©゙doubtnut

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

APPLICATIONS OF DEFINITE

INTEGRALS

1. Which of the following curve is symmetrical about origins ?

C.

Answer: B

D Watch Video Solution

2. Which of the following curve is not symmetrical about both the axis?
A.

B.

Answer: C

D View Text Solution

3. Which of the following curve is represented

$$
\text { by } y^{2}=1-x ?
$$

A.

Answer: D

D View Text Solution

4. Which of the following curve is represented
by $2 x^{2}+6 x y+5 y^{2}=1$?
A.

D.
$\overbrace{\left(0,-\frac{1}{\sqrt{2}}\right)}^{(0,0)}$

Answer: B

- View Text Solution

5. The curve $x y=1$ is symmetrical
A. about x-axis
B. about y-axis
C. about both the axis
D. about origin

Answer: D

D Watch Video Solution

6. The area of the region bounded by the curve
$a y^{2}=x^{3}$, the Y -axis and the lines $\mathrm{y}=\mathrm{a}$ and $\mathrm{y}=$
$2 a$, is
A. $\frac{3}{5} a^{2}\left(2.2^{2 / 3}-1\right)$ sq unit
B. $\frac{2}{5} a\left(2^{2 / 3}-1\right)$ sq unit
C. $\frac{3}{5} a^{2}\left(2^{2 / 3}+1\right)$ sq unit
D. None of these

Answer: A

D Watch Video Solution
7. The area bounded by the curve

$$
x=2-y-y^{2} \text { and } \mathrm{Y} \text {-axis is }
$$

A. $\frac{3}{2}$ sq units

5
B. $\frac{5}{2}$ sq units
C. $\frac{9}{2}$ sq units
D. None of these

Answer: C

D Watch Video Solution

8. Using integration, find the area of the region bounded by the line $2 y=5 x+7$, the x axis, and the lines $x=2$ and $x=8$.
A. 96 sq units
B. 72 sq units
C. $13 \frac{1}{2}$ sq units
D. 14 sq units

Answer: A

D Watch Video Solution

9. The area enclosed by $y=3 x-5, y=0, x=3$
and $x=5$ is
A. 12 sq units
B. 13 sq units
C. $13 \frac{1}{2}$ sq units
D. 14 sq units

Answer: D

- Watch Video Solution

10. Find by integration the area of the region bounded by the curve $y=2 x-x^{2}$ and the x axis.
A. $\frac{8}{3}$ sq units
B. $\frac{4}{3}$ sq units
C. $\frac{7}{3}$ sq units
D. $\frac{2}{3}$ sq unit

Answer: B

D Watch Video Solution

11. The area enclosed between the curve
$y=1+x^{2}$, the Y -axis and the straight line $\mathrm{y}=$

5 is given by
A. $\frac{14}{3}$ sq units
B. $\frac{7}{3}$ sq units
C. 5 sq units
D. $\frac{16}{3}$ sq units

Answer: D

D Watch Video Solution

$$
\begin{aligned}
& \text { 12. } \begin{array}{l}
\text { Area } \\
y^{2}=x, y=0, x=1, x=4 \text { is }
\end{array}
\end{aligned}
$$

A. $\frac{14}{3}$ sq units
B. $\frac{3}{28}$ sq unit
C. $\frac{8}{3}$ sq units
D. $\frac{4}{3}$ sq units

Answer: A

- Watch Video Solution

13. The area of the region bounded by the
lines $y=m x, x=1, x=2$ and x-axis is 6 sq units,
then m is equal to
A. 3
B. 1
C. 2
D. 4

Answer: D

D Watch Video Solution

14. The area of the region (in sq units), in the first quadrant, bounded by the parabola $y=9 x^{2}$ and the lines $\mathrm{x}=0, \mathrm{y}=1$ and $\mathrm{y}=4$, is
A. $\frac{7}{9}$
B. $\frac{14}{3}$
C. $\frac{7}{3}$
D. $\frac{14}{9}$

Answer: D

D Watch Video Solution

15. The area bounded by the curve $y=\frac{1}{2} x^{2}$,
the X-axis and the lines $x=2$ is
A. $\frac{1}{3}$ sq unit
B. $\frac{2}{3}$ sq unit
C. 1 sq unit
D. $\frac{4}{3}$ sq units

Answer: D

D Watch Video Solution

16. The area bounded by the curve $x=4-y^{2}$ and the Y-axis is
A. 16 sq units
B. 32 sq units
C. $\frac{32}{3}$ sq units
D. $\frac{16}{3}$ sq units

Answer: C

D Watch Video Solution

17. Find the area bounded by the curve $x y^{2}=4(2-x)$ and y-axis.
A. 2π sq units
B. 4π sq units
C. 12π sq units
D. 6π sq units

Answer: B

D Watch Video Solution

18. The area bounded by the curve
$y^{2}(2 a-x)=x^{3}$ and the line $\mathrm{x}=2 \mathrm{a}$ is
A. $3 \pi a^{2}$ sq units
B. $\frac{3 \pi a^{2}}{2}$ sq units
C. $\frac{3 \pi a^{2}}{4}$ sq unit
D. $\frac{6 \pi a^{2}}{5}$ sq units

Answer: B

D Watch Video Solution
19. The area of the smaller segment cut off from the circle $x^{2}+y^{2}=9$ by $\mathrm{x}=1$ is
A. $\frac{1}{2}\left(9 \sec ^{-1} 3-\sqrt{8}\right)$ sq unit
B. $\frac{1}{2}\left(9 \sec ^{-1} 3-\sqrt{8}\right)$ sq unit
C. $\left(\sqrt{8}-9 \sec ^{-1} 3\right)$ sq unit
D. None of the above

Answer: B

D Watch Video Solution

20. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line
$x=\frac{a}{\sqrt{2}}$
A. $\frac{a}{2}\left(\frac{\pi}{2}+1\right)$ sq units
B. $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ sq units
C. $a\left(\frac{\pi}{2}-1\right)$ sq units
D. None of these

Answer: B
21. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.

9
A. $\frac{9}{8}$ sq units
B. $\frac{3}{8}$ sq unit
C. $\frac{1}{8}$ sq unit
D. None of these

Answer: A
(Watch Video Solution
22. The area bended by the curve $y=x^{2}+2, y=x, x=3$ and y-axis is
A. $\frac{9}{2}$ sq unit
B. 9 sq unit
C. 21 sq unit
D. $\frac{21}{2}$ sq unit

Answer: D

D Watch Video Solution
23. The area (in square units) bounded by the
curve $y^{2}=8 x$ and $x^{2}=8 y$, is
A. 64 sq units
B. $\frac{64}{3}$ sq units
C. $\frac{8}{3}$ sq units
D. None of these

Answer: B

- Watch Video Solution

24. The area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$
A. 0 sq units
B. $\frac{32}{3}$ sq units
C. $\frac{16}{3}$ sq units
D. $\frac{8}{3}$ sq units

Answer: C

D Watch Video Solution
25. The area bounded by the parabola $y^{2}=8 x$, the x-axis and the latusrectum, is
A. $16 / 3$
B. $32 / 3$
C. $8 / 3$
D. $64 / 3$

Answer: B

D Watch Video Solution
26. The area (in sq unit) of the region enclosed
by the curves $y=x^{2}$ and $y=x^{3}$ is

> A. $\frac{1}{12}$
> B. $\frac{1}{6}$
> C. $\frac{1}{3}$
> D. 1

Answer: A

D Watch Video Solution
27. Area bounded by the curve $y^{2}=16 x$ and
line $\mathrm{y}=\mathrm{mx}$ is $\frac{2}{3}$, then m is equal to
A. 3
B. 4
C. 1
D. 2

Answer: B

D Watch Video Solution
28. Area included between curves
$y=x^{2}-3 x+2$ and $y=-x^{2}+3 x-2$ is
A. $\frac{1}{6}$ sq unit
B. $\frac{1}{2}$ sq unit
C. 1 sq unit
D. $\frac{1}{3}$ sq unit

Answer: D

D Watch Video Solution
29. The area enclosed between the curves
$y=x$ and $y=2 x-x^{2}$ (in square units), is

> A. $\frac{1}{2}$
> B. $\frac{1}{6}$
> C. $\frac{1}{3}$
> D. $\frac{1}{4}$

Answer: B
(Watch Video Solution
30. Sketch the region bounded by the curves
$y=\sqrt{5-x^{2}}$ and $y=|x-1|$ and find its area.
A. $\left(\frac{5 \pi}{4}-2\right)$ sq units
B. $\frac{(5 \pi-2)}{4}$ sq units
C. $\frac{(5 \pi-2)}{2}$ sq units
D. $\left(\frac{\pi}{2}-5\right)$ sq units

Answer: B

31. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ the line $x=\sqrt{3} y$ and x -axis , is
A. π sq units
B. $\frac{\pi}{2}$ sq units
C. $\frac{\pi}{3}$ sq units
D. None of these

Answer: C

- Watch Video Solution

32. The area of the region bounded by $y^{2}=x$ and $\mathrm{y}=|\mathrm{x}|$ is
A. $\frac{1}{3}$ sq unit
B. $\frac{1}{6}$ sq unit
C. $\frac{2}{3}$ sq unit
D. 1 sq unit

Answer: B

- Watch Video Solution

33. परवलय $y=x^{2}$ एवं $\mathrm{y}=|\mathrm{x}|$ से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
A. $\frac{1}{2}$ sq unit
B. $\frac{1}{3}$ sq unit
C. $\frac{2}{3}$ sq unit
D. None of these

Answer: B

D Watch Video Solution
34. The area bounded between the parabola
$y^{2}=4 x$ and the line $\mathrm{y}=2 \mathrm{x}-4$ is equal to
A. $\frac{17}{3}$ sq units
B. $\frac{19}{3}$ sq units
C. 9 sq units
D. 15 sq units

Answer: C

D Watch Video Solution
35. The area enclosed between the curves
$y=x^{3}$ and $y=\sqrt{x}$ is

5
A. $\frac{5}{3}$ sq units
B. $\frac{5}{4}$ sq units
C. $\frac{5}{12}$ sq unit
D. $\frac{12}{5}$ sq units

Answer: C

D Watch Video Solution
36. The area bounded by the curves $y=x^{3}$ and $y=x$ is
A. $1 / 2$ sq unit
B. $1 / 4$ sq unit
C. $1 / 8$ sq unit
D. $1 / 16$ sq unit

Answer: A

- Watch Video Solution

37. Find the area bounded by the curve $y=x^{2}+x$ and the lines $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$. Hence, fnd the greatest or least area which is applicable.
A. Area $=\frac{a^{3}}{3}+\frac{a^{2}}{2}$, least are $\mathrm{a}=0$ sq. units,
greatest area $=\frac{1}{6}$ sq units
B. Area $=a^{3}+a^{2}$, least area $a=0$ sq.
units, greatest area $=\frac{1}{2}$ sq units
C. Area $=\frac{a^{3}}{3}+a$, least are $\mathrm{a}=0$ sq units
greatest area $=\frac{1}{4}$ sq units

D. Area $=a^{3}+1$, least are $\mathrm{a}=1 \mathrm{sq}$ units

greatestarea $=6$ sq units

Answer: A

D Watch Video Solution

38. Find the area bounded by the curve $y=\cos$
$x+1$ and the lines $x=0$ and $x=a$. Hence find
the greatest area
A. Area $=\sin a$, Greatest area $=2$ sq units
B. Area $=\cos a$, Greatest area $=2$ sq units
C. Area $=\sin a$, Greatest area $=1$ sq units
D. Area $=\cos a$, Greatest area $=1$ sq units

Answer: C

D Watch Video Solution

39. Find the area included between the line
$y=x$ and the parabola $x^{2}=4 y$.
A. $\frac{8}{3}$ sq units
B. $\frac{4}{3}$ sq units
C. $\frac{9}{4}$ sq units
D. $\frac{7}{3}$ sq units

Answer: A

D Watch Video Solution

40. The area bounded by the curve
$x=2-y-y^{2}$ and Y-axis is
A. $\frac{9}{2}$ sq unit
B. $\frac{2}{3}$ sq unit
C. $\frac{8}{4}$ sq units
D. $\frac{5}{3}$ sq units

Answer: A

D Watch Video Solution

41. Find the area of the region bounded by the
parabola $y^{2}=4 a x$, its axis and two ordinates
$x=4$ and $x=9$
A. $\frac{86 \sqrt{b}}{3}$ sq units
B. $\frac{76 \sqrt{a}}{3}$ sq units
C. $\frac{92 \sqrt{a}}{4}$ sq units
D. $\frac{93 \sqrt{b}}{3}$ sq units

Answer: B

D Watch Video Solution

42. Using integration, find the area of region bounded by the line $2 x+y=8$, the y-axis and the lines $\mathrm{y}=2$ and $\mathrm{y}=4$.
A. 5 sq units
B. 9 sq unit
C. 6 sq units
D. 2 sq units

Answer: A

D Watch Video Solution

43. Determine the area enclosed by the two
curves given by $y^{2}=x+1 \quad$ and
$y^{2}=-x+1$
A. $\frac{8}{3}$ sq units
B. $\frac{4}{3}$ sq units
C. $\frac{9}{4}$ sq units
D. $\frac{7}{3}$ sq units

Answer: A

D Watch Video Solution

44. The area of the region bounded by the
curves $y^{2}=4 a^{2}(x-1)$ and the lines $x=1$ and
$y=4 a$, is
A. $\frac{21 a}{2}$ sq unit
B. $\frac{16}{3}$ sq unit
C. $\frac{17 a}{3}$ sq unit
D. $\frac{16 a}{3}$ sq unit

Answer: D

D Watch Video Solution

Exercise 2

1. Find the area under the curve $y=\sqrt{x-1}$ in the interval $[1,5]$ between the lines $x=1$ and $x=5$, is
A. $\frac{4}{3}$ sq units
B. $\frac{8}{3}$ sq units
C. $\frac{16}{3}$ sq units
D. None of the above

Answer: C

D Watch Video Solution
2. If a curve $y=a \sqrt{x}+b x$ passes through
the point $(1,2)$ and the area bounded by the
curve, line $x=4$ and X-axis is 8 sq units, then
A. $a=3, b=-1$
B. $a=3, b=1$
C. $a=-3, b=1$
D. $a=-3, b=-1$

Answer: A

D Watch Video Solution
3. What is the area bounded by the curves
$y=e^{x}, y=e^{-x}$ and the straight line $x=1$?

$$
\begin{aligned}
& \text { A. } e+\frac{1}{e} \\
& \text { B. } e+\frac{1}{e}+2 \\
& \text { C. } e+\frac{1}{e}-2 \\
& \text { D. } e-\frac{1}{e}+2
\end{aligned}
$$

Answer: C

- Watch Video Solution

4. The area between the curve $y=2 x^{4}-x^{2}$,
the x-axis, and the ordinates of the two minima of the curve is
A. $\frac{7}{120}$ sq unit
B. $\frac{9}{120}$ sq unit
C. $\frac{11}{120}$ sq unit
D. $\frac{13}{120}$ sq unit

Answer: A

5. The area bounded by the curve $y=\ln (x)$
and the lines $y=0, y=\ln (3)$ and $x=0$ is equal to
A. 3 sq units
B. $3 \ln (3)-2 s q$ units
C. $3 \ln (3)+2$ sq units
D. 2 sq units

Answer: D

D Watch Video Solution
6. The area bounded between the parabolas
$x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line
$y=2$ is (1) $20 \sqrt{2}$ (2) $\frac{10 \sqrt{2}}{3}$ (3) $\frac{20 \sqrt{2}}{3}$
$10 \sqrt{2}$
A. $20 \sqrt{2}$ sq units
B. $\frac{10 \sqrt{2}}{3}$ sq units
C. $\frac{20 \sqrt{2}}{3}$ sq units
D. $10 \sqrt{2}$ sq units

Answer: C
7. The area of the figure bounded by the
curves $y^{2}=2 x+1$ and $x-y-1=0$, is
A. $\frac{2}{3}$ sq units
B. $\frac{4}{3}$ sq units
C. $\frac{8}{3}$ sq units
D. $\frac{16}{3}$ sq units

Answer: D
8. The area of the plane region bounded by
the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
A. $\frac{4}{3}$ sq units
B. $\frac{5}{3}$ sq unit
C. $\frac{1}{3}$ sq unit
D. $\frac{2}{3}$ sq unit

Answer: A
9. The area enclosed between the curves
$y=x^{3}$ and $y=\sqrt{x}$ is

5
A. $\frac{5}{3}$ sq units
B. $\frac{5}{4}$ sq units
C. $\frac{5}{12}$ sq unit
D. $\frac{12}{5}$ sq units

Answer: C
10. The area enclosed between the parabola
$y=x^{2}-x+2$ and the line $\mathrm{y}=\mathrm{x}+2$ (in sq
unit) equals to
A. $8 / 3$
B. $1 / 3$
C. $2 / 3$
D. $4 / 3$

Answer: D

11. The area bounded by the curves
$y^{2}=4 a^{2}(x-1)$ and lines $x=1$ and $y=4 a$ is
A. $4 a^{2}$ sq units
B. $\frac{16 a}{3}$ sq units
C. $\frac{16 a^{2}}{3}$ sq units
D. None of these

Answer: B
12. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$ and $x=\frac{3 \pi}{2}$, is
A. $(4 \sqrt{2}-2)$ sq units
B. $(4 \sqrt{2}+2)$ sq units
C. $(4 \sqrt{2}-1)$ sq units
D. $(4 \sqrt{2}+1)$ sq units

Answer: A

D Watch Video Solution
13. The area of the plane region bounded by
the curve $x=y^{2}-2$ and the line $\mathrm{y}=-\mathrm{x}$ is (in
sq units)

$$
\begin{aligned}
& \text { A. } \frac{13}{3} \\
& \text { B. } \frac{2}{5} \\
& \text { C. } \frac{9}{2} \\
& \text { D. } \frac{5}{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

14. The area bounded by the curve $y=2 x-x^{2}$ and the line $\mathrm{y}=-\mathrm{x}$ is
A. $\frac{3}{2}$ sq units
B. $\frac{9}{3}$ sq units
C. $\frac{9}{2}$ sq units
D. None of these

Answer: C
(Watch Video Solution
15. For $0 \leq x \leq \pi$, the area bounded by $y=x$ and $y=x+\sin x$, is
A. 2
B. 4
C. 2π
D. 4π

Answer: A

- Watch Video Solution

16. If the area above the x-axis, bounded by the
curves $y=2^{k x}$ and $\mathrm{x}=0$, and $\mathrm{x}=2$ is $\frac{3}{\log _{e}(2)}$,
then the value of k is
A. $1 / 2$
B. 1
C. -1
D. 2

Answer: B
17. The area of the region described by
$A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is
A. $\frac{\pi}{2}+\frac{4}{3}$
B. $\frac{\pi}{2}-\frac{4}{3}$
C. $\frac{\pi}{2}-\frac{2}{3}$
D. $\frac{\pi}{2}+\frac{2}{3}$

Answer: A

D Watch Video Solution
18. The area in the first quadrant between
$x^{2}+y^{2}=\pi^{2}$ and $y=\sin x$ is
A. $\frac{\pi^{3}-8}{4}$ sq units
B. $\frac{\pi^{3}}{4}$ sq units
C. $\frac{\pi^{3}-16}{4}$ sq units
D. $\frac{\pi^{3}-8}{2}$ sq units

Answer: A

D Watch Video Solution
19. The area bounded by the curves
$y=\sqrt{x}, 2 y-x+3=0$, X-axis and lying in the first quadrant is
A. 9
B. 36
C. 18
D. $\frac{27}{4}$

Answer: A
20. The area bounded by $y=|\sin x|, X$-axis and
the line $|x|=\pi$ is
A. 2 sq units
B. 3 sq units
C. 4 sq units
D. None of these

Answer: C

- Watch Video Solution

21. Find the area bounded by the x-axis, part of
the curve $y=\left(1-\frac{8}{x^{2}}\right)$, and the ordinates at $x=2 a n d x=4$. If the ordinate at $x=a$ divides the area into two equal parts, then find a.
A. $\sqrt{2}$ sq units
B. $2 \sqrt{2}$ sq units
C. $3 \sqrt{2}$ sq units
D. None of these

Answer: B

Watch Video Solution

22. The area bounded by the graph of $y=f(x), f(x)>0$ on $[0, \mathrm{a}]$ and x -axis is $\frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a$ then find the value of $f\left(\frac{\pi}{2}\right)$.
A. $\frac{1}{2}$
B. $\frac{a}{2}$
C. $\frac{a^{2}}{2}$
D. $\frac{\pi}{2}$

Answer: A

D Watch Video Solution

23. The line $x=\frac{\pi}{4}$ divides the area of the region bounded by $y=\sin x, y=\cos x$ and x axis $\left(0 \leq x \leq \frac{\pi}{2}\right)$ into two regions of areas
A_{1} and A_{2}. Then, $A_{1}: A_{2}$ equals
A. $4: 1$
B. $3: 1$
C. 2:1

D. 1:1

Answer: D

D Watch Video Solution

24. The area bounded by the curve $y=x|x|$, x -
axis and the ordinates $x=1, x=-1$ is given by
A. 0 sq units
B. $\frac{1}{3}$ sq units
C. $\frac{2}{3}$ sq units

D. None of these

Answer: C

D Watch Video Solution

25. The area (in sq units) of the region
bounded by the curves $y=e^{x}, y=\log _{e} \mathrm{x}$ and
lines $x=1, x=2$ is
A. $(e-1)^{2}$
B. $e^{2}-e+1$
C. $e^{2}-e+1-2 \log _{e} 2$
D. $e^{2}+e-2 \log _{e} 2$

Answer: C

D Watch Video Solution

26. The area (in sq units) of the region described
$\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.y \geq 4 x-1\right\}$ is
A. $\frac{7}{32}$

$$
\begin{aligned}
& \text { B. } \frac{5}{64} \\
& \text { C. } \frac{15}{64} \\
& \text { D. } \frac{9}{32}
\end{aligned}
$$

Answer: D

- Watch Video Solution

27. The larger of the area bounded by $y=\cos x$,

$$
y=x+1 \text { and } y=0 \text { is }
$$

A. $\frac{1}{2}$ sq unit
B. $\frac{3}{2}$ sq units
C. 1 sq unit
D. 2 sq units

Answer: B

D Watch Video Solution
28. The parabola $y^{2}=2 x$ divides the circle
$x^{2}+y^{2}=8$ in two parts. Then, the ratio of
the areas of these parts is
A. $\frac{3 \pi-2}{10 \pi+2}$
B. $\frac{3 \pi+2}{9 \pi-2}$
C. $\frac{6 \pi-3}{11 \pi-5}$
D. $\frac{2 \pi-9}{9 \pi+2}$

Answer: B

- Watch Video Solution

29. The figure shows a $\triangle A O B$ and the parabola $y=x^{2}$. The ratio of the area of the
$\Delta A O B$ to the area of the region AOB of the
parabola $y=x^{2}$ is equal to

A. $\frac{3}{5}$
B. $\frac{3}{4}$
C. $\frac{7}{8}$
D. $\frac{5}{6}$
30.

The area bounded
$y=\sin ^{-1} x, x=\frac{1}{\sqrt{2}}$ and X-axis is
A. $\left(\frac{1}{\sqrt{2}}+1\right)$ sq units
B. $\left(1-\frac{1}{\sqrt{2}}\right)$ sq units
C. $\frac{\pi}{4 \sqrt{2}}$ sq units
D. $\left(\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1\right)$ sq units

Answer: D
31. Find the area of the region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ in fourth quadrant.
A. $\frac{3 \pi}{4}$ sq unit
B. $\frac{3 \pi}{2}$ sq unit
C. $\frac{9 \pi}{4}$ sq unit
D. $\frac{4 \pi}{7}$ sq unit

Answer: B
32. The area bounded by the curves
$y^{2}=4 a(x+a)$ and $y^{2}=4 b(b-x)$, where $a, b>0$ units
A. $\frac{8}{3}(a+b) \sqrt{a b}$ sq unit
B. $\frac{2}{3}(a+b) \sqrt{a b}$ sq unit
C. $\frac{2}{3}(a+b) 2 \sqrt{a b}$ sq unit
D. None of the above
33. Find the area bounded by the curve $y=2 x-x^{2}$ and the straight line $y=-x$
A. $\frac{13}{2}$ sq unit
B. $\frac{9}{2}$ sq unit
C. $\frac{7}{2}$ sq unit
D. $\frac{21}{2}$ sq unit

Answer: B

34. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$
A. $3\left(\frac{\pi}{4}-1\right)$ sq unit
B. $3\left(\frac{\pi}{2}-1\right)$ sq unit
C. $4\left(\frac{\pi}{3}-2\right)$ sq unit
D. $3\left(\frac{\pi}{4}-2\right)$ sq unit

Answer: B

D Watch Video Solution

Mht Cet Corner

1. Find by integration the area of the region bounded by the curve $y=2 x-x^{2}$ and the $\mathrm{x}-$ axis.
A. $\frac{2}{3}$ sq. units
B. $\frac{4}{3}$ sq. units
C. $\frac{5}{3}$ sq. units
D. $\frac{8}{3}$ sq. units

Answer: B

- Watch Video Solution

2. The area of the region bounded by the
curves $x^{2}+y^{2}=8$ and $y^{2}=2 x$ (in sq. unit)
is
A. $2 \pi+\frac{1}{3}$
B. $\pi+\frac{1}{3}$
C. $2 \pi+\frac{4}{3}$
D. $\pi+\frac{4}{3}$

Answer: C

D Watch Video Solution

3. The area of the region bounded by the
curves $y^{2}=8 x$ and $\mathrm{y}=\mathrm{x}$ (in sq unit) is
A. $\frac{64}{3}$
B. $\frac{32}{3}$
C. $\frac{16}{3}$
D. $\frac{8}{3}$

Answer: B

D Watch Video Solution

4. The area bounded by the parabola $y^{2}=x$, straight line $y=4$ and y-axis is
A. $16 / 3$
B. $64 / 3$
C. $7 \sqrt{2}$
D. None of these

Answer: B

D Watch Video Solution

5. The volume of the solid formed by rotating
the area enclosed between the curve $y^{2}=4 x, x=4$ and $x=5$ about X -axis is (in
cubic units)
A. 18π
B. 36π
C. 9π
D. 24π

Answer: A

D Watch Video Solution

6. Area bounded between the curve $x^{2}=y$
and the line $y=4 x$ is
A. $\frac{32}{3}$ sq units
B. $\frac{1}{3}$ sq unit
C. $\frac{8}{3}$ sq units
D. $\frac{16}{3}$ sq units

Answer: A

- Watch Video Solution

