©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

CONTINUITY

Practice Exercise Exercise 1 Topical Problems

1. The function $f(x)=3 x+3$ is continuous in
A. $R-\{0\}$
B. R
C. C
D. $R-\{-1\}$
2. If the function $f(x)=\frac{\sin 6 x}{3 x}, x \neq 0$ is continuous at $\mathrm{x}=0$, then $\mathrm{f}(0)$ is equal to
A. -2
B. 2
C. 3
D. -3

Answer: B

- Watch Video Solution

3. If $f(x)=\frac{\sqrt{x+3}-2}{x^{3}-1}$ for $x \neq 1$ is continuous at $\mathrm{x}=1$. then $\mathrm{f}(1)$ is
A. 12
B. 8
C. $\frac{1}{12}$
D. $\frac{1}{8}$

Answer: C

- Watch Video Solution

4. If $f(x)=\frac{\log x-\log 7}{x^{2}-49}$ is continuous at $\mathrm{x}=7$, then $\mathrm{f}(7)$ is
A. $\frac{1}{7}$
B. $\frac{1}{49}$
C. $\frac{1}{98}$
D. $\frac{1}{79}$

Answer: C

5. If $f(x)=\frac{3^{x}+3^{-x}-2}{x^{2}}$ for $x \neq 0$ is continuous at $\mathrm{x}=0$, iff $\mathrm{f}(0)$ is equal to
A. $\log 3$
B. $(\log 3)^{2}$
C. $\log \left(\frac{1}{3}\right)$
D. e^{3}

Answer: B

- Watch Video Solution

6. If $f(x)=\left\{\begin{array}{ll}\frac{x^{6}-\frac{1}{64}}{x^{3}-\frac{1}{8}}, & x \neq \frac{1}{2} \\ k, & x=\frac{1}{2}\end{array}\right.$ is continuous at $x=\frac{1}{2}$ then the value of k is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: C

- Watch Video Solution

7. If $f(x)=\left\{\begin{array}{ll}\frac{\log x-\log 3}{x-3} & \text { for } x \neq 3 \\ c & \text { for } x=3\end{array}\right.$ is continuous at $\mathrm{x}=3$, then the value of c is
A. 3
B. 2
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: C

8. $f(x)=x+|x|$ is continuous for
A. $x \in(-\infty, \infty)$
B. $x \in(-\infty, \infty)-\{0\}$
C. only $x>0$
D. no value of x

Answer: A

- Watch Video Solution

9. Let $\mathrm{f}(\mathrm{x})$ be given that $f(x)= \begin{cases}x & \text { if } \mathrm{x} \text { is rational } \\ 1-x & \text { if } \mathrm{x} \text { is irrational }\end{cases}$ The number of points at which $f(x)$ is continuous, is
A. ∞
B. 1
C. 0
D. None of these

Answer: B

- Watch Video Solution

10. Let $f(x)=\left\{\begin{array}{ll}5^{1 / x}, & x<0 \\ \lambda[x], & x \geq 0\end{array}\right.$ and $\lambda \in R$, then at $\mathrm{x}=0$
A. f is dicontinuous
B. f is continuous only, if $\lambda=0$
C. f is continuous only whatever λ may be
D. None of the above

Answer: C

11. The value of $f(0)$ so that $f(x)=\frac{\left(-e^{x}+2^{x}\right)}{x}$ may be continuous at x $=0$ is
A. $\log \left(\frac{1}{2}\right)$
B. 0
C. 4
D. $-1+\log 2$

Answer: D

- Watch Video Solution

12. Let $f(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$, If $f(x) i s$ continuous in $\left[0, \frac{\pi}{4}\right]$, then find the value of $f\left(\frac{\pi}{4}\right)$.
A. 1
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. -1

Answer: C

- Watch Video Solution

13. The function $f: R \sim\{0\} \vec{R}$ given by $f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ can be made continuous at $\mathrm{x}=0$ by defining $\mathrm{f}(0)$ as (1) $2(2)-1(3) 0(4) 1$
A. 2
B. -1
C. 0
D. 1

Answer: D

- Watch Video Solution

14. Function $f(x)=\left\{\begin{array}{ll}x-1, & x<2 \\ 2 x-3, & x \geq 2\end{array}\right.$ is a continuous function
A. for $x=2$ only
B. for all real values of x such that $x \neq 2$
C. for all real values of x
D. for all integral values of x only

Answer: C

- Watch Video Solution

15. For the function $f(x)=\left\{\begin{array}{ll}\frac{x^{3}-a^{3}}{x-a}, & x \neq a \\ b, & x=a\end{array}\right.$, if $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=$ a, then b is equal to
A. a^{2}
B. $2 a^{2}$
C. $3 a^{2}$
D. $4 a^{2}$

Answer: C

- Watch Video Solution

16. If the function $f: R \rightarrow R$ given by
$f(x)=\left\{\begin{array}{ll}x+a, & \text { if } x \leq 1 \\ 3-x^{2}, & \text { if } x>1\end{array}\right.$ is continuous at $\mathrm{x}=1$, then a is equal to
A. 4
B. 3
C. 2
D. 1

Answer: D

17. Let $\frac{\left(e^{x}-1\right)^{2}}{\sin \left(\frac{x}{a}\right) \log \left(1+\frac{x}{4}\right)}$ for $x \neq 0$ and $f(0)=12$. If f is continuous at $x=0$, then the value of a is equal to
A. 1
B. -1
C. 3
D. -2

Answer: C

- Watch Video Solution

18. If $f(x)=\left[\begin{array}{ll}m x+1 & \text { if } x \leq \frac{\pi}{2} \\ \sin x+n & \text { if } x>\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then
A. $m=1, n=0$
B. $m=\frac{m \pi}{2}+1$
C. $n=m \frac{\pi}{2}$
D. $m=n=\frac{\pi}{2}$

Answer: C

- Watch Video Solution

19. Let $f(x)=\left\{\begin{array}{ll}\frac{\sin \pi x}{5 x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ if $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$, then k is equal to
A. $\frac{\pi}{5}$
B. $\frac{5}{\pi}$
C. 1
D. 0

Answer: A

20. If $f(x)=\left\{\begin{array}{ll}\frac{1-\cos x}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then the value of k is
A. 0
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $-\frac{1}{2}$

Answer: A

- Watch Video Solution

21.

$$
f(x)=\left\{\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x}\right.
$$

$1 \leq x<0$ and $2 x^{2}+3 x-2 f$ or $0 \leq x \leq 1$ is continuous at $x-0$ then k
A. -4
B. -3
C. -2
D. -1

Answer: C

- Watch Video Solution

22. If $f(x)=\left\{\begin{array}{ll}x^{k} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then
A. $k \in(-\infty, 0)$
B. $k \in(1, \infty)$
C. $k \in(-1, \infty)$
D. None of these

Answer: D

23. If $f(x)=\frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x}$, then we value of f at $\mathrm{x}=0$, so that f is continuous everywhere, is
A. $\frac{1}{4}$
B. -1
C. 1
D. 2

Answer: C

- Watch Video Solution

24. If the function $f 9 x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at each point of its domain, then the value of $f(0) 2$ (b) $\frac{1}{3}$ (c) $-\frac{1}{3}$ (d) $\frac{2}{3}$
A. $\frac{1}{3}$
B. $-\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{-2}{3}$

Answer: A

- Watch Video Solution

25. If $\mathrm{f}(\mathrm{x})$ is continuous in $[0,1]$ and $f\left(\frac{1}{2}\right)=1$. prove that $\lim _{n \rightarrow \infty} f\left(\frac{\sqrt{n}}{2 \sqrt{n+1}}\right)=1$
A. 0
B. ∞
C. 2
D. None of these

Answer: C

26. If $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$, then
A. $f(0+0)=1$
B. $f(0-0)=1$
C. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
D. None of the above

Answer: C

- Watch Video Solution

27. The function $f(x)=\frac{\left(3^{x}-1\right)^{2}}{\sin x \cdot \ln (1+x)}, x \neq 0$, is continuous at $x=0$, Then the value of $f(0)$ is
A. $\log _{e} 3$
B. $2 \log _{e} 3$
C. $\left(\log _{e} 3\right)^{2}$
D. None of these

Answer: C

D Watch Video Solution

28. The set of points of continuity of the function $f(x)=\sqrt{\frac{1}{2}-\cos ^{2} x}$ is
A. $\left\{x: \frac{\pi}{4}+2 n \pi \leq x \leq \frac{3 \pi}{4}+2 n \pi, n \in I\right\}$
B. $\left\{x: \frac{5 \pi}{4}+2 n \pi \leq x \leq \frac{7 \pi}{4}+2 n \pi, n \in I\right\}$
C.

$$
\left\{x: \frac{\pi}{4}+2 n \pi \leq x \leq \frac{3 \pi}{4}+2 n \pi\right\} \cup\left\{x: \frac{5 \pi}{4}+2 n \pi \leq x \leq \frac{7 \pi}{4}+2 r\right.
$$

D. None of the above

Answer: C

29. The function $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$, where $[\mathrm{x}]$ denotes the greatest integer $\leq x$, is
A. continous everywhere
B. continuous at integral points only
C. continuous at non-integral points only
D. None of the above

Answer: C

- Watch Video Solution

30. If the function $f(x)=\left\{\begin{array}{ll}\frac{1-\cos x}{x^{2}}, & \text { for } x \neq 0 \\ k & \text { for } x=0\end{array}\right.$ continuous at $\mathrm{x}=0$, then the value of k is
A. 1
B. 0
C. $\frac{1}{2}$
D. -1

Answer: C

- Watch Video Solution

31. If the function $f(x)=\frac{(3 x+4 \tan x)}{x}$ continuous at $\mathrm{x}=0$? If not, hwo may the funcation be defined to make it continuous at this point?
A. $f(x)= \begin{cases}\frac{3 x+4 \tan x}{x}, & x \neq 0 \\ 7, & x=0\end{cases}$
B. $f(x)= \begin{cases}\frac{3 x+4 \tan x}{x}, & x \neq 0 \\ 6, & x=0\end{cases}$
C. $f(x)= \begin{cases}\frac{3 x+4 \tan x}{x}, & x=0 \\ 7, & x \neq 0\end{cases}$
D. None of the above

Answer: A

- Watch Video Solution

32. If $f(x)=\left\{\begin{array}{ll}\frac{x^{2}}{2} & 0 \leq x<1 \\ 2 x^{2}-3 x+\frac{3}{2} & 1 \leq x \leq 2\end{array}\right.$ then,
A. discontinuous at $\mathrm{x}=1$
B. discontinuous at $\mathrm{x}=2$
C. continuous at $\mathrm{x}=1$
D. None of the above

Answer: C

- Watch Video Solution

33. If $f(x)=\left\{\begin{array}{ll}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, & x \neq 2 \\ k, & x=2\end{array}\right.$ is continuous at $\mathrm{x}=2$, then the value of k is
A. 1
B. 3
C. 6

D. 7

Answer: D

- Watch Video Solution

34. If $R \rightarrow R$ is defined by
$f(x)= \begin{cases}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, & \text { if } x \neq 0 \\ a, & \text { if } x=0\end{cases}$
then the value of a so that f is continuous at $x=0$ is
A. 2
B. 1
C. -1
D. 0

Answer: D

35. The function defined by
$f(x)=\left\{\begin{array}{ll}\left(x^{2}+e^{\frac{1}{2-x}}\right)^{-1}, & x \neq 2 \\ k & , \quad x=2\end{array}\right.$ is continuous from right at the point
$x=2$, then k is equal to
A. 0
B. $\frac{1}{4}$
C. $-\frac{1}{2}$
D. None of these

Answer: B

- Watch Video Solution

36. A function f is said to be removable discontinuity at $x=0$, if $\lim _{x \rightarrow 0} f(x)$ exists and
A. $\lim _{x \rightarrow 0} f(x)=f(a)$
B. $\lim _{x \rightarrow 0} f(x) \neq f(a)$
C. $\lim _{x \rightarrow 0} f(x)=0$
D. None of these

Answer: B

- Watch Video Solution

37. If $f(x)=\left\{\begin{array}{ll}\frac{\log (1+x)-\log (1-x)}{x}, & \text { when } x \neq 0 \\ 3, & \text { when } x=0\end{array}\right.$ is
A. continuous at $\mathrm{x}=0$.
B. discontinuous at $x=0$, but on removable
C. discountinuous at at $\mathrm{x}=0$, but removable
D. None of these

Answer: C

38. The function $f(x)=\frac{2 x^{2}+7}{x^{3}+3 x^{2}-x-3}$ is discontinuous for
A. only $x=1$
B. $x=1$ and $x=-1$
C. $x=1, x=-1$ and $x=-3$
D. $x=1, x=-1, x=-3$ and other values of x

Answer: C

D Watch Video Solution

39. The number of point at which the function $f(x)=|x-1|+[x-2]+\cos x$, where $x \in[0,4]$ is not continuous, is
([.] denotes greatest intergest function)
A. 1
B. 2
C. 3
D. 0

Answer: D

- Watch Video Solution

40. If $f(x)=\left\{\begin{array}{ll}a x^{2}+b, & 0 \leq x<1 \\ x+3, & 1<x \leq 2 \\ 4, & x=1\end{array}\right.$, then the value of (a, b) for which
$f(x)$ cannot be continuous at $x=1$ is
A. $(2,2)$
B. $(3,1)$
C. $(4,0)$
D. $(5,2)$

Answer: D

41. The number of discontinuities of the greatest integer function $f(x)=[x], x \in\left(-\frac{7}{2}, 100\right)$ is equal to
A. 104
B. 100
C. 103
D. 101

Answer: C

- Watch Video Solution

42. The set of points of discontinuity of the function $f(x)=\log |x|$ is
A. $\{0\}$
B. ϕ
C. $\{1,-1\}$
D. None of these

Answer: A

D Watch Video Solution

43. The set points of discontinuity of the function $f(x)=\frac{|\sin x|}{\sin x}$ is
A. $\{0\}$
B. $\{n \pi: n \in I\}$
C. ϕ
D. None of these

Answer: B

Watch Video Solution
44. The set of points of discontinuity of the function $f(x)=|\sin x|$ is
A. $\{n \pi: n \in I\}$
B. $\left\{(2 n+1) \frac{\pi}{2}: n \in I\right\}$
C. ϕ
D. None of these

Answer: C

- Watch Video Solution

45. If $f(x)=\frac{1}{1-x}$, then the points of discontinuity of the function $f[f\{f(x)\}]$ are
A. $\{0\}$
B. $\{0,1\}$
C. $\{1,-1\}$
D. None of these
46. The function $f(x)=2[\operatorname{sgn}(2 x)]+2$ has
A. removable discontinuity
B. irremovable discontinuity
C. no discontinuity at $\mathrm{x}=0$
D. None of these

Answer: B

- Watch Video Solution

47. Which of the following functions have finite number of points of discontinuity in R (where, [•] represents greatest integer function) ?
A. $\frac{|x|}{x}$
B. $x \cdot[x]$
C. $\tan x$
D. $\sin [n \pi x]$

Answer: A

- Watch Video Solution

48. The number of points at which the function $f(x)=\frac{1}{x-[x]}([]$. denotes, the greatest integer function) is not continuous is
A. 1
B. 2
C. 3
D. None of these

Answer: D

49. If $\mathrm{f}(0)=0$ and $f(x)=\frac{1}{\left(1-e^{-1 / x}\right)}$ for $x \neq 0$. Then, only one of the following statements on $f(x)$ is true. That is $f(x)$ is
A. continuous at $\mathrm{x}=0$
B. not continuous at $x=0$
C. both continuous and differentiable at $x=0$
D. not defined at $x=0$

Answer: B

- Watch Video Solution

50. The function $f(x)=|x|+\frac{|x|}{x}$ is
A. continuous at $\mathrm{x}=0$
B. discontinuous at the origin because $|\mathrm{x}|$ is discontinuous there
C. discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
D. discontinuous at the origin because both $|\mathrm{x}|$ and $\frac{|x|}{x}$ are discontinuous there

Answer: C

- Watch Video Solution

Exercise 2 Miscellaneous Problems

1. If $f(x)$ be continuous function and $g(x)$ be discontinuous, then
A. $f(x)+g(x)$ must be continuous
B. $f(x)+g(x)$ must be discontinuous
C. $f(x)=g(x)$ for all x
D. Can't say

Answer: B

2. The function $y=3 \sqrt{x}-|x-1|$ is continuous at
A. $x \leq 0$
B. $x \geq 0$
C. $0 \leq x \leq 1$
D. $x \geq 1$

Answer: B

D Watch Video Solution

3. $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{n^{3}}$ is equal to
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{3}$
D. $\frac{1}{6}$

Answer: C

- Watch Video Solution

4. If $0<a<b$, then $\lim _{n \rightarrow \infty} \frac{a^{n}+b^{n}}{a^{n}-b^{n}}$
A. equals 0
B. equals - 1
C. equals 1
D. doest not exist

Answer: B

5. $\lim _{x \rightarrow 0} \frac{(1+x)^{8}-1}{(1+x)^{2}-1}$ is equal to
A. 8
B. 6
C. 4
D. 2

Answer: C

- Watch Video Solution

6. If the function $\mathrm{f}(\mathrm{x})$ satisfies $\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}=\pi$, then $\lim _{x \rightarrow 1} f(x)$ is equal to
A. 1
B. 2
C. 0
D. 3

Answer: B

7. $\lim _{x \rightarrow 0}(-1)^{[x]}$ where [.] denotes the greatest function is equal to
A. 0
B. 1
C. -1
D. does not exist

Answer: D

- Watch Video Solution

8. If $\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{(x-1)^{2}}=2$, then $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is
A. $(2,-4,2)$
B. $(2,4,2)$
C. $(2,4,-2)$

$$
\text { D. }(2,-4,-2)
$$

Answer: A

- Watch Video Solution

9. $\lim _{m \rightarrow \infty}\left(\cos \frac{x}{m}\right)^{m}$ is equal to
A. 0
B.e
C. $\frac{1}{e}$
D. 1

Answer: D

- Watch Video Solution

10. The value of $\lim _{x \rightarrow 3} \frac{x^{5}-3^{5}}{x^{8}-3^{8}}$ is equal to
A. $\frac{5}{8}$
B. $\frac{5}{64}$
C. $\frac{5}{216}$
D. $\frac{1}{27}$

Answer: C

- Watch Video Solution

11. $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$ is equal to
A. 4
B. 3
C. 2
D. $\frac{1}{2}$

Answer: C

12. At $x=3, f(x)=\left\{\begin{array}{ll}x^{5}-243, & \text { if } x \neq 3 \\ x^{3}-27, & \text { if } x=3\end{array}\right.$ is
A. continuous
B. discontinuous
C. underfined
D. removable discontinuous

Answer: A

Watch Video Solution

13. The value of $\mathrm{f}(0)$, if $\mathrm{f}(\mathrm{x})=\frac{x \tan 2 x}{\sin 3 x \sin 5 x}$ is continuous at $\mathrm{x}=0$ is
A. $\frac{2}{3}$
B. $\frac{2}{5}$
C. $\frac{2}{15}$
D. $\frac{15}{2}$

Answer: C

- Watch Video Solution

14. $f(x)=\left\{\begin{array}{ll}\frac{5^{\cos x}-1}{\frac{\pi}{2}-x}, & x \neq \frac{\pi}{2} \\ \log 5, & x=\frac{\pi}{2}\end{array}\right.$ at $x=\frac{\pi}{2}$ is
A. discontinuous
B. imaginary
C. continuous
D. not defined

Answer: C

- Watch Video Solution

15. If $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x}, & -1 \leq x<0 \\ \frac{2 x+1}{x-2}, & 0 \leq x \leq 1\end{array}\right.$ is continuous in $[-1,1]$ then p is equal to
A. 0
B. -1
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Answer: D

- Watch Video Solution

16. The function $f(x)=\frac{x^{3}+x^{2}-16 x+20}{x-2}$ is not defined for $x=2$. In order to make $f(x)$ continuous at $x=2, f(2)$ should be defined as 0
(b) 1 (c) 2 (d) 3
A. 3
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

17. In order that the function $f(x)=(x+1)^{\cot x}$ is continuous at $\mathrm{x}=0$, the value of $f(0)$ must be defined as
A. $f(0)=\frac{1}{e}$
B. $f(0)=0$
C. $f(0)=e$
D. None of these

Answer: C

18. if $f(x)$ is continuous and $f\left(\frac{9}{2}\right)=\frac{2}{9}$ then the value if $\lim _{x \rightarrow 0} f\left(\frac{1-\cos 3 x}{x^{2}}\right)$ is
A. $\frac{2}{9}$
B. $\frac{9}{2}$
C. 18
D. 81

Answer: A

- Watch Video Solution

19. If $f(x)=\left\{\begin{array}{ll}a x+1, & x \leq \frac{\pi}{2} \\ \sin x+b, & x>\frac{\pi}{2}\end{array}\right.$ is continuous, then
A. $a=1, b=0$
B. $a=b \frac{\pi}{2}+1$
C. $b=\frac{a \pi}{2}$
D. $a=b=\frac{\pi}{2}$

Answer: C

- Watch Video Solution

20. If $f(x)=\left\{\begin{array}{ll}(1+2 x)^{1 / x}, & \text { for } x \neq 0 \\ e^{2}, & \text { for } x=0\end{array}\right.$, then
A. $\lim _{x \rightarrow 0^{+}} f(x)=e$
B. $\lim _{x \rightarrow 0} f(x)=e^{2}$
C. $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$
D. None of the above

Answer: B
21. If $f(y)=\left\{\begin{array}{ll}\frac{\left(e^{2 y}-1\right) \cdot \sin y}{y^{2}} & , \text { for } y \neq 0 \\ 4 & , \text { for } y=0\end{array}\right.$, then $\mathrm{f}(\mathrm{y})$ is
A. discontinuous at $\mathrm{y}=0$
B. continuous at $y=0$
C. not defined
D. None of the above

Answer: A

Watch Video Solution

22. If $f(x)=\left\{\begin{array}{ll}\frac{\tan x}{\sin x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$ then $\mathrm{f}(\mathrm{x})$ is
A. continuous everywhere
B. continuous no where
C. continuous at $\mathrm{x}=0$
D. None of the above

- Watch Video Solution

23. For the function $f(x)=\left\{\begin{array}{ll}\frac{\sin ^{2} a x}{x^{2}}, & \text { where } x \neq 0 \\ 1, & \text { when } x=0\end{array}\right.$ which one is a true statement
A. $f(x)$ is continuous at $x=0$
B. $f(x)$ is discontinuous at $x=0$, when $a \neq \pm 1$
C. $f(x)$ is continuous $x=a$
D. $\lim _{x \rightarrow 0} f(x)=f(0)$

Answer: B

24. If $f(x)=\left\{\begin{array}{ll}x+a \sqrt{2} \sin x, & 0<x<\frac{\pi}{4} \\ 2 x \cot x+b, & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2 x-b \sin x, & \frac{\pi}{2}<x \leq \pi\end{array}\right.$ is continuous at $x=\frac{\pi}{4}$
, then $a-b$ is equal to
A. $\frac{\pi}{2}$
B. 0
C. $\frac{1}{4}$
D. $\frac{\pi}{4}$

Answer: D

- Watch Video Solution

25. Which of the following functions is continuous at $x=0$?
A. $f(x)= \begin{cases}\sin \frac{2 x}{x}, & x \neq 0 \\ 1, & x=0\end{cases}$
B. $f(x)= \begin{cases}(1+x)^{\frac{1}{x}}, & x \neq 0 \\ 1, & x=0\end{cases}$
C. $f(x)= \begin{cases}e^{\frac{-1}{x}}, & x \neq 0 \\ 1, & x=0\end{cases}$
D. $f(x)= \begin{cases}\frac{3 x+4 \tan x}{x}, & \text { if } x \neq 0 \\ 7, & \text { if } x=0\end{cases}$

Answer: D

- Watch Video Solution

26. For what value of k , function $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x}, & \text { if } x \neq \frac{\pi}{2} \\ 3, & \text { if } x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$?
A. 1
B. 3
C. 5
D. 6

Answer: D

27. For what value of $\mathrm{k}, f(x)=\left\{\begin{array}{ll}\frac{2^{x+2}-16}{4^{x}-16}, & x \neq 2 \\ k, & x=2\end{array}\right.$ is continuous at $\mathrm{x}=$ 2?
A. 1
B. $\frac{3}{2}$
C. 2
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

28. For what value of k, the function
$f(x)=\left\{\begin{array}{ll}\frac{x}{|x|+2 x^{2}}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0 ?$
A. $\frac{1}{2}$
B. 1
C. $\frac{3}{2}$
D. No value

Answer: D

- Watch Video Solution

29. The points of discontinuity of the function
$\lim _{n \rightarrow \infty}\left(\frac{(2 \sin x)^{2 n}}{3^{n}-(2 \cos x)^{2 n}}\right)$
A. R
B. $\left\{n \pi \pm \frac{\pi}{3}, n \in I\right\}$
C. $\left\{n \pi \pm \frac{\pi}{6}, n \in I\right\}$
D. None of these

Answer: C

30. The function $f(x)=(\sin 2 x)^{\tan ^{2} 2 x}$ is not defined at $x=\frac{\pi}{4}$. The value of $f(\pi / 4)$, so that f is continuous at $x=\pi / 4$, is
A. \sqrt{e}
B. $1 / \sqrt{e}$
C. 2
D. None of these

Answer: B

- Watch Video Solution

31. If the function f as defined below is continuous at $x=0$ find the values of a,b and
c
$f(x)=\left\{\frac{\sin (a+1) x+\sin x}{x}, x<0\right.$ and $c, x=0$, and $\frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{\frac{3}{2}}}$
A. $a=\frac{-3}{2}, c=\frac{1}{2}, b=0$
B. $a=\frac{3}{2}, c=\frac{1}{2}, b \neq 0$
C. $a=-\frac{3}{2}, c=\frac{1}{2}, b \neq 0$
D. None of the above

Answer: C

- Watch Video Solution

32.

If a function $\mathrm{y}=\mathrm{f}(\mathrm{x}) \quad$ is defined
$\frac{1}{t^{2}-t-6}$ and $t=\frac{1}{x-2}, t \in R$. Then $\mathrm{f}(\mathrm{x})$ is discontinuous at
A. $2, \frac{2}{3}, \frac{7}{3}$
B. $2, \frac{3}{2}, \frac{7}{3}$
C. $2, \frac{3}{2}, \frac{3}{7}$
D. None of these

Answer: B

- Watch Video Solution

33. Let $f(x)=\left\{\begin{array}{ll}\frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{x^{2}+4}-2}, & x \neq 0 \\ a, & x=0\end{array}\right.$, then the value of a in order that $\mathrm{f}(\mathrm{x})$ may be continuous at $\mathrm{x}=0$ is
A. -8
B. 8
C. -4
D. 4

Answer: A

- Watch Video Solution

34.

$f(x)=\left\{\frac{1-\cos 4 x}{x^{2}}, \quad\right.$ if $\quad x<0 a, \quad$ if $\quad x=0 \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}$,
Determine the value of a so that $f(x)$ is continuous at $x=0$.
A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

35. $\lim _{\left.x \rightarrow \tan \left(\frac{x}{2}\right)\right)(1-\sin x)}^{(1-\tan }$

$$
\lim _{x \rightarrow \frac{\pi}{2}} \overline{\left(1+\tan \left(\frac{x}{2}\right)\right)\left((\pi-2 x)^{3}\right)}
$$

A. $\frac{1}{8}$
B. 0
C. $\frac{1}{32}$
D. ∞

Answer: C

36. If $f(x)=\frac{\sin 2 x+A \sin x+B \cos x}{x^{3}}$ is continuous at $\mathrm{x}=0$, then the values of A, B and $f(0)$ are
A. $A=-2, B=0$ and $f(0)=-1$
B. $A=0, B=-2$ and $f(0)=1$
C. $A=1, B=-1$ and $f(0)=0$
D. None of the above

Answer: A

- Watch Video Solution

37. $f(x)=\left\{\begin{array}{lll}|x|+3, & \text { if } x \leq-3 \\ -2 x, & \text { if }-3<x<3 \\ 6 x+2, & \text { if } & x \geq 3\end{array}\right.$
A. continuous at $x=-3$ and discontinuous at $x=3$
B. continuous at $x=-3,3$
C. discontinuous at $x=-3,3$
D. continuous at $x=3$ and discontinuous at $x=-3$

Answer: A

- Watch Video Solution

38. The function f given by $f(x)=\left\{\begin{array}{ll}\frac{e^{1 / x}-1}{e^{1 / x}+1}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{array}\right.$, is
A. discontinuous at $x=0$
B. continuous at $x=0$
C. continuous everywhere
D. None of the above

Answer: A

- Watch Video Solution

39. Which of the following is not continuous for all x ?
A. $|x-1|+|x-2|$
B. $x^{2}-\left|x-x^{3}\right|$
C. $\sin |x|+|\sin x|$
D. $\frac{\cos x}{|\cos x|}$

Answer: D

- Watch Video Solution

40. Let $f(x)=x^{3}+x$ be function and $g(x)=\left\{\begin{array}{ll}f(|x|), & x \geq 0 \\ f(-|x|), & x<0\end{array}\right.$, then
A. $\mathrm{g}(\mathrm{x})$ is continuous $\forall x \in R$
B. $\mathrm{g}(\mathrm{x})$ is continuous, $\forall x \in R^{-}$only
C. $\mathrm{g}(\mathrm{x})$ is continuous, $\forall x \in R^{+}$only
D. $\mathrm{g}(\mathrm{x})$ is discontinuous, $\forall x \in R^{-}$
41. The value of $f(0)$, so that the function
$f(x)=\frac{1-\cos (1-\cos x)}{x^{4}}$ is continuous everywhere is
A. $1 / 8$
B. $1 / 2$
C. $1 / 4$
D. None of these

Answer: A

- Watch Video Solution

42. The jump value of the function at the point of the discontinuity of the
function $f(x)=\frac{1-k^{\frac{1}{x}}}{1+k^{\frac{1}{x}}}(\mathrm{k}>0)(\mathrm{k}=1)$ is: (A) 4 (B) 2 (C) 3 (D) None of these

$$
\text { A. } 4
$$

B. 2
C. 3
D. None of these

Answer: B

D Watch Video Solution

43. $f(x)=\frac{\left(4^{x}-1\right)^{3}}{\sin \left(\frac{x}{p}\right) \log \left(1+\frac{x^{2}}{3}\right)}$ is continuous at $\mathrm{x}=0$ and
$f(0)=12(\ln 4)^{3}$ then $\mathrm{p}=$
A. 1
B. 2
C. 3
D. 4

Answer: D
44. If the function
$f(x)= \begin{cases}x+a^{2} \sqrt{2} \sin x, & 0 \leq x<\frac{\pi}{4} \\ x \cot x+b, & \frac{\pi}{4} \leq x<\frac{\pi}{2} \\ b \sin 2 x-a \cos 2 x, & \frac{\pi}{2} \leq x \leq \pi\end{cases}$
is continuous in the interval $[0, \pi]$ then the values of (a, b) are
A. $(0,0)$
B. $\left(0, \frac{1}{2}\right)$
C. $(0,1)$
D. $(-1,1)$

Answer: A

- Watch Video Solution

45. If $f(x)=\left\{\begin{array}{ll}\frac{\sin 5 x}{x^{2}+2 x}, & x \neq 0 \\ k+\frac{1}{2}, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then the value of k is
A. 1
B. -2
C. 2
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

46. If $f(x)=2 x$ and $g(x)=\frac{x^{2}}{2}+1$, then which of the following can be a discontinuous functions?
A. $f(x)+g(x)$
B. $f(x)-g(x)$
C. $f(x) \cdot g(x)$
D. $\frac{g(x)}{f(x)}$

Answer: D

47. The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is
A. discontinuous at only one point
B. discontinuous at extactly two points
C. discontinuous at exactly three points
D. None of the above

Answer: C

- Watch Video Solution

48. If $f(x)=\left\{\begin{array}{ll}x, & \text { if } \mathrm{x} \text { is rational } \\ -x, & \text { if } \mathrm{x} \text { is irrational }\end{array}\right.$, then
A. $f(x)$ is an odd function
B. $\mathrm{f}(\mathrm{x})$ is continuous at $x=\frac{1}{2}$
C. $f(x)$ is continuous at $x=0$
D. $f(x)$ is periodic function

Answer: C

- Watch Video Solution

49. If $f(x)= \begin{cases}(\cos x+3 \sin x)^{5 \operatorname{cosec} x}, & x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)-\{0\} \\ \lambda, & x=0\end{cases}$
is continuous at $x=0$, then λ will be
A. e^{15}
B. e^{2}
C. 15
D. 1

Answer: A

50. Let $f(x)=\left\{\begin{array}{ll}\sqrt{1+x^{2}}, & x<\sqrt{3} \\ \sqrt{3} x-1, & \sqrt{3} \leq x<4 \\ {[x],} & 4 \leq x<5 \\ |1-x|, & x \geq 5\end{array}\right.$, where [x$]$ is the greatest integer $\leq x$. The number of points of discontinuity of $\mathrm{f}(\mathrm{x})$ in R is
A. 3
B. 0
C. infinite
D. 1

Answer: D

- Watch Video Solution

51. The value of $f(0)$, so that the function $f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$ becomes continuous for all x, given by $a^{\frac{3}{2}}(\mathrm{~b}) a^{\frac{1}{2}}(\mathrm{c})-a^{\frac{1}{2}}(\mathrm{~d})-a^{\frac{3}{2}}$
A. $a^{3 / 2}$
B. $a^{1 / 2}$
C. $-a^{1 / 2}$
D. $-a^{3 / 2}$

Answer: C

- Watch Video Solution

52. The function $f(x)=x-\left|x-x^{2}\right|$ is
A. continuous at $x=1$
B. discontinuous at $x=1$
C. not defined at $x=1$
D. None of these

Answer: A

53. For the function $f(x)=\frac{\log _{e}(1+x)+\log _{e}(1-x)}{x}$ to be continuous at $x=0$, the value of $f(0)$ is
A. -1
B. 0
C. -2
D. 2

Answer: B

D Watch Video Solution

54. The function $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defined at $x=\pi$. The value of $f(\pi)$, so that $\mathrm{f}(\mathrm{x})$ is continuous at $x=\pi$, is
A. $-1 / 2$
B. $1 / 2$
C. -1
D. 1

Answer: C

- Watch Video Solution

55. If $f: R \rightarrow R$ given by
$f(x)=\left\{\begin{array}{ll}2 \cos x, & \text { if } x \leq-\frac{\pi}{2} \\ a \sin x+b, & \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \\ 1+\cos ^{2} x, & \text { if } x \geq \frac{\pi}{2}\end{array}\right.$ is continuous function on R,
then (a, b) is equal to
A. $(1 / 2,1 / 2)$
B. $(0,-1)$
C. $(0,2)$
D. $(1,0)$

Answer: A

56. If the function $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-(k+2) x+2 k}{x-2} & \text { for } x \neq 2 \\ 2 & f \text { or } x=2\end{array}\right.$ is continuous at $x=2$, then k is equal to
A. $-\frac{1}{2}$
B. -1
C. 0
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

57. If the function $f(x)= \begin{cases}x, & \text { if } x \leq 1 \\ c x+k, & \text { if } 1<x<4 \\ -2 x, & \text { if } x \geq 4\end{cases}$
is continuous everywhere, then the values of c and k are repectively
A. $-3,-5$
B. $-3,5$
C. $-3,-4$
D. $-3,4$

Answer: D

- Watch Video Solution

58. If $f(x)=\left\{\begin{array}{ll}\frac{3 \sin \pi x}{5 x}, & x \neq 0 \\ 2 k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then the value of k is equal to
A. $\frac{3 \pi}{10}$
B. $\frac{3 \pi}{5}$
C. $\frac{\pi}{10}$
D. $\frac{3 \pi}{2}$

Answer: A

59. If $f(x)=\left\{\begin{array}{ll}a x+3, & x \leq 2 \\ a^{2} x-1, & x>2\end{array}\right.$, then the values of a for which f is continuous for all x are
A. a and - 2
B. 1 and 2
C. -1 and 2
D. -1 and -2

Answer: C

- Watch Video Solution

60. $f(x)=\frac{7|x|+5 x}{7|x|-5 x}$ for $x \neq 0, f(0)=6 a t x=0$ is
A. removable discontinuity
B. discontinuity of first kind
C. discontinuity of second kind
D. None of the above

Answer: B

- Watch Video Solution

Mht Cet Corner

1. If the function $f(x)$ defined by
$f(x)= \begin{cases}x \sin \frac{1}{x}, & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{cases}$
is continuous at $\mathrm{x}=0$, then k is equal to
A. 0
B. 1
C. -1
D. $\frac{1}{2}$
2. For what value of k, the function defined by
$f(x)= \begin{cases}\frac{\log (1+2 x) \sin x^{\circ}}{x^{2}}, & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{cases}$
is continuous at $\mathrm{x}=0$?
A. 2
B. $\frac{1}{2}$
C. $\frac{\pi}{90}$
D. $\frac{90}{\pi}$

Answer: C

Watch Video Solution
3. If $f(x)=\left\{\begin{array}{ll}\frac{\log (1+2 a x)-\log (1-b x)}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then value of k is
A. $b+a$
B. $b-2 a$
C. $2 \mathrm{a}-\mathrm{b}$
D. $2 \mathrm{a}+\mathrm{b}$

Answer: D

D Watch Video Solution

4. $\lim _{x \rightarrow 0}\left(\frac{3^{x}-1}{x}\right)$ is equal to
A. $2 \log 3$
B. $3 \log 3$
C. $\log 3$
D. None of the above

Answer: C

5. Let $f(x)=\left\{\begin{array}{cc}\{1+|\sin x|\}^{a /|\sin x|}, & \frac{\pi}{6}<x<0 \\ \mathrm{~b}, & x=0 \\ e^{\tan 2 x / \tan 3 x}, & 0<x<\frac{\pi}{6}\end{array}\right.$

Determine a and b such that $f(x)$ is continous at $x=0$.
A. $3 / 2, e^{3 / 2}$
B. $-2 / 3, e^{-3 / 2}$
C. $2 / 3, e^{2 / 3}$
D. None of these

Answer: C

- Watch Video Solution

6.

Evaluate:
$(\lim) \underset{x \rightarrow \infty}{ }\left(1+\frac{1}{a+b x}\right)^{c+d x}$, wherea $, b, c$, anddarepositive
A. $e^{d / b}$
B. $e^{c / a}$
C. $e^{(c+d) /(a+b)}$
D.e

Answer: A

- Watch Video Solution

7. The value of a and b such that the function
$f(x)=\left\{\begin{array}{ll}-2 \sin x, & -\pi \leq x \leq-\frac{\pi}{2} \\ a \sin x+b, & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x, & \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$ is continuous in $[-\pi, \pi]$ are
A. $-1,0$
B. 1, 0
C. 1, 1
D. $-1,1$
8. Given $f(x)=\frac{a x+b}{x+1}, \lim _{x \rightarrow \infty} f(x)=1$ and $\lim _{x \rightarrow 0} f(x)=2$, then $f(-2)$ is
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

9. $\lim _{x \rightarrow 1}(\log e x)^{1 / \log x}$ is equal to
A. e^{-1}
B. e
C. e^{2}
D. 0

Answer: B

D Watch Video Solution

10. If $\lim _{x \rightarrow 1} \frac{\left(e^{k}-1\right) \sin k x}{x^{2}}=4$, then k is equal to
A. 2
B. -2
C. ± 2
D. ± 4

Answer: C
11. the value of $\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{4}}$ is equal to:
A. $1 / 5$
B. $1 / 6$
C. $1 / 4$
D. $1 / 2$

Answer: B

- Watch Video Solution

12. $\lim _{x \rightarrow \infty}\left(\frac{x^{2}-2 x+1}{x^{2}-4 x+2}\right)^{x}$ is equal to
A. e^{2}
B. e^{-2}
C. e^{6}
D. None of these

- Watch Video Solution

13. The value of f at $\mathrm{x}=0$ so that funcation $f(x)=\frac{2^{x}-2^{-x}}{x}, x \neq 0$ is continuous at $x=0$ is
A. 0
B. $\log 2$
C. 4
D. $\log 4$

Answer: D

14. $\lim _{x \rightarrow 0}\left\{\frac{1+\tan x}{1+\sin x}\right\}^{\operatorname{cosec} x}$ is equal to
A. $1 / e$
B. 1
C.e
D. e^{2}

Answer: B

(D) Watch Video Solution

15. $\lim _{x \rightarrow 0}\left[(1+3 x)^{1 / x}\right]=k$, then k is
A. 3
B. -3
C. e^{3}
D. e^{-3}

Answer: C

16. If $f(x)=\left\{\begin{array}{ll}\log _{(1-3 x)}(1+3 x), & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to
A. -2
B. 2
C. 1
D. -1

Answer: D

- Watch Video Solution

