the which of the following solution
A. $M / 10$ urea
B. $M / 10$ glucose
C. $\mathrm{M} / 10 \mathrm{HCl}$
D. $\frac{M}{10} \mathrm{BaCl}_{2}$

Answer: D

- Watch Video Solution

109. The correct order of increasing boiling points of the following
aqueous solutions
$0.0001 M N a C l(I), \quad 0.0001 \mathrm{M}$ Urea (II) $, 0.001 M M g C l_{2}(I I I), \quad 0.01 \mathrm{MNaC}$
A. $I<I I<I I I<I V$
B. $I V<I I I<I I<I$
C. $I I<I<I I I<I V$
D. $I I I<I I<I V<I$

Answer: C

- Watch Video Solution

110. To observe an elevation of boiling point of $0.05^{\circ} \mathrm{C}$, the amount of a solute (molecular weight $=100)$ to be added to 100 g of water $\left(K_{b}=0.5\right)$ is
A. 2 g
B. $0.5 g$
C. 1 g
D. 0.75 g

Answer: C

- Watch Video Solution

111. Which of the following aqueous solutions has the highest freezing point?
A. $0.1 M$ sucrose
B. 0.01 MNaCl
C. 0.1 MNaCl
D. $0.01 \mathrm{MNa}_{2} \mathrm{SO}_{4}$

Answer: C

112. After adding non-volatile solute, freezing point of water decreases to
$-0.186^{\circ} \mathrm{C}$. Calculate ΔT_{b} if :
$K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ and $K_{b}=0.521 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
A. 0.512
B. 0.0521
C. 1.86
D. 0.0186

Answer: B

- Watch Video Solution

113. Which of the following electrolytes has the same value of van't Hoff factor (i)is that of $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (if all are 100% ionised?
A. $\mathrm{K}_{2} \mathrm{SO}_{4}$
B. $K_{3}\left[F e(C N)_{6}\right]$
C. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
D. $K_{4}\left[F e(C N)_{6}\right]$

Answer: D

- Watch Video Solution

Exercise 2 Miscellaneous Problems

1. 60 mL of $\frac{N}{5} \mathrm{H}_{2} \mathrm{SO}_{4}, 10 \mathrm{~mL}$ of $\frac{N}{2} \mathrm{HNO}_{3}, 30 \mathrm{~mL}$ of $\frac{N}{10} \mathrm{HCl}$ are are mixed together. The strength of the resulting mixture is
A. 0.10 N
B. 0.2 N
C. 0.3 N
D. 0.4 N

Answer: B

- Watch Video Solution

2. Concentrated aqueous solution of sulphuric acid is 98% by mass and has density of $1.80 \mathrm{~g} \mathrm{~mL}^{-1}$. What is the volume of acid required to make one liter $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution ?
A. $11.10 m L$
B. $16.65 m L$
C. 22.20 mL
D. 5.55 mL

Answer: D

3. $10 \mathrm{~cm}^{3}$ of 0.1 N monobasic acid requires $15 \mathrm{~cm}^{3}$ of sodium hydroxide solution whose normality is
A. 1.5 N
B. 0.15 N
C. 0.066 N
D. 0.66 N

Answer: C

- Watch Video Solution

4. Dissolution of 1.5 g of a non-volatile solute (mol. wt. $=60$) in 250 g of a solvent reduces its freezing point by $0.01^{\circ} \mathrm{C}$. Find the molal depression constant of the solvent.
A. 0.01
B. 0.001
C. 0.0001
D. 0.1

Answer: D

- Watch Video Solution

5. How many grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is/are to be dissolved to prepare 200 mL aqueous solution having concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ions is 1 M at $25^{\circ} \mathrm{C}$ temperature?
A. $19.6 g$
B. $0.98 g$
C. $4.9 g$
D. $9.8 g$

Answer: D

6. 20 g of a binary electrolyte(mol.wt. $=100$)are dissolved in 500 g of water.The freezing point of the solution is $-0.74^{\circ} C K_{f}=1.86 \mathrm{Kmolality}^{-1}$.the degree of ionization of the electrolyte is
A. 0%
B. 100%
C. 75%
D. 50%

Answer: A

- Watch Video Solution

7. Addition of a non-volatile solute causes lowering in vapour pressure of a solvent from0.8atm to 0.2 atm . What is the mole fraction of solvent?
B. 0.75
C. 0.50
D. Connot be calculated

Answer: A

- Watch Video Solution

8. If at certain temperature, the vapour pressure of pure water is 25 mm Hg and that of a very dilute aqueous urea solution is 24.5 mm Hg , the molality of the solution is
A. 0.02
B. 1.2
C. 1.11
D. 0.08

Answer: C

9. The average osmotic pressure of human blood is 7.8 bar at $37^{\circ} \mathrm{C}$. What is the concentration of an aqueous NaCl solution that could be used in the blood stream ?
A. $0.16 \mathrm{~mol} / L$
B. $0.30 \mathrm{~mol} / L$
C. $0.60 \mathrm{~mol} / L$
D. $0.45 \mathrm{~mol} / L$

Answer: B

- Watch Video Solution

10. 1 mol each of the following solutes are taken in 5 mol water,
(a) NaCl (b) $\mathrm{K}_{2} \mathrm{SO}_{4}$ (C) $\mathrm{Na}(3) \mathrm{PO}_{4}$ (d) glucose

Assuming 100% ionisation of the electrolyte ,relative decrease in vapour pressure will be in order
A. NaCl
B. $\mathrm{K}_{2} \mathrm{SO}_{4}$
C. $\mathrm{Na}_{3} \mathrm{PO}_{4}$
D. glucose

Answer: C

- Watch Video Solution

11. The boiling point of $0.2 \mathrm{molkg}^{-1}$ solution of X in water is greater than equimolal solution of Y in water. Which of the following statements is true in this case?
A. X is undergoing dissociation in water
B. Molecular mass of X is greater than the molecular mass of Y
C. Molecular mass of X is less than the molecular mass of Y
D. Y is undergoing dissociation in water while X undergoes no change

Answer: A

- Watch Video Solution

12. Density of 2.05 M solution of acetic acid in water is $1.02 \mathrm{~g} / \mathrm{mL}$. The molality of same solution is:
A. $1.14 \mathrm{~mol} \mathrm{~kg}^{-1}$
B. $3.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
C. $2.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
D. $0.44 \mathrm{~mol} \mathrm{~kg}^{-1}$

Answer: C

13. In a 0.2 molal aqueous solution of a weak acid HX the degree of ionization is 0.3 . Taking K_{f} for water as 1.85 , the freezing point of the solution will be nearest to
A. $-0.481^{\circ} C$
B. $-0.360^{\circ} \mathrm{C}$
C. $-0.260^{\circ} \mathrm{C}$
D. $+0.480^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

14. By dissolving 5 g substance in 50 g of water, the decrease in freezing point is $1.2^{\circ} \mathrm{C}$. The gram molal depression is $1.85^{\circ} \mathrm{C}$. The molecular weight of substance is
A. 105.4
B. 118.2
C. 137.2
D. 154.2

Answer: D

- Watch Video Solution

15. The vapour pressure of pure liquid is 1.2 atm. When a non-volatile substance B is mixed in A, then its vapour pressure becomes 0.6 atm . The mole fraction of B in the solution is
A. 0.15
B. 0.25
C. 0.50
D. 0.75

Answer: C

16. How much $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ must be added to 1.0 L of $\mathrm{H}_{2} \mathrm{O}$, so that solution should not freeze at $-4^{\circ} F$?

$$
\left[K_{f}\left(C_{2} H_{5} \mathrm{OH}\right)=1.86^{\circ} \mathrm{C} / \mathrm{m}\right]
$$

A. $<10.75 g$
B. $>494.5 g$
C. $<20 g$
D. 494.5 g

Answer: B

- Watch Video Solution

17. On the basis of information given below mark the correct option. Information On adding acetone to methanol some of the hydrogen bonds between methanol molecules break.
A. A specific composition of methanol-acetone mixture will form minimum boiling azeotrope and will show positive deviation from

Raoult's law
B.A specific composition of methanol-acetone mixture forms maximum boiling azeotrope and will show positive deviation from

Raoult's law
C. A specific composition of methanol-acetone mixture will form minimum boiling azeotrope and will show negative deviation from

Raoult's law
D. A specific compsoition of methanol-acetone mixture will form maximum boiling azeotrope and will show negative deviation from Raoult's law

Answer: A

18. If sodium sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change in freezing point of water $\left(\Delta T_{f}\right)$ when 0.01 mole of sodium sulphate is dissociated in 1 kg of water is: $\left(K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
A. $0.0372 K$
B. 0.0558 K
C. $0.0744 K$
D. 0.0186 K

Answer: B

- Watch Video Solution

19. The vapour pressure of water at 20° is 17.5 mm Hg . If $18 g$ of glucose ($C_{6} \mathrm{H}_{12} \mathrm{O}_{6}$) is added to $178.2 g$ of water at $20^{\circ} \mathrm{C}$, the vapour pressure of the resulting solution will be
B. 15.750 mmHg
C. 16.500 mmHg
D. 17.325 mmHg

Answer: D

- Watch Video Solution

20. An aqueous solution of 2 per cent ($w t$. / wt) non-volatile solute exerts a pressure of 1.004 bar at the boiling point of the solvent. What is the molecular mass of the solute?
A. 0.3655
B. 36.55
C. 41.34
D. 40.16

Answer: C

21. On mixing, heptane and octane form an ideal solution. At 373 K the vapour pressure of the two liquid components (heptane and octane) are $105 k P a$ and $k P a$ respectively. Vapour pressure of the solution obtained by mixing 25.0 of heptane and $35 g$ of octane will be (molar mass of heptane $=100 \mathrm{gmol}^{-1}$ and of octane $\left.=114 \mathrm{gmol}^{-1}\right)$:-
A. 72.0 kPa
B. 36.1 kPa
C. 96.2 kPa
D. 144. $k P a$

Answer: A

- Watch Video Solution

22. To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorus $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ acid the volume of 0.1 M aqueous KOH solution required is:
A. $10 m L$
B. $20 m L$
C. $40 m L$
D. 60 mL

Answer: C

- Watch Video Solution

23. The degree of dissociation (α) of a weak electrolyte $A_{x} B_{y}$ is related to van't Hoff factor (i) by the expression
A. $\alpha=\frac{i-1}{(x+y-1)}$
B. $\alpha=\frac{i-1}{x+y+1}$
C. $\alpha=\frac{x+y-1}{i-1}$
D. $\alpha=\frac{x+y+1}{i-1}$

Answer: A

- Watch Video Solution

24. A solution of $A l_{2}\left(\mathrm{So}_{4}\right)_{3}\{d=1.253 \mathrm{gm} / \mathrm{ml}\}$ contain 22% salt by weight. The molarity, normality and molality of the solution is
A. $0.805 M, 0.825 m$
B. $0.825 M, 0.805 m$
C. $4.83 M, 4.83 m$
D. $4.83 M, 48.3 m$

Answer: A

25. A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solutionby mass. Calculate the mass percentage of solute in the resulting solution.
A. 33.57
B. 66.43
C. 87.23
D. 19.24

Answer: A

- Watch Video Solution

26. Which of the following aqueous solutions produce the same osmotic pressure ?
(i) 0.1 M NaCl solution
(ii) 0.1 M glucose solution
(iii) 0.6 g urea kin 100 mL solution
(iv) 0.1 g of a non-electrolyte solute (X) in 50 mL (molar mass of $X=200$)

Choose the correct option.

A. (i), (ii), (iii)
B. (ii), (iii), (iv)
C. (i), (ii), (iv)
D. (i), (iii), (iv)

Answer: B

(Watch Video Solution

27. 138 g of ethyl alcohol is mixed with 72 g of water. The ratio of mole fraction of alcohol to water is
A. $3: 4$
B. 1: 2
C. 1: 4
D. 1:1

Answer: A

- Watch Video Solution

28. The vapour pressure lowering caused by addition of 100 g of sucrose (molecular mass $=342$) to 1000 g of wate, if the vapour pressure of pure water at $25^{\circ} C$ is 23.8 mm Hg , is
A. $0.12 m m$ of Hg
B. 0.125 mm of Hg
C. 1.15 mm of Hg
D. 1.25 mm of Hg

Answer: B

- Watch Video Solution

29. The mass of a non-volatile solute of molar mass $40 \mathrm{~g} \mathrm{~mol}^{-1}$ that should be dissolved in 114 g of octane to lower its vapour pressure by 20% is
A. $11.4 g$
B. $9.8 g$
C. $12.8 g$
D. 10 g

Answer: D

- Watch Video Solution

30. 58.5 g of NaCl and 180 g of glucose were separately dissolved in 1000 mL of water. Identify the correct statement regarding the elevation of boiling point (bp) of the resulting solutions.
A. NaCl solution will show higher elevation of bp
B. Glucose solution will show higher elevation of bp
C. Both the solutions will show equal elevation of bp
D. The bp elevation will be shown by neither of the solutions

Answer: A

- Watch Video Solution

31. The vapour pressure of chloroform $(\mathrm{CHCl})_{3}$ and dichlorocethene $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298 K is 200 mmHg and 415 mmHg , respectively. Calculate
a. The vapour pressure of the solution prepared by mixing 25.5 g of CHCl_{3} and 40 g of $\mathrm{CH}_{2} \mathrm{Cl}(2)$ at 298 K .
b. Mole fractions of each components in vapour phase.
A. 173.9 mmHg
B. 615.0 mmHg
C. 347.9 mmHg
D. 90.63 mmHg

- Watch Video Solution

32. Two solutions of HCl, A and B have concentration of 0.5 N and 0.1 M respectively. The volume of solutions A and B required to make $2 L$ of 0.2 NHCl are
A. $0.5 L$ of $A+1.5 L$ of B
B. $1.5 L$ of $A+0.5 L$ of B
C. $1.0 L$ of $A+1.0 L$ of B
D. $0.75 L$ of $A+1.25 L$ of B

Answer: A

- Watch Video Solution

33. A solution at $20^{\circ} \mathrm{C}$ is composed of 1.5 mol of benzene and 3.5 mol of toluene. If the vapour pressure of pure benzene and pure toluene at this temperature are 74.7 torr and 22.3 torr, respectively, then the total
vapour pressure of the solution and the benzene mole fraction in equilibrium with it will be, respectively:
A. 35.0 torr and 0.480
B. 30.5 torr and0. 389
C. 38.0 torr and 0.589
D. 35.8 torr and 0.280

Answer: C

- Watch Video Solution

34. The relative lowering of vapour pressure of an aqueous solution containing a non-volatile solute, is 0.0125 . The molality of the solution is
A. 0.70
B. 0.30
C. 0.125
D. 0.07

Answer: A

- Watch Video Solution

35. The elevation in boiling point would be highest for
A. $0.08 \mathrm{MBaCl}_{2}$
B. 0.15 MKCl
C. 0.10 Mg glucose
D. $0.06 \mathrm{MCa}\left(\mathrm{NO}_{3}\right)_{2}$

Answer: B

- Watch Video Solution

36. 1.2 \% NaCl solution is isotonic with 7.2 \% glucose solution. What will be the van't Hoff factor, i?
A. 0.5
B. 1
C. 2
D. 6

Answer: C

- Watch Video Solution

37. How many grams of concentrated nitric acid solution should be used to prepare 250 mL of $2.0 \mathrm{MHNO}_{3}$? The concentrated acid is $70 \% \mathrm{HNO}_{3}$
A. 45.0 g conc. HNO_{3}
B. 90.0 g conc. HNO_{3}
C. 70.0 g conc. HNO_{3}
D. 54.0 g conc. HNO_{3}

Answer: A

- Watch Video Solution

38. What is the osmotic pressure of 12% solution of can sugar (mol.wt. 342) at $17^{\circ} C$
A. 2.42 atm
B. 4.33 atm
C. 8.35 atm
D. 16.30 atm

Answer: C

39. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and 1 atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately
A. 1×10^{-6}
B. 1×10^{-5}
C. 1×10^{-3}
D. 1×10^{-4}

Answer: D

- Watch Video Solution

40. A solution of $1.25 o f^{\prime} P^{\prime}$ in 50 g of water lawers freezing point by $0.3^{\circ} \mathrm{C}$. Molar mass of ' P ' is $94 . K_{f(\text { water })}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. The degree of association of ' P ' in water is
A. 0.8
B. 0.6
C. 0.65
D. 0.75

Answer: A

- Watch Video Solution

41. What is the volume of ethyl alcohol (density $1.15 \mathrm{~g} / \mathrm{cc}$) that has to be added to prepare 100 cc of 0.5 M ethyl alcohol solution in water ?
A. $1.15 c c$
B. $2 c c$
C. $2.15 c c$
D. $2.30 c c$

Answer: B

42. Consider separate solutions of $0.500 \mathrm{MC}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)$, $0.100 \mathrm{MMg}_{3}\left(\mathrm{PO}_{4}\right)(a q), 0.250 \mathrm{MKBr}(a q)$, and $0.125 M N a_{3} \mathrm{PO}_{4}(a q)$ at $25^{\circ} \mathrm{C}$. Which statement is true about these solutions, assuming all salts to be strong electrolytes?
A. They all have the same osmotic pressure
B. $0.100 \mathrm{M} \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})$ has the highest osmotic pressure
C. $0.125 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ has the highest osmotic pressure
D. $0.500 \mathrm{MC}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})$ has the highest osmotic pressure

Answer: A

- Watch Video Solution

43. What will be the value of molality for an aqueous solution of $10 \% \mathrm{w} / \mathrm{W}$
A. 5
B. 2.778
C. 10
D. 2.5

Answer: B

- Watch Video Solution

44. $50 \mathrm{~cm}^{3}$ of $0.04 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium oxidises a sample of $\mathrm{H}_{2} \mathrm{~S}$ gas to sulphur. Volume of $0.03 M \mathrm{HMn} O_{4}$ required to oxidise the same amount of $\mathrm{H}_{2} \mathrm{~S}$ gas to sulphur in acidic medium is
A. $60 \mathrm{~cm}^{3}$
B. $80 \mathrm{~cm}^{3}$
C. $90 \mathrm{~cm}^{3}$
D. $120 \mathrm{~cm}^{3}$

D Watch Video Solution

45. Among the following 0.10 m aqueous solutions, which one will exhibit the largest freezing point depression?
A. KCl
B. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$
D. $\mathrm{K}_{2} \mathrm{SO}_{4}$

Answer: C

- Watch Video Solution

46. Benzene and naphthalene form an ideal solution at room temperature. For this process,the true statement(s) is (are)
A. ΔG is positive
B. $\Delta S_{\text {system }}$ is positive
C. $\Delta S_{\text {surroundings }}=0$
D. $\Delta H=0$

Answer: D

- Watch Video Solution

47. Identify the mixture that shows positive deviations from Raoult's law
A. $\mathrm{CHCl}_{3}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
C. $\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}+\mathrm{CS}_{2}$

Answer: D

48. An aqueous solution freezes at
$-0.186^{\circ} C\left(K_{f}=1.86^{\circ}, K_{b}=0.512^{\circ}\right.$. What is the elevation in boiling point?
A. $0.0512^{\circ} \mathrm{C}$
B. $100.0512^{\circ} \mathrm{C}$
C. $-0.0512^{\circ} \mathrm{C}$
D. None of these

Answer: A

- Watch Video Solution

49. Vapour pressure of pure water is 40 mm . if a non-volatile solute is added to it, vapour pressure falls by 4 mm . Hence, molality of solution is

$$
\text { A. } 6.173 m
$$

B. $3.0864 m$
C. $1.543 m$
D. $0.772 m$

Answer: A

- Watch Video Solution

50. Aluminium phosphate is 100% ionised in 0.01 molal aqueous solution. Hence, $\Delta T_{b} / K_{b}$ is :
A. 0.01
B. 0.015
C. 0.0175
D. 0.02

Answer: D

51. Concentrated nitric acid used in the laboratory work is 68% nitric acid by mass in aqueous solution. What should be the molaritiy of such a sample of the acid if the density of solution is $1.504 g m L^{-1}$?
A. 15.23
B. 16.24
C. 12.14
D. 26.3

Answer: B

- Watch Video Solution

52. An antifreeze solution is prepared from $222.6 g$ of ethylene glycol $\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}\right]$ and 200 g of water. Calculate the molality of the solution. If the density of the solution is $1.072 g m L^{-1}$ then what shall be the molarity of the solution?
A. $9.10,17.95$
B. $10.90,16.6$
C. $12.04,17.95$
D. $18.2,16.97$

Answer: A

- Watch Video Solution

53. The vapour pressure of water is 12.3 kPa at 300 K . Calculate vapour pressure of 1 molal solution of a solute in it.
A. 10.08
B. 12.08
C. 18.02
D. 20.10

Answer: B

54. Henry's law constant for the molality of methane in benzene at 298 K is $4.27 \times 10^{5} \mathrm{mmHg}$. Calculate the solubility of methane in benzene at 298 K under 760 mm Hg .
A. 1.87×10^{-5}
B. 1.77×10^{-3}
C. 1.77×10^{-4}
D. 1.90×10^{-4}

Answer: B

- Watch Video Solution

55. The solubility of $N_{2}(g)$ in water exposed to the atmosphere, when the partial pressure is 593 mm is $5.3 \times 10^{-4} \mathrm{M}$. Its solubility at 760 mm and at the same temperature is
A. $4.1 \times 10^{-4} M$
B. $6.8 \times 10^{-4} M$
C. 1500 M
D. 2400 M

Answer: B

- Watch Video Solution

56. Nalorphene ($\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}$), similar to morphine, is used to combat withdrawal symptoms in narcotic users. The dose of nalorphene generally given is 1.5 mg . Calculate the mass of solution of $1.5 \times 10^{-3} \mathrm{~m}$ aqueous solution required for the above dose.
A. $3.2 \times 10^{-2} \mathrm{~kg}$
B. $3.2 \times 10^{-4} \mathrm{~kg}$
C. $3.2 \times 10^{-3} \mathrm{~kg}$
D. $3.2 \times 10^{-5} \mathrm{~kg}$

Answer: C

D Watch Video Solution

57. How many grams of sucrose (molecular weight 342) should be dissolved in 100 g water in order to produce a solution with $105^{\circ} \mathrm{C}$ difference between the freezing point and the boiling point ? $\left(K_{b}=0.51^{\circ} \mathrm{Cm}^{-1},\left(K_{f}=1.86^{\circ} \mathrm{Cm}^{-1}\right)\right.$
A. $34.2 g$
B. $72 g$
C. $342 g$
D. $460 g$

Answer: B

1. 5.0 g of sodium hydroxide ${ }^{`}\left(\right.$ "molar mass $\left.40 \mathrm{~g} \mathrm{~mol}{ }^{\wedge}(-1)\right)$ is dissolved in little quanitity of water and the solution is diluted upto 100 mL . What is the molarity of the resulting solution?
A. $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$
B. $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
C. $0.125 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
D. $1.125 \mathrm{~mol} \mathrm{dm}^{-3}$

Answer: D

- Watch Video Solution

2. The relation between solubility of a gas in liquid at constant temperature and external pressure is stated by which law ?
B. van't Hoff- Boyle's law
C. van't Hoff- Charles's law
D. Henry's law

Answer: D

- Watch Video Solution

3. Identify the compound amongst the following of which 0.1 M aqueous solution has highest boiling point.
A. Glucose
B. Sodium chloride
C. Calcium chloride
D. Ferric chloride

Answer: D

4. The equation that represents general van't Hoff equation is
A. $\pi=\frac{n}{V} R T$
B. $\pi=n R T$
C. $\pi=\frac{V}{n} R T$
D. $\pi=n V R T$

Answer: A

- Watch Video Solution

5. If M, W and V represent molar mass of solute then mass of solute and volume of solution in litres respecitively which among following equation is true?
A. $\pi=\frac{M W R}{T V}$
B. $\pi=\frac{T M R}{W V}$
C. $\pi=\frac{T W R}{V M}$
D. $\pi=\frac{T R V}{W M}$

Answer: C

- Watch Video Solution

6. What is the volume of water consumed during acid hydrolysis of 1.368 kg of surose ?
A. $0.072 d m^{3}$
B. $0.720 \mathrm{dm}^{3}$
C. $0.18 d m^{3}$
D. $0.018 \mathrm{dm}^{3}$

Answer: A

7. Molarity is defined as
A. the number of moles of solute dessolvedin $1 d m^{3}$ of the solution
B. the number of moles of solute dessolve in 1 kg of solvent
C. the number of molesof solute dissolved in $1 \mathrm{dm}^{3}$ of the solvent
D. the number of moles of solute dissolved in 100 mL of the solvent

Answer: A

- Watch Video Solution

8. Van't Hoff factor of a centinormal solution of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is 3.333 .

The precentage dissociation of $K_{3}\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)_{6}\right]$ is :
A. 33.33
B. 0.78
C. 78
D. 23.33

Answer: C

- Watch Video Solution

9. What is the molality of solution containing 200 mg of urea (molar mass60 $\mathrm{g} \mathrm{mol}^{-1}$) dissolved in 40 g of water ?
A. 0.0833
B. 0.825
C. 0.498
D. 0.0013

Answer: A

- Watch Video Solution

10. 6.02×10^{20} molecules of urea are present in 100 ml of its solution.

The concentration of solution is :
A. $0.02 M$
B. $0.01 M$
C. 0.001 M
D. $0.1 M$

Answer: B

- Watch Video Solution

11. An aqueous solution of urea containing 18 g urea in $1500 \mathrm{~cm}^{3}$ of solution has a density of $1.5 \mathrm{~g} / \mathrm{cm}^{3}$. If the molecular weight of urea is 60 . Then the molality of solution is:
A. 0.200
B. 0.192
C. 0.100
D. 1.200

D Watch Video Solution

12. S 34.2 g of cane sugar is dissolved in 180 g of water. The relative lowering of vapour pressure will be
A. 0.0099
B. 1.1597
C. 0.840
D. 0.9901

Answer: A

- Watch Video Solution

13.450 mg of glucose is dissolved in 100 g of solvent. What is the molality of the solution?
A. $0.0025 m$
B. 0.025 m
C. $0.25 m$
D. $2.5 m$

Answer: B

- Watch Video Solution

14. Dissolution of 1.5 g of a non-volatile solute ($\mathrm{mol} . \mathrm{wt} .=60$) in 250 g of a solvent reduces its freezing point by $0.01^{\circ} \mathrm{C}$. Find the molal depression constant of the solvent.
A. 0.01
B. 0.001
C. 0.0001
D. 0.1

Answer: D

- Watch Video Solution

15. $2.5 \mathrm{~cm}^{3}$ of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution is diluted to $0.5 \mathrm{dm}^{3}$. Find normality of the diluted solution .
A. $0.2 N$
B. $0.02 N$
C. $0.002 N$
D. $0.04 N$

Answer: C

- Watch Video Solution

16. Ratio of loss in solvent to gain in CaCl_{2} tube is
A. $\frac{p^{\circ}}{p}$
B. $\frac{p}{p^{\circ}}$
C. $\frac{p^{\circ}-p}{p^{\circ}}$
D. $\frac{p-p^{\circ}}{p}$

Answer: C

- Watch Video Solution

17. The volume of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is $0.1 \mathrm{dm}^{3}$. The volume of its decinormal solution (in $d m^{3}$) will be
A. 0.1
B. 0.2
C. 2
D. 1.7
18. Miximum depression in freezing point is caused by
A. potassium chloride
B. sodium sulphate
C. magnesium sulphate
D. magnesium carbonate

Answer: B

- Watch Video Solution

19. Which of the following is not a colligative property ?
A. Elevation in boiling point
B. Lowering of vapour pressure
C. Osmotic pressure
D. Freezing point

Answer: D

- Watch Video Solution

20. What is the amount of urea dissolved per litre, if aqueous solution is isotonic with 10% cane suger soution (mol. wt. of urea $=60$)?
A. $200 \mathrm{~g} / \mathrm{L}$
B. $19.2 g / L$
C. $17.54 g / L$
D. $16.7 g / L$

Answer: C

- Watch Video Solution

21. The freezing point of a 0.05 molal solution of a non-electrolyte in water is:
$\left(K_{f}=1.86\right.$ molality $\left.^{-1}\right)$
A. $-0.093^{\circ} C$
B. $1.83^{\circ} \mathrm{C}$
C. $0.93^{\circ} \mathrm{C}$
D. $0.093^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

22. 0.15 g of a subatance dissolved in 15 g of solvent boiled at a temperature higher at 0.216° than that of the pure solvent. Calculate the molecular weight of the substance. Molal elecation constant for the solvent is $2.16^{\circ} \mathrm{C}$
A. 100
B. 10.1
C. 10
D. 1.001

Answer: A

- Watch Video Solution

23. One mole each of urea, glucose and sodium chloride were dissolved in one litre of water. Equal osmotic pressure will be produced by solutions of
A. glucose and sodium chloride
B. urea and glucose
C. sodium chloride and urea
D. None of these

Answer: B

- Watch Video Solution

24. Two solutions A and B are separated by semipermeable membrane. If liquid flows from A to B, than
A. A is less concentrated than B
B. A is more concentrated than B
C. Both have same concentration
D. None of the above

Answer: A

- Watch Video Solution

25. The amount of urea to be dissolved in 500 cc of water $\left(K_{f}=1.86\right)$ to produce a depresssion of $0.186^{\circ} \mathrm{C}$ in the freezing point is :
A. 9 g
B. 6 g
C. 3 g
D. $0.3 g$

Answer: C

- Watch Video Solution

