びdoubtnut

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MATHEMATICAL LOGIC

Practice Exercise Exercies 1 Topical Problems

1. The conditional statement of "You will get a
sweet dish after the dinner" is
A. If you take the dinner, then you will get a
sweet dish
B. If you take the dinner, you will get a
sweet dish
C. You get a sweet dish if and only if you
take the dinner
D. None of the above

Answer: A

- Watch Video Solution

2. Which of the following is not a proposition ?
A. $\sqrt{3}$ is a prime
B. $\sqrt{2}$ is irrational
C. Mathematics is interesting
D. 5 is an even integer

Answer: C

- Watch Video Solution

3. If p, q and r are simple propositions with truth values T, F and T , respectively, then the truth value of $(\sim p \vee q) \wedge \sim r \rightarrow p$ is
A. true
B. , false
C. true, if r is false
D. true, if q is true

Answer: A

- Watch Video Solution

4. In the truth table for the statement
$(\sim p \Rightarrow \sim q) \wedge(\sim q \Rightarrow \sim p)$, the last column has
the truth value in the following order
A. TTTF
B. FTTF
C. TFFT
D. TTTT

Answer: C

D Watch Video Solution

5. The false statement among the following is

A. $p \wedge(\sim p)$ is contradiction
B. $(p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)$

contradiction

C. $\sim(\sim p) \Leftrightarrow p$ is a tautology
D. $p \vee(\sim p) \Leftrightarrow p$ is a tautology

Answer: B

6. For the following three statements

$p: 2$ is an even number
$\mathrm{q}: 2$ is a prime number
r : Sum of two prime numbers is always even.

Then, the symbolic statement $(p \wedge q) \Rightarrow \sim r$ means
A. 2 is an even and prime number and the
sum of two prime numbers is always
even
B. 2 is an even and prime number and the
sum of two prime numbers is not always
even
C. If 2 is an even and prime number, then
the sum of two prime numbers is not
always even
D. If 2 is an even and prime number, then
the sum of two prime numbers is always
even

Answer: C

7. Let p be the proposition that Mathematics is

 interesting and q be the proposition that Mathematics is difficult, then the symbol $p \wedge q$ meansA. Mathematics is interesting implies that

Mathematics is difficult
B. Mathematics is interesting implies and is
implied by Mathematics is difficult
C. Mathematics is interesting and

Mathematics is difficult

D. Mathematic
\section*{Mathematics is difficult}

Answer: C

D Watch Video Solution

8. For two statement p and q
p : A quadrilateral is a parallelogram
q : The opposite sides are parallel
Then, the compound proposition, "A quadrillateral is a parallelogram if and only if
the opposite sides are parallel" is represented by

> A. $p \vee q$
> B. $p \rightarrow q$
> C. $p \wedge q$
> D. $p \leftrightarrow q$

Answer: D
(Watch Video Solution
9. Consider the following statements :
p : He is intelligent
q : He is strong
Then symbolic form of statements 'it is wrong
that he is intelligent or strong's

$$
\begin{aligned}
& \text { A. } \sim P \vee \sim p \\
& \text { B. } \sim(p \wedge q) \\
& \text { C. } \sim(p \vee q) \\
& \text { D. } p \vee \sim q
\end{aligned}
$$

10. The converse of the contrapositive of the conditional $p \rightarrow \sim q$ is
A. $p \rightarrow q$
B. $\sim p \rightarrow \sim q$
C. $\sim q \rightarrow p$
D. $\sim p \rightarrow q$

Answer: D
11. If p, q and r simple propositions with truth
values T, F, T, then the truth value of $(\sim p \vee q) \wedge \sim q \rightarrow p$ is
A. true
B. , false
C. true, if r is false
D. None of the above
12. The contrapositive of $(p \vee q) \rightarrow r$ is

$$
\begin{aligned}
& \text { A. } \sim r \rightarrow(p \vee q) \\
& \text { B. } r \rightarrow(p \vee q) \\
& \text { C. } \sim r \rightarrow(\sim p \wedge \sim q) \\
& \text { D. } p \rightarrow(q \vee r)
\end{aligned}
$$

Answer: C

13. If $(p \wedge \sim r) \rightarrow(\sim p \vee q)$ is false, then truth values of p, q and r are respectively.
A. T, F and F
B. F, F and T
C. F, T and T
D. T, F and T

Answer: A
(D) Watch Video Solution
14. The contrapositive of "If two triangles are identical, then these are similar" is
A. if two triangles are not similar, then these are not idential
B. If two triangles are not identical, then
these are similar
C. If two triangles are not similar, then
these are
D. If two triangles are not similar, then
these are identical

- Watch Video Solution

15. Which of the following is the proposition?
"If a number is a prime, then it is odd".
A. If a number is not a prime, then it is odd
B. If a number is not a prime, then it is not odd
C. If a number is not odd, then it is not a
prime
D. If a number is odd, then it is prime

Answer: B

- Watch Video Solution

16. The statement $(\sim p \wedge q) \vee \sim q$ is equivalent
A. $p \vee q$
B. $p \wedge q$

$$
\text { C. } \sim(p \vee q)
$$

D. $\sim(p \wedge q)$

Answer: D

- Watch Video Solution

17. $(\sim(\sim p)) \wedge q$ is equal to
A. $\sim p \wedge q$
B. $p \wedge q$
C. $p \wedge \sim q$

$$
\text { D. } \sim p \wedge \sim q
$$

Answer: B

D Watch Video Solution

18. The statement $p \rightarrow(q \rightarrow p)$ is equivalent to
A. $p \Rightarrow(p \Rightarrow q)$
B. $p \Rightarrow(p \vee q)$
C. $p \Rightarrow(p \wedge q)$

$$
\text { D. } p \Rightarrow(p \Leftrightarrow q)
$$

Answer: B

D Watch Video Solution

19. $\sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to
A. $\sim p$
B. p
C. q

D. $\sim q$

Answer: A

D Watch Video Solution

20. Which of the following is True?
A. $p \Rightarrow q \equiv \sim p \Rightarrow \sim q$
B. $\sim(p \Rightarrow \sim q) \equiv \sim p \wedge q$
C. $\sim(\sim p \Rightarrow \sim q) \equiv \sim p \wedge q$
D. $\sim(\sim p \Leftrightarrow q) \equiv(\sim(p \Rightarrow q) \wedge \sim(q \Rightarrow p))$

- Watch Video Solution

21. The logically equivalent proposition of $p \Leftrightarrow q$ is
A. $(p \wedge q) \vee(p \wedge q)$
B. $(p \Rightarrow q) \wedge(q \Rightarrow p)$
C. $(p \wedge q) \vee(q \Rightarrow p)$
D. $(p \wedge q) \Rightarrow(p \vee q)$

Answer: B

- Watch Video Solution

22. logically equivalent to $\sim(\sim p \Rightarrow q)$ is

A. $p \wedge q$
B. $p \wedge \sim q$
C. $\sim p \wedge q$
D. $\sim p \wedge \sim q$
23. Let p and q be two statements, then $(p \vee q) \vee \sim p$ is
A. tautology
B. contradiction
C. Both (a) and (b)
D. None of these

Answer: A
24. The statement $(p \Rightarrow q) \Leftrightarrow(\sim p \wedge q)$ is a
A. tautology
B. contradiction
C. Neither (a) nor (b)
D. None of these

Answer: C
(Watch Video Solution
25. Let p and q be two statements. Then, $(\sim p \vee q) \wedge(\sim p \wedge \sim q)$ is a
A. tautology
B. contradiction
C. Neither tautology nor contradiction
D. Both tautology and contradiction

Answer: C

D Watch Video Solution
26. If p and q are two statements, then $(p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)$ is
A. contradiction
B. tautology
C. Neither (a) nor (b)
D. None of these

Answer: B

- Watch Video Solution

27. If p and q are two stastements, then
stastement $p \Rightarrow p \wedge \sim q$ is a
A. tautology
B. contradiction
C. Neither tautology nor contradiction
D. None of the above

Answer: C
(D) Watch Video Solution
28.

The
statement
$\sim(p \rightarrow q)<->(\sim p \vee \sim q)$ is::
A. tautology
B. contradiction
C. Either (a) or (b)
D. Neither (a) nor (b)

Answer: A

D Watch Video Solution
29. The proposition $S:(p \Rightarrow q) \Leftrightarrow(\sim p \vee q)$ is
a
A. tautology
B. contradiction
C. Either (a) or (b)

D. Neither (a) nor (b)

Answer: A
(D) Watch Video Solution
30. $\sim(p \vee q) \vee(\sim p \wedge q)$ is equivalent to
A. p
B. $\sim p$
C. q
D. $\sim q$

Answer: B
(Watch Video Solution
31. Let p and q be two statements, then $(p \vee q) \vee \sim p$ is
A. tautology

B. contradiction

C. Both (a) and (b)

D. None of these

Answer: A
(D) Watch Video Solution
32. The statement $p \rightarrow(q \rightarrow p)$ is equivalent to

$$
\begin{aligned}
& \text { A. } p \rightarrow(p \leftrightarrow q) \\
& \text { B. } p \rightarrow(p \rightarrow q) \\
& \text { C. } p \rightarrow(p \vee q) \\
& \text { D. } p \rightarrow(p \wedge q)
\end{aligned}
$$

Answer: C

- Watch Video Solution

33. Which of the following statements is a tautology?
A. $(\sim q \wedge p) \wedge q$
B. $(\sim q \wedge p) \wedge(p \wedge \sim p)$
C. $(\sim p \wedge p) \vee(p \vee \sim p)$
D. $(p \wedge q) \wedge(p \wedge q))$

Answer: C

- Watch Video Solution

34. Which of the following is an example of quantifiers ?
A.p : There exists a rectangle whose all
sides are equal
B. q : For every prime number P, \sqrt{P} is an irrational number
C. Both (a) and (b)
D. None of the above

Answer: C
35. The dual of the statement $(p \vee q) \wedge \sim(r \vee s)$ is
A. $(p \vee q) \vee \sim(r \vee s)$
B. $(p \wedge q) \vee \sim(r \vee s)$
C. $(p \wedge q) \vee(\sim r \vee \sim s)$
D. $(p \wedge q) \vee(\sim r \wedge \sim s)$

Answer: C
36. The dual of the statement $((p \wedge q) \wedge \sim q) \vee(\sim q)$ is
A. $((p \vee q) \wedge \sim q) \vee(\sim q)$
B. $((p \wedge q) \wedge \sim q) \vee(\sim q)$
C. $((p \wedge q) \wedge \sim p) \vee(\sim q)$
D. $(p \wedge q) \vee \sim q) \wedge(\sim q)$

Answer: D

37. Write the negation of the following statement: r : There exists a number x such that ${ }^{\circ} 0$
A. there does not exist a number x such
that $0<x<2$
B. there does not exist a number x such
that $0<x<1$
C. Both (a) and (b)
D. None of the above

Answer: B

D Watch Video Solution

38. The negation of the statement
p : "For every positive real number x, the number $\mathrm{x}-1$ is also positive" is
A. there exists atleast one positive real number x for which ($x-1$) is not positive
B. for every positive real number x, the
number $(x+1)$ is also positive
C. Both (a) and (b)
D. Neither (a) nor (b)

Answer: A

D Watch Video Solution

39. Given, 'Sachin score runs but India does not win the match is statement.

Statement I The symbolic form is $p \wedge \sim q$. Statement II Negation is 'Sachin not score runs or India win the match.

Where P : Sachin score runs
q : India win the match.
A. Statement I is true, statement II is false
B. Statement I is false, statement II is true
C. Statement I is false, statement II is false
D. Statement I is true, statement II is true

Answer: D

D Watch Video Solution

40. Let S be a non-empty subset of R. Consider the statement P : There is a rational number $x \in S$ such that $x>0$.

Which of the following statements is the negation of the statement P ?
A. There is a rational number $x \in S$ such
that $x \leq 0$
B. There is no rational number $x \in S$ such
that $x \leq 0$
C. Every rational number $x \in S$ satisfies

$$
x \leq 0
$$

D. $x \in S$ and $x \leq 0 \Rightarrow x$ is not rational

Answer: C

D Watch Video Solution

41. Let $\mathrm{p}: 7$ is not greater than 4 and q : Paris
is in France be two statements. Then, $\sim(p \vee q)$
is the statement
A. 7 is greater than 4 or Paris is not France
B. 7 is not greater than 4 and Paris is not in

France
C. 7 is greater than 4 and Paris is in France
D. 7 is greater than 4 and Paris is not in

France

Answer: D

- Watch Video Solution

42. The negation of the proposition "If 2 prime, then 3 is odd" is
A. 2 is prime and 3 is not odd
B. 2 is prime and 3 is odd
C. 2 is not prime and 3 is odd
D. if 2 is not prime, then 3 is odd

Answer: A
(D) Watch Video Solution
43. $(\sim(\sim p)) \wedge q$ is equal to
A. $p \vee(\sim q)$
B. $p \vee q$
C. $p \wedge(\sim q)$
D. $\sim p \wedge \sim q$

Answer: A
(D) Watch Video Solution
44. The negation of the compound proposition is $p \vee(\sim p \vee q)$
A. $(p \wedge \sim q) \wedge \sim p$
B. $(p \vee \sim q) \vee \sim p$
C. $(p \wedge \sim q) \vee \sim p$
D. None of these

Answer: A

D Watch Video Solution

45. The negation of $p \wedge(q \rightarrow \sim r)$ is

$$
\begin{aligned}
& \text { A. } \sim p \wedge(q \wedge r) \\
& \text { B. } p \vee(q \vee r) \\
& \text { C. } p \vee(q \wedge r) \\
& \text { D. } \sim p \vee(q \wedge r)
\end{aligned}
$$

Answer: D
(Watch Video Solution
46. Negation of "London is in England and Berut is in Lebnan" is
A. London is in Lebnan and Berut is in

England
B. London is not England or Berut is not

Lebnan
C. Berut is in England or London is in

Lebnan
D. None of the above

Answer: B

- Watch Video Solution

47. The simplified circuit for the following
circuit is

A. ${ }^{\text {a. } \longrightarrow p \curvearrowleft}$
B. ${ }^{\text {b. } \longrightarrow a}$

Answer: B

D Watch Video Solution

48. Consider the circuit

Then, the current flow in the circuit is
A. $(p \wedge q) \vee r$
B. $p \wedge q$
C. $p \vee q$
D. None of the above

Answer: A

- Watch Video Solution

49. The simplified circuit for the following circuit is

A.
a. $\longrightarrow p \longmapsto$
b. $\longrightarrow{ }_{q}$
B.
C. $\longrightarrow p_{p^{\prime}}$
D. ${ }^{d .} \int_{r} \longleftarrow$

Answer: D

- Watch Video Solution

50. Consider the switching circuit given below

Then, the current flow in the circuit is
A. $a^{\prime} \wedge b^{\prime} \wedge c$
B. $a \vee b \vee c^{\prime}$
C. $a \wedge b \wedge c^{\prime}$
D. $a^{\prime} \vee b^{\prime} \vee c$

Answer: D

- Watch Video Solution

51. Quivalent circuit for the logical expression

$$
(\sim p \wedge q) \vee(\sim p \wedge \sim q) \vee(p \wedge \sim q) \text { is }
$$

A. ${ }^{\text {a. }} \square_{p} \cdot \sigma^{-}$
B. ${ }^{\text {b. } \longrightarrow p . \leftharpoondown .-~}$
C. $\square \square$
D.

Answer: C

- Watch Video Solution

52. Consider the switching circuit given below

Then, the current flow in the circuit is
A. $(p \wedge q) \vee r \vee\left(p^{\prime} \wedge q^{\prime} \wedge r^{\prime}\right)$
B. $(p \wedge q) \vee r \vee\left(p^{\prime} \wedge q^{\prime} \wedge r\right)$
C. $(p \vee q) \wedge r \wedge\left(p^{\prime} \vee q^{\prime} \vee r^{\prime}\right)$

D. None of the above

Answer: A

(D) Watch Video Solution

Practice Exercise Exercies 2 Miscellaneous

 Problems1. The negation of the statement "Plants take in CO_{2} and given out O_{2} and give out O_{2} " is
A. Plants do not take in CO_{2} and do not give out O_{2}
B. Plants do not take in CO_{2} or do not give out O_{2}
C. Plants take in CO_{2} and do not give out
O_{2}

D. Plants take in CO_{2} or do not give out O_{2}

Answer: B

D Watch Video Solution

2. The negation of $(\sim p \wedge q) \vee(p \wedge \sim q)$ is
A. $(p \vee \sim q) \vee(\sim p \vee q)$
B. $(p \vee \sim q) \wedge(\sim p \vee q)$
C. $(p \wedge \sim q) \wedge(\sim p \vee q)$
D. $(p \wedge \sim q) \wedge(\sim q)$

Answer: B

- Watch Video Solution

3. If p : Samir is tall, q : Samir is intelligent, then $\sim p \vee q$ means
A. Samir is not tall or he is intelligent
B. Samir is tall or he is intelligent
C. Samir is not tall and he is intelligent
D. Samir is not tall, so he is intelligent

Answer: A

- Watch Video Solution

4. Which among the following is equivalent to $r \leftrightarrow s ?$
A. $(r \wedge s) \vee(r \vee s)$
B. $(r \vee s) \vee(r \vee \sim s)$
C. $(\sim r \vee s) \vee(r \vee s)$
D. $(\sim r \vee s) \wedge(\sim s \vee r)$

Answer: D

- Watch Video Solution

5. Which of the following statements is a tautology?
A. $(p \rightarrow q) \wedge(p \rightarrow q)$
B. $(p \rightarrow q) \vee(p \rightarrow q)$
C. $(p \rightarrow q) \vee(q \rightarrow p)$
D. None of these

Answer: C
(Watch Video Solution
6. Which of the following is True?

$$
\begin{aligned}
& \text { A. } \sim(p \leftrightarrow q) \equiv \sim(p \rightarrow q) \wedge \sim(q \rightarrow p) \\
& \text { B. } \sim(p \rightarrow \sim q) \equiv \sim p \wedge q \\
& \text { C. } \sim(\sim p \rightarrow \sim q) \equiv \sim p \wedge q \\
& \text { D. }(p \rightarrow q) \equiv(\sim p \Rightarrow \sim q)
\end{aligned}
$$

Answer: C

- Watch Video Solution

7. If p, q and r are any three logical statements,

then which one of the following is correct ?

$$
\begin{aligned}
& \text { A. } \sim[p \wedge(\sim q)] \equiv(\sim p) \wedge q \\
& \text { B. } \sim(p \vee q) \wedge(\sim r) \equiv(\sim p) \vee(\sim q) \vee(\sim r) \\
& \text { C. } \sim[p \vee(\sim q)] \equiv(\sim p) \wedge q \\
& \text { D. } \sim[p \wedge(\sim q)] \equiv(\sim p) \wedge \sim q
\end{aligned}
$$

Answer: C

- Watch Video Solution

8. Among the following statements, which is a tautology?

> A. $p \wedge(p \vee q)$
> B. $p \vee(p \wedge q)$
> C. $(p \wedge(p \rightarrow q)) \rightarrow q$
> D. $q \rightarrow(p \wedge(p \rightarrow q))$

Answer: C

D Watch Video Solution

9. Which of the following is not always true ?

A. $(p \Rightarrow q) \equiv \sim q \Rightarrow \sim p$
B. $(p \vee q) \equiv \sim p \wedge \sim q$
C. $p \Rightarrow q \equiv p \wedge q$

$$
\text { D. } \sim(p \wedge q) \equiv \sim p \vee \sim q
$$

Answer: C

10. Converse of the statement "If a number x is

 even, then x^{2} is even" isA. if a number x^{2} is even, then x is even
B. if x is not even, then x^{2} is not even
C. Neither x nor x^{2} is even
D. None of the above

Answer: A
(Watch Video Solution
11. If $p \rightarrow(\sim p \vee q)$ is false, the truth values of p and q are, respectively
A. F,F
B. T,T
C. T,F
D. F,T

Answer: C

- Watch Video Solution

12. The truth values of p, q and r for which
$(p \wedge q) \vee(\sim r)$ has truth value F are respectively
A. F,T,F
B. F,F,F
C. T,T,T
D. F,F,T

Answer: D

- Watch Video Solution

13. $p \vee \sim(p \wedge q)$ is a
A. contradiction
B. contingency
C. tautology
D. None of these

Answer: C

D Watch Video Solution
14. The false statement among the following is
A. $p \wedge(\sim p)$ is a tautology
B. $(p \rightarrow q) \leftrightarrow(\sim q \rightarrow \sim p)$
is

conbtradiction

C. $\sim(\sim p) \leftrightarrow p$ is a tautology
D. $p \vee(\sim p)$ is tautology

Answer: B
15. Which of the following is true for any two statements p and q ?
A. $\sim(p \vee \sim q) \equiv \sim p \wedge q$
B. $\sim p \wedge q$ is fallacy
C. $p \vee \sim q$ is a tautology
D. $p \vee \sim p$ is contradiction

Answer: A

- Watch Video Solution

16. The proposition $(p \rightarrow \sim p) \wedge(\sim p \rightarrow p)$ is a

A. tautology
B. contradiction
C. tautology and contradiction

D. Neither tautology nor contradiction

Answer: B
17. For integers m and n, both greater than 1 , consider the following three statements
$\mathrm{P}: \mathrm{m}$ divides $\mathrm{n}, \mathrm{Q}: \mathrm{m}$ divides n^{2} and $\mathrm{R}: \mathrm{m}$ is
prime, then
A. $Q \wedge R \rightarrow P$
B. $P \wedge Q \rightarrow R$
C. $Q \rightarrow R$
D. $Q \rightarrow P$

Answer: A

18. The statement $\sim(p \leftrightarrow \sim q)$ is

A. equivalent to $p \leftrightarrow q$
B. equivalent to $\sim p \leftrightarrow q$
C. tautology
D. fallacy

Answer: A
19. $\sim[(\sim p) \wedge q]$ is logocally equivalent to

$$
\begin{aligned}
& \text { A. } \sim[p \wedge(\sim q)] \\
& \text { B. } p \vee(\sim q) \\
& \text { C. } \sim(p \vee q) \\
& \text { D. } p \wedge(\sim q)
\end{aligned}
$$

Answer: B

D Watch Video Solution

20. The statement $p \rightarrow(q \rightarrow p)$ is equivalent to

$$
\begin{aligned}
& \text { A. } p \rightarrow q \\
& \text { B. } p \rightarrow(p \vee q) \\
& \text { C. } p \rightarrow(p \rightarrow q) \\
& \text { D. } p \rightarrow(p \wedge q)
\end{aligned}
$$

Answer: B

D Watch Video Solution
21. If $S(p, q, r)=(\sim p) \vee(\sim(q \wedge r))$ is a compound statement, then $S(\sim p, \sim q, \sim r)$ is
A. $\sim S(p, q, r)$
B. $S(p, q, r)$
C. $p \vee(q \wedge r)$
D. $p \vee(q \vee r)$

Answer: D

D Watch Video Solution
22. $\sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to
A. $\sim p$
B. p
C. q
D. $\sim q$

Answer: A

D Watch Video Solution
23. Dual of $(x \vee y) \wedge(x \vee 1)=x \vee x \wedge y \vee y$ is
A. $(x \wedge y) \vee(x \wedge 0)=x \wedge(x \vee y) \wedge y$
B. $(x \vee y) \vee(x \wedge 1)=x \wedge(x \vee y) \wedge y$
C. $(x \wedge y) \wedge(x \wedge 0)=x \wedge(x \vee y) \wedge y$
D. None of the above

Answer: A

- Watch Video Solution

24. $\sim[(\sim p) \wedge q]$ is logocally equivalent to
A. $\sim(p \vee q)$
B. $\sim[p \wedge(\sim q)]$
C. $p \wedge(-q)$
D. $p \vee(\sim q)$

Answer: D
(D) Watch Video Solution
25. The negation of $\sim s \vee(\sim r \wedge s)$ is equivalent
to : (1) $s \wedge \sim r$ (2) $s \wedge(r \wedge \sim s)(3) s \vee(r \vee \sim s)$
(4) $s \wedge r$
A. $s \wedge \sim r$
B. $s \wedge(r \wedge \sim s)$
C. $s \vee(r \vee \sim s)$
D. $s \wedge r$

Answer: D

- Watch Video Solution

26. Given statement is 'if $\mathrm{x}=\mathrm{y}$, then $x^{2}=y^{2}$,
and the statement are
(i) If $x=y$, then $x^{2} \neq y^{2}$
(ii) If $x \neq y$, then $x^{2}=y^{2}$
(iii) $x \neq y$ or $x^{2}=y^{2}$
(iv) If $x^{2} \neq y^{2}$, then $x \neq y$

Which of the statement are equivalent to the given statement?
A. (i) and (iii)
B. (ii) and (iv)
C. (i) and (iv)
D. (ii) and (iv)

Answer: D

(Watch Video Solution

Mht Cet Corner

1. If p : Every square is a rectangle.
q : Every rhombus is a kite, then truth values
of $p \rightarrow q$ and $p \leftrightarrow q$ are ____ and
respectively.
A. F,F
B. T,F
C. F, T
D. T, T

Answer: A

D Watch Video Solution
2. Which of the following quantified statement
is true?A) The square of every real number is
positive
A. The square of every real number is positive.
B. There exists a real number, whose square is negative.
C. There exists a real number, whose
square is negative.
D. Every real number is rational.

Answer: A

- Watch Video Solution

3.

Symbolic form of the given switching circuit is equivalent to
A. $p \vee \sim q$
B. $p \wedge \sim q$
C. $p \wedge q$
D. $(p \leftrightarrow q)$

Answer: C

D Watch Video Solution

4. The statement $(p \rightarrow \sim p) \wedge(\sim p \rightarrow p)$ is
A. tautology
B. contradiction
C. tautology and contradiction
D. Neither tautology nor contradiction
5. The inverse of the statement $(p \wedge \sim q) \rightarrow r$ is
A. $\sim r \Rightarrow \sim p \vee q$
B. $\sim p \vee q \Rightarrow \sim r$
C. $r \Rightarrow p \wedge \sim q$
D. None of these

Answer: B

6. If x and y have different truth values, then

$x \wedge(x \vee y)$ is equivalent to
A. y
B. x
C. 1
D. 0

Answer: B

- Watch Video Solution

7. For the circuit shown below, the Boolean polynomial is

A. $(\sim p \vee q) \vee(p \vee \sim q)$
B. $(\sim p \wedge q) \wedge(p \wedge q)$
C. $(\sim p \wedge \sim q) \wedge(q \wedge p)$

$$
\text { D. }(\sim p \wedge q) \vee(p \wedge \sim q)
$$

Answer: D

- Watch Video Solution

8. Dual of $(x \vee y) \wedge\left(x^{\prime} \vee 1\right)$ is
A. $(x \wedge y) \vee\left(x^{\prime} \wedge 0\right)$
B. $(x \wedge y)\left(x^{\prime} \wedge 1\right)$
C. $(x \wedge y) \vee(x \wedge 1)$
D. None of these

D Watch Video Solution

9. If p, q, r are single proposition with truth
values T, F, F, then the truth value of
$(p \wedge \sim q) \rightarrow(\sim p \vee r)$ is
A. T
B. F
C. Cannot find
D. None of these

Answer: B

- Watch Video Solution

10. The output of the following circuit is

A. p
B. q
C. $\sim p$

D. $p+q$

Answer: B

D Watch Video Solution

11. The proposition $(\sim p) \vee\left(p^{\sim} q\right)$ is equivalent to

> A. $\sim p \wedge q$
> В. $\sim p \vee q$
> С. $p \wedge q$

D. $p \vee q$

Answer: B

- Watch Video Solution

12. $\sim(\sim p \rightarrow q)$ is equivalent to
A. $p \wedge \sim q$
B. $\sim p \wedge q$
C. $\sim p \wedge \sim q$
D. $\sim p \vee \sim q$

Answer: C

- Watch Video Solution

13. Simplify the following circuit and it is equivalent to.

A. $p \vee(q \wedge r)$

$$
\begin{aligned}
& \text { B. } p \wedge(q \vee r) \\
& \text { C. } p \vee(q \vee r) \\
& \text { D. } p \wedge(q \wedge r)
\end{aligned}
$$

Answer: A

D Watch Video Solution

14. Simplify $(p \vee q) \wedge(p \vee \sim q)$.
A. p
B. T
C. F
D. q

Answer: A

- Watch Video Solution

15. Negation of the conditional "If it rains, I
shall go to school" is
A. it rains and I shall go to school
B. it rains and I shall not go to school
C. it does not rain and I shall go to school

D. None of the above

Answer: B

- Watch Video Solution

16. The dual of the statement $[p \vee(\sim q)] \wedge(\sim p)$
is
A. $p \vee(\sim q) \vee \sim p$
B. $(p \wedge \sim q) \vee \sim p$

$$
\text { C. } p \wedge \sim(q \vee \sim p)
$$

D. None of these

Answer: B

- Watch Video Solution

17. Which of the following statement has the truth value F ?
A. A quadratic equation has always a real
B. The number of ways of seating 2 persons in two chairs out of n persons is $P(n, 2)$
C. The cube roots of unity are in GP
D. None of the above

Answer: A

D Watch Video Solution
18. The negation of the statement "He is rich and happy" is given by
A. he is not eich and not happy
B. he is not rich or not happy
C. he is rich and happy
D. he is not rich and happy

Answer: B

D Watch Video Solution
19. $\sim(p \leftrightarrow q)$ is a
A. tautology

B. contradiction

C. Neither (a) nor (b)
D. Either (a) or (b)

Answer: C

- Watch Video Solution

20. $\sim[(p \wedge q) \rightarrow(\sim p \vee q)]$ is a
A. tautology
B. contradiction
C. Neither (a) nor (b)
D. Either (a) or (b)

Answer: B

- Watch Video Solution

21. $(p \wedge \sim q) \wedge(\sim p \wedge q)$ is a
A. tautology
B. contradiction
C. tautology and contradiction

D. Neither tautology nor contradiction

Answer: B

D Watch Video Solution

22. If $p: A$ man is happy and
q : A man is rich

Then, the statement "If a man is not happy, then he is not rich" is written as

$$
\text { A. } \sim p \rightarrow \sim q
$$

B. $\sim q \rightarrow p$
C. $\sim q \rightarrow \sim p$
D. $q \rightarrow \sim p$

Answer: A

- Watch Video Solution

