

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

APPLICATIONS OF DEFINITE INTEGRALS

Exercise 1

1. Which of the following curve is symmetrical

about origins ?

Answer: B

2. Which of the following curve is not symmetrical about both the axis?

Answer: C

3. Which of the following curve is represented

by $y^2=1-x$?

by $2x^2 + 6xy + 5y^2 = 1$?

Answer: B

5. The curve xy = 1 is symmetrical

A. about x-axis

B. about y-axis

C. about both the axis

D. about origin

Answer: D

Watch Video Solution

6. The area of the region bounded by the curve

 $ay^2=x^3$, the Y-axis and the lines y = a and y =

2a, is

A.
$$rac{3}{5}a^2\Big(2.2^{2/3}-1\Big)$$
 sq unit
B. $rac{2}{5}a\Big(2^{2/3}-1\Big)$ sq unit
C. $rac{3}{5}a^2\Big(2^{2/3}+1\Big)$ sq unit

D. None of these

Answer: A

A.
$$\frac{3}{2}$$
 sq units
B. $\frac{5}{2}$ sq units
C. $\frac{9}{2}$ sq units

D. None of these

Answer: C

8. Using integration, find the area of the region bounded by the line 2y = 5x + 7, the x-axis, and the lines x = 2 and x = 8.

A. 96 sq units

B. 72 sq units

C.
$$13\frac{1}{2}$$
 sq units

D. 14 sq units

Answer: A

Watch Video Solution

9. The area enclosed by y = 3x - 5, y = 0, x = 3

and x = 5 is

A. 12 sq units

B. 13 sq units

C.
$$13\frac{1}{2}$$
 sq units

D. 14 sq units

Answer: D

10. Find by integration the area of the region bounded by the curve $y = 2x - x^2$ and the x-

axis.

A.
$$\frac{8}{3}$$
 sq units
B. $\frac{4}{3}$ sq units
C. $\frac{7}{3}$ sq units
D. $\frac{2}{3}$ sq unit

Answer: B

11. The area enclosed between the curve $y = 1 + x^2$, the Y-axis and the straight line y = 5 is given by

A.
$$\frac{14}{3}$$
 sq units
B. $\frac{7}{3}$ sq units

D.
$$\frac{16}{3}$$
 sq units

Answer: D

A.
$$\frac{14}{3}$$
 sq units
B. $\frac{3}{28}$ sq unit
C. $\frac{8}{3}$ sq units
D. $\frac{4}{3}$ sq units

Answer: A

13. The area of the region bounded by the

lines y = mx, x = 1, x = 2 and X-axis is 6 sq units,

then m is equal to

A. 3

B. 1

C. 2

D. 4

Answer: D

Watch Video Solution

14. The area of the region (in sq units), in the first quadrant, bounded by the parabola $y = 9x^2$ and the lines x = 0, y = 1 and y = 4, is

Watch Video Solution

the X-axis and the lines x = 2 is

A.
$$\frac{1}{3}$$
 sq unit
B. $\frac{2}{3}$ sq unit

D.
$$\frac{4}{3}$$
 sq units

Answer: D

Watch Video Solution

16. The area bounded by the curve $x=4-y^2$

and the Y-axis is

A. 16 sq units

B. 32 sq units

C.
$$\frac{32}{3}$$
 sq units
D. $\frac{16}{3}$ sq units

Answer: C

O Watch Video Solution

17. Find the area bounded by the curve $xy^2 = 4(2-x)$ and y-axis.

A. 2π sq units

B. 4π sq units

C. 12π sq units

D. 6π sq units

Answer: B

A. $3\pi a^2$ sq units

B.
$$\frac{3\pi a^2}{2}$$
 sq units
C. $\frac{3\pi a^2}{4}$ sq unit
D. $\frac{6\pi a^2}{5}$ sq units

19. The area of the smaller segment cut off from the circle $x^2 + y^2 = 9$ by x = 1 is

A.
$$\frac{1}{2} (9 \sec^{-1} 3 - \sqrt{8})$$
 sq unit
B. $\frac{1}{2} (9 \sec^{-1} 3 - \sqrt{8})$ sq unit
C. $(\sqrt{8} - 9 \sec^{-1} 3)$ sq unit

D. None of the above

Answer: B

20. Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line

 $x=rac{a}{\sqrt{2}}$

A.
$$\frac{a}{2}\left(\frac{\pi}{2}+1
ight)$$
 sq units
B. $\frac{a^2}{2}\left(\frac{\pi}{2}-1
ight)$ sq units
C. $a\left(\frac{\pi}{2}-1
ight)$ sq units

D. None of these

Answer: B

21. Find the area bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2.

A.
$$\frac{9}{8}$$
 sq units
B. $\frac{3}{8}$ sq unit
C. $\frac{1}{8}$ sq unit

D. None of these

Answer: A

22. The area bended by the curve $y = x^2 + 2, y = x, x = 3$ and y-axis is A. $\frac{9}{2}$ sq unit B. 9 sq unit

C. 21 sq unit

D.
$$rac{21}{2}$$
 sq unit

Watch Video Solution

Answer: D

23. The area (in square units) bounded by the

curve
$$y^2 = 8x$$
 and $x^2 = 8y$, is

A. 64 sq units

B.
$$\frac{64}{3}$$
 sq units
C. $\frac{8}{3}$ sq units

D. None of these

Answer: B

24. The area bounded by the curves $y^2 = 4x$ and $x^2 = 4y$

A. 0 sq units

B.
$$\frac{32}{3}$$
 sq units
C. $\frac{16}{3}$ sq units

D.
$$\frac{3}{3}$$
 sq units

Answer: C

25. The area bounded by the parabola $y^2 = 8x$, the x-axis and the latusrectum, is A. 16/3B. 32/3C.8/3D. 64/3

Answer: B

26. The area (in sq unit) of the region enclosed

by the curves $y = x^2$ and $y = x^3$ is

A.
$$\frac{1}{12}$$

B. $\frac{1}{6}$
C. $\frac{1}{3}$

Answer: A

27. Area bounded by the curve $y^2 = 16x$ and line y = mx is $\frac{2}{3}$, then m is equal to A.3

B. 4

C. 1

D. 2

Answer: B

28. Area included between curves

$$y = x^2 - 3x + 2$$
 and $y = -x^2 + 3x - 2$ is
A. $\frac{1}{6}$ sq unit
B. $\frac{1}{2}$ sq unit
C. 1 sq unit
D. $\frac{1}{3}$ sq unit
Answer: D
Watch Video Solution

29. The area enclosed between the curves $y = x ext{ and } y = 2x - x^2$ (in square units), is A. $\frac{1}{2}$ $\mathsf{B.}\,\frac{1}{6}$ C. $\frac{1}{3}$ D. $\frac{1}{4}$

Answer: B

30. Sketch the region bounded by the curves $y = \sqrt{5-x^2}$ and y = |x-1| and find its

area.

A.
$$\left(\frac{5\pi}{4}-2\right)$$
 sq units
B. $\frac{(5\pi-2)}{4}$ sq units
C. $\frac{(5\pi-2)}{2}$ sq units
D. $\left(\frac{\pi}{2}-5\right)$ sq units

Answer: B

31. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ the line $x = \sqrt{3}y$ and x-axis , is

A. π sq units

B.
$$\frac{\pi}{2}$$
 sq units

C.
$$\frac{\pi}{3}$$
 sq units

D. None of these

Answer: C

32. The area of the region bounded by $y^2 = x$ and y = |x| is

A.
$$\frac{1}{3}$$
 sq unit
B. $\frac{1}{6}$ sq unit
C. $\frac{2}{3}$ sq unit

D.1 sq unit

Answer: B

33. परवलय $y=x^2$ एवं y=|x| से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए |

A.
$$\frac{1}{2}$$
 sq unit
B. $\frac{1}{3}$ sq unit
C. $\frac{2}{3}$ sq unit

D. None of these

Answer: B

34. The area bounded between the parabola $y^2 = 4x$ and the line y = 2x - 4 is equal to

A.
$$\frac{17}{3}$$
 sq units
B. $\frac{19}{3}$ sq units

- C. 9 sq units
- D. 15 sq units

Answer: C
35. The area enclosed between the curves

$$y = x^3$$
 and $y = \sqrt{x}$ is
A. $\frac{5}{3}$ sq units
B. $\frac{5}{4}$ sq units
C. $\frac{5}{12}$ sq unit
D. $\frac{12}{5}$ sq units
Answer: C

36. The area bounded by the curves $y = x^3$ and y = x is

- A. 1/2 sq unit
- B. $1/4 \, {
 m sq}$ unit
- C. 1/8 sq unit
- D. 1/16 sq unit

Answer: A

37. Find the area bounded by the curve $y = x^2 + x$ and the lines x = 0 and x = a. Hence, fnd the greatest or least area which is applicable.

A. Area = $\frac{a^3}{2} + \frac{a^2}{2}$, least are a = 0 sq. units, greatest area $=\frac{1}{6}$ sq units B. Area $= a^3 + a^2$, least area a = 0 sq. units, greatest area $=\frac{1}{2}$ sq units C. Area = $\frac{a^3}{3} + a$, least are a = 0 sq units greatest area = $\frac{1}{4}$ sq units

D. Area $= a^3 + 1$, least are a = 1 sq units

greatestarea = 6 sq units

Answer: A

Watch Video Solution

38. Find the area bounded by the curve y = cos

x + 1 and the lines x = 0 and x = a. Hence find

the greatest area

A. Area = sin a, Greatest area = 2 sq units

B. Area = cos a, Greatest area = 2 sq units

C. Area = sin a, Greatest area = 1 sq units

D. Area = cos a, Greatest area = 1 sq units

Answer: C

Watch Video Solution

39. Find the area included between the line

y = x and the parabola $x^2 = 4y$.

A.
$$\frac{8}{3}$$
 sq units

B.
$$\frac{4}{3}$$
 sq units
C. $\frac{9}{4}$ sq units
D. $\frac{7}{3}$ sq units

Answer: A

40. The area bounded by the curve
$$x = 2 - y - y^2$$
 and Y-axis is A. $\frac{9}{2}$ sq unit

B.
$$\frac{2}{3}$$
 sq unit
C. $\frac{8}{4}$ sq units
D. $\frac{5}{3}$ sq units

Answer: A

Watch Video Solution

41. Find the area of the region bounded by the parabola $y^2 = 4ax$, its axis and two ordinates x = 4 and x = 9

Answer: B

42. Using integration, find the area of region bounded by the line 2x + y = 8, the y-axis and the lines y = 2 and y = 4.

A. 5 sq units

- B. 9 sq unit
- C. 6 sq units
- D. 2 sq units

Answer: A

Watch Video Solution

43. Determine the area enclosed by the two curves given by $y^2 = x + 1$ and $y^2 = -x + 1$

A.
$$\frac{8}{3}$$
 sq units
B. $\frac{4}{3}$ sq units
C. $\frac{9}{4}$ sq units
D. $\frac{7}{3}$ sq units

Answer: A

Watch Video Solution

44. The area of the region bounded by the curves $y^2 = 4a^2(x-1)$ and the lines x = 1 and y = 4a, is

A.
$$\frac{21a}{2}$$
 sq unit
B. $\frac{16}{3}$ sq unit
C. $\frac{17a}{3}$ sq unit
D. $\frac{16a}{3}$ sq unit

Answer: D

Exercise 2

1. Find the area under the curve $y = \sqrt{x-1}$ in the interval [1, 5] between the lines x = 1 and x = 5, is

A.
$$\frac{4}{3}$$
 sq units
B. $\frac{8}{3}$ sq units
C. $\frac{16}{3}$ sq units

Answer: C

2. If a curve $y = a\sqrt{x} + bx$ passes through the point (1,2) and the area bounded by the curve, line x = 4 and X-axis is 8 sq units, then

Answer: A

3. What is the area bounded by the curves $y = e^x, y = e^{-x}$ and the straight line x = 1 ? A. $e + \frac{1}{e}$ B. $e + \frac{1}{e} + 2$ C. $e + \frac{1}{e} - 2$ D. $e - \frac{1}{e} + 2$

Answer: C

4. The area between the curve $y = 2x^4 - x^2$, the x-axis, and the ordinates of the two minima of the curve is

A.
$$\frac{7}{120}$$
 sq unit
B. $\frac{9}{120}$ sq unit
C. $\frac{11}{120}$ sq unit
D. $\frac{13}{120}$ sq unit

Answer: A

5. The area bounded by the curve $y = \ln(x)$ and the lines $y = 0, y = \ln(3)$ and x = 0 is equal to

A. 3 sq units

B. 3 In (3) - 2sq units

C. 3 In (3) + 2 sq units

D. 2 sq units

Answer: D

6. The area bounded between the parabolas
$$x^2 = rac{y}{4} ext{and} x^2 = 9y$$
 and the straight line $y = 2$ is (1) $20\sqrt{2}$ (2) $rac{10\sqrt{2}}{3}$ (3) $rac{20\sqrt{2}}{3}$ (4) $10\sqrt{2}$

A. $20\sqrt{2}$ sq units

B.
$$\frac{10\sqrt{2}}{3}$$
 sq units
C. $\frac{20\sqrt{2}}{3}$ sq units

D. $10\sqrt{2}$ sq units

Answer: C

7. The area of the figure bounded by the curves $y^2=2x+1$ and x-y-1=0 , is

A.
$$\frac{2}{3}$$
 sq units
B. $\frac{4}{3}$ sq units
C. $\frac{8}{3}$ sq units
D. $\frac{16}{3}$ sq units

Answer: D

8. The area of the plane region bounded by the curves $x+2y^2=0$ and $x+3y^2=1$ is equal to

A.
$$\frac{4}{3}$$
 sq units
B. $\frac{5}{3}$ sq unit
C. $\frac{1}{3}$ sq unit
D. $\frac{2}{3}$ sq unit

Answer: A

9. The area enclosed between the curves $y=x^3$ and $y=\sqrt{x}$ is

A.
$$\frac{5}{3}$$
 sq units
B. $\frac{5}{4}$ sq units
C. $\frac{5}{12}$ sq unit
D. $\frac{12}{5}$ sq units

Answer: C

10. The area enclosed between the parabola $y=x^2-x+2$ and the line y = x + 2 (in sq unit) equals to

A. 8/3

B. 1/3

C. 2/3

 $\mathsf{D.}\,4/3$

Answer: D

11. The area bounded by the curves $y^2 = 4a^2(x-1)$ and lines x = 1 and y = 4a is

A. $4a^2$ sq units

B. $\frac{16a}{3}$ sq units

C.
$$rac{16a^2}{3}$$
 sq units

D. None of these

Answer: B

12. The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the ordinates x = 0 and

$$x=rac{3\pi}{2}$$
, is

A.
$$\left(4\sqrt{2}-2
ight)$$
 sq units

B.
$$\left(4\sqrt{2}+2
ight)$$
 sq units

C.
$$\left(4\sqrt{2}-1
ight)$$
 sq units

D.
$$\left(4\sqrt{2}+1
ight)$$
 sq units

Answer: A

13. The area of the plane region bounded by the curve $x = y^2 - 2$ and the line y = - x is (in sq units)

A.
$$\frac{13}{3}$$

B. $\frac{2}{5}$
C. $\frac{9}{2}$
D. $\frac{5}{2}$

Answer: C

14. The area bounded by the curve

$$y = 2x - x^2$$
 and the line y = - x is
A. $\frac{3}{2}$ sq units
B. $\frac{9}{3}$ sq units
C. $\frac{9}{3}$ sq units

$$\frac{1}{2}$$
 sq units

D. None of these

Answer: C

15. For $0 \leq x \leq \pi$, the area bounded by y=x and $y=x+\sin x, \;$ is A. 2 B.4 C. 2π D. 4π Answer: A Watch Video Solution

16. If the area above the x-axis, bounded by the curves $y=2^{kx}$ and x = 0, and x = 2 is $rac{3}{\log_e(2)}$,

then the value of k is

A. 1/2

B. 1

 $\mathsf{C}.-1$

D. 2

Answer: B

17. The area of the region described by $A = ig\{(x,y) : x^2 + y^2 \leq 1 ext{ and } y^2 \leq 1 - xig\}$ is

A.
$$\frac{\pi}{2} + \frac{4}{3}$$

B. $\frac{\pi}{2} - \frac{4}{3}$
C. $\frac{\pi}{2} - \frac{2}{3}$
D. $\frac{\pi}{2} + \frac{2}{3}$

Answer: A

18. The area in the first quadrant between

$$x^2 + y^2 = \pi^2$$
 and $y = \sin x$ is
A. $\frac{\pi^3 - 8}{4}$ sq units
B. $\frac{\pi^3}{4}$ sq units
C. $\frac{\pi^3 - 16}{4}$ sq units
D. $\frac{\pi^3 - 8}{2}$ sq units

Answer: A

19. The area bounded by the curves $y=\sqrt{x}, 2y-x+3=0,$ X-axis and lying in the first quadrant is A. 9 B. 36 C. 18 D. $\frac{27}{4}$ Answer: A **Watch Video Solution**

20. The area bounded by y = |sin x|, X-axis and

the line $|x|=\pi$ is

A. 2 sq units

B. 3 sq units

C. 4 sq units

D. None of these

Answer: C

21. Find the area bounded by the x-axis, part of

the curve $y=\left(1-rac{8}{x^2}
ight)$, and the ordinates at x=2andx=4. If the ordinate at x=a divides the area into two equal parts, then find a.

A. $\sqrt{2}$ sq units

B. $2\sqrt{2}$ sq units

C. $3\sqrt{2}$ sq units

D. None of these

Answer: B

22. The area bounded by the graph of $y=f(x),\,f(x)>0$ on [0,a] and x-axis is $rac{a^2}{2}+rac{a}{2}{\sin a}+rac{\pi}{2}{\cos a}$ then find the value of $f\left(\frac{\pi}{2}\right).$ A. $\frac{1}{2}$ B. $\frac{a}{2}$ C. $\frac{a^2}{2}$ D. $\frac{\pi}{2}$

Answer: A

Watch Video Solution

23. The line $x=rac{\pi}{4}$ divides the area of the region bounded by y = sin x, y = cos x and X-axis $\left(0\leq x\leq rac{\pi}{2}
ight)$ into two regions of areas A_1 and A_2 . Then, $A_1:A_2$ equals

A. 4:1

B. 3:1

C. 2: 1

D. 1:1

Answer: D

Watch Video Solution

24. The area bounded by the curve y = x|x|, xaxis and the ordinates x=1,x=-1 is given by

A. O sq units

B.
$$\frac{1}{3}$$
 sq units
C. $\frac{2}{3}$ sq units

D. None of these

Answer: C

Watch Video Solution

25. The area (in sq units) of the region bounded by the curves $y = e^x$, $y = \log_e x$ and lines x = 1, x = 2 is

A.
$$\left(e-1
ight)^2$$

B.
$$e^2 - e + 1$$
$$\mathsf{C.}\, e^2 - e + 1 - 2\log_e 2$$

 $\mathsf{D}.\,e^2+e-2\log_e 2$

Answer: C

Watch Video Solution

26. The area (in sq units) of the region described by $\{(x,y): y^2 \leq 2x ext{ and } y \geq 4x-1\}$ is

A. $\frac{7}{32}$

B.
$$\frac{5}{64}$$

C. $\frac{15}{64}$
D. $\frac{9}{32}$

Answer: D

Watch Video Solution

27. The larger of the area bounded by y = cosx,

y = x + 1 and y = 0 is

A.
$$rac{1}{2}$$
 sq unit

B.
$$\frac{3}{2}$$
 sq units

C.1 sq unit

D. 2 sq units

Answer: B

Watch Video Solution

28. The parabola $y^2=2x$ divides the circle $x^2+y^2=8$ in two parts. Then, the ratio of the areas of these parts is

A.
$$\frac{3\pi - 2}{10\pi + 2}$$

B. $\frac{3\pi + 2}{9\pi - 2}$
C. $\frac{6\pi - 3}{11\pi - 5}$
D. $\frac{2\pi - 9}{9\pi + 2}$

29. The figure shows a ΔAOB and the parabola $y=x^2$. The ratio of the area of the ΔAOB to the area of the region AOB of the

parabola $y = x^2$ is equal to

A. $\frac{3}{5}$ B. $\frac{3}{4}$ C. $\frac{7}{8}$ D. $\frac{5}{6}$

Answer: B

Watch Video Solution

Answer: D

Watch Video Solution

31. Find the area of the region bounded by the
ellipse
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 in fourth quadrant.
A. $\frac{3\pi}{4}$ sq unit
B. $\frac{3\pi}{2}$ sq unit
C. $\frac{9\pi}{4}$ sq unit
D. $\frac{4\pi}{7}$ sq unit

Answer: B

Watch Video Solution

32. The area bounded by the curves $y^2 = 4a(x+a)$ and $y^2 = 4b(b-x)$, where a,b>0 units

A.
$$rac{8}{3}(a+b)\sqrt{ab}$$
 sq unit
B. $rac{2}{3}(a+b)\sqrt{ab}$ sq unit
C. $rac{2}{3}(a+b)2\sqrt{ab}$ sq unit

D. None of the above

Answer: A

33. Find the area bounded by the curve $y = 2x - x^2$ and the straight line y = -x

A.
$$\frac{13}{2}$$
 sq unit
B. $\frac{9}{2}$ sq unit
C. $\frac{7}{2}$ sq unit
D. $\frac{21}{2}$ sq unit

Answer: B

Watch Video Solution

34. Find the area of the smaller region bounded by the ellipse $rac{x^2}{lpha}+rac{y^2}{4}=1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$ A. $3\left(\frac{\pi}{4}-1\right)$ sq unit B. $3\left(rac{\pi}{2}-1
ight)$ sq unit C. $4\left(\frac{\pi}{2}-2\right)$ sq unit D. $3\left(\frac{\pi}{4}-2\right)$ sq unit

Answer: B

Mht Cet Corner

1. Find by integration the area of the region bounded by the curve $y = 2x - x^2$ and the x-axis.

A.
$$\frac{2}{3}$$
 sq. units
B. $\frac{4}{3}$ sq. units
C. $\frac{5}{3}$ sq. units
D. $\frac{8}{3}$ sq. units

2. The area of the region bounded by the curves $x^2+y^2=8$ and $y^2=2x$ (in sq. unit) is

A.
$$2\pi + \frac{1}{3}$$

B. $\pi + \frac{1}{3}$
C. $2\pi + \frac{4}{3}$
D. $\pi + \frac{4}{3}$

Answer: C

3. The area of the region bounded by the curves $y^2 = 8x$ and y = x (in sq unit) is

A.
$$\frac{64}{3}$$

B. $\frac{32}{3}$
C. $\frac{16}{3}$
D. $\frac{8}{3}$

4. The area bounded by the parabola $y^2 = x$, straight line y = 4 and y-axis is

A. 16/3

B. 64/3

C. $7\sqrt{2}$

D. None of these

5. The volume of the solid formed by rotating the area enclosed between the curve $y^2 = 4x, x = 4$ and x = 5 about X-axis is (in cubic units)

A. 18π

B. 36π

$$\mathsf{C}.\,9\pi$$

D. 24π

Answer: A

Watch Video Solution

6. Area bounded between the curve $x^2 = y$ and the line y = 4x is

A.
$$\frac{32}{3}$$
 sq units
B. $\frac{1}{3}$ sq unit
C. $\frac{8}{3}$ sq units

D.
$$\frac{16}{3}$$
 sq units

Answer: A

Watch Video Solution