

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MHTCET 2016

Mathematics

1. Let $X ilde{\sim} B(n,p)$, if E(X)=5,Var(X) = 2.5 then P(X < 1) is equal to

A.
$$\left(\frac{1}{2}\right)^{11}$$

A.
$$\left(\frac{1}{2}\right)^{11}$$
 B. $\left(\frac{1}{2}\right)^{10}$

C.
$$\left(\frac{1}{2}\right)^6$$
D. $\left(\frac{1}{2}\right)^9$

Answer: B

Watch Video Solution

2. Derivative of
$$an^{-1} \left(\dfrac{x}{\sqrt{1-x^2}} \right)$$
 with respect to $\sin^{-1} (3x-4x^3)$ is

A.
$$\frac{1}{\sqrt{1-x^2}}$$

B.
$$\frac{3}{\sqrt{1-x^2}}$$

$$\sqrt{1-x^2}$$

D.
$$\frac{1}{3}$$

C. 3

Answer: D

Watch Video Solution

3. Form the differential equation of the family of circles touching the y-axis at origin.

A.
$$\left(x^2+y^2\right)rac{dy}{dx}-2xy=0$$

$$\mathsf{B.}\left(x^2-y^2\right)+2xy\frac{dy}{dx}=0$$

C.
$$\left(x^2-y^2\right)\frac{dy}{dx}-2xy=0$$

D.
$$\left(x^2+y^2\right)\frac{dy}{dx}+2xy=0$$

Answer: B

4. If
$$A=\begin{bmatrix}1&1&0\\2&1&5\\1&2&1\end{bmatrix}$$
 then $a_{11}A_{21}+a_{12}A_{22}+a_{13}A_{23}$ is

equal to

$$C. -1$$

Answer: B

Watch Video Solution

5. If the Rolle's theorem for $f(x)=e^x(\sin x-\cos x)$ is verified on $\left[\frac{\pi}{4},\frac{5\pi}{4}\right]$ then the value of C is

A.
$$\frac{\pi}{3}$$

$$\operatorname{B.}\frac{\pi}{2}$$

C.
$$\frac{3\pi}{4}$$

D. π

Answer: B

Watch Video Solution

6. The joint equation of lines passing through the origin and trisecting the first quadrant is

A.
$$x^2+\sqrt{3}xy-y^2=0$$

B.
$$x^2-\sqrt{3}xy-y^2=0$$

C.
$$\sqrt{3}x^2-4xy+\sqrt{3}y^2=0$$

D. $3x^2 - y^2 = 0$

Answer: C

Watch Video Solution

7. If
$$2\tan^{-1}(\cos x) = \tan^{-1}(2\cos ecx)$$
 then $\sin x + \cos x =$

A.
$$2\sqrt{2}$$

B.
$$\sqrt{2}$$

C.
$$\frac{1}{\sqrt{2}}$$
 D. $\frac{1}{2}$

Answer: B

8. Find the direction cosines of teh line
$$\frac{x-2}{2}=\frac{2y-5}{-3}, z=-1.$$
 Also, find the vector equation of the line.

A.
$$\frac{4}{3}$$
, $\frac{3}{5}$, 0

B.
$$\frac{3}{5}$$
, $\frac{4}{5}$, $\frac{1}{5}$

$$C. -\frac{3}{5}, \frac{4}{5}, 0$$

D.
$$\frac{4}{5}$$
, $-\frac{2}{5}$, $\frac{1}{5}$

Answer: A

9.
$$\int \frac{dx}{\sqrt{8+2x-x^2}}$$

A.
$$\frac{1}{3}\sin^{-1}\left(\frac{x-1}{3}\right)+c$$

$$\mathsf{B.}\sin^{-1}\!\left(\frac{x+1}{3}\right) + C$$

C.
$$\frac{1}{3}\sin^{-1}\left(\frac{x+1}{3}\right) + c$$

D.
$$\sin^{-1}\left(\frac{x-1}{3}\right)+c$$

Answer: D

10.

Watch Video Solution

The

$$f(x) = x^3 + 5x^2 - 7x + 9$$
 at $x = 1$ is

a[[rpxo,ate

va,ie

pf

A. 8

Answer: A

Watch Video Solution

11. If a random variable waiting time in minutes for bus and probability density function of x is given by

$$f(x) = \left\{ egin{array}{l} rac{1}{5}, 0 \leq x \leq 5 \ 0, ext{otherwise} \end{array}
ight.$$

Then probability of waiting time not more than 4 minutes is equal to

A. 0.3

- B. 0.8
- C. 0.2
- D. 0.5

Answer: B

- **12.** In ΔABC , $\left(a-b
 ight)^2 ext{cos}^2 rac{C}{2} + \left(a+b
 ight)^2 ext{sin}^2 rac{C}{2}$ is equal to
 - A. b^2
 - B. c^2
 - $\mathsf{C.}\,a^2$
 - D. $a^2+b^2+c^2$

Answer: B

Watch Video Solution

13. Derivative of $\log(\sec \theta + \tan \theta)$ with respect top $\sec \theta$ at

$$heta=rac{\pi}{4}$$
 is

- A. O
- B. 1
- $\text{C.}\,\frac{1}{\sqrt{2}}$ $\text{D.}\,\sqrt{2}$

Answer: B

14. The joint equation of bisectors of angles between lines

$$x=5$$
 and $y=3$ is

A.
$$(x-5)(y-3)=0$$

B.
$$x^2 - y^2 - 10x + 6y + 16 = 0$$

C.
$$x^2 - y^2 - 10x + 6y + 16 = 0$$

$$D. xy = 0$$

Answer: B

Watch Video Solution

15. एक कण वक्र $6y = x^3 + 2$ के अनुगत गति कर रहा है वक्र पर उन बिंदुओं को ज्ञात कीजिए जबिक x-निर्देशांक की तुलना में y-निर्देशांक 8 गुना तीव्रता से बदल रहा है

B.
$$(4, -11)$$

$$C. (-4, 11)$$

D.
$$(-4, -11)$$

Answer: A

Watch Video Solution

16. If the function f(x) defined by

$$f(x) = \left\{ egin{aligned} x \sinrac{1}{x}, & ext{for} & x
eq 0 \ k, & ext{for} & x = 0 \end{aligned}
ight.$$

is continuous at x = 0, then k is equal to

$$C. -1$$

D.
$$\frac{1}{2}$$

Answer: A

Watch Video Solution

17. If
$$y=e^m\sin^{-1}x$$
 and $\left(1-x^2\right)\left(\frac{dy}{dx}\right)^2=At^2$, then A is equal to

A. m

B.-m

 $\mathsf{C}.\,m^2$

 $\mathsf{D.}-m^2$

Answer: C

Watch Video Solution

18.
$$\displaystyle \int \!\! \left(rac{4e^x-25}{2e^x-5}
ight) \! dx = Ax + B rac{\log}{2e^x} - rac{5}{+c}$$
 then

- A. A=5 and B=3
- B. A=5 and B=-3
- C. A=-5 and B=3
- D. A=-5 and B=-3

Answer: B

$$an^{-1}\Bigl(\sqrt{3}\Bigr) - \sec^{-1}(\,-2)$$

19.
$$rac{ an^{-1}\Big(\sqrt{3}\Big)-\sec^{-1}(\,-2)}{\cos ec^{-1}\Big(-\sqrt{2}\Big)+\cos^{-1}\Big(-rac{1}{2}\Big)}$$
 is equal to

A.
$$\frac{4}{5}$$

$$\mathsf{B.}-\frac{4}{5}$$

$$\mathsf{C.}\,\frac{3}{5}$$

D. 0

Answer: B

Watch Video Solution

20. For what value of k, the function defined by

$$f(x) = egin{cases} rac{\log\left(1+2x
ight)\sin x^{\circ}}{x^{2}}, & ext{for} & x
eq 0 \ k, & ext{for} & x = 0 \end{cases}$$

is continuous at x = 0?

A. 2

$$\mathsf{B.}\;\frac{1}{2}$$

$$\mathsf{C.}\,\frac{\pi}{90}$$

D.
$$\frac{90}{\pi}$$

Answer: C

21. If
$$\log_{10}\!\left(\frac{x^2-y^2}{(x^2)+y^2}\right)=2$$
 then $\frac{dy}{dx}$ is equal to

A.
$$\frac{99x}{101y}$$

B.
$$\frac{99x}{101y}$$

$$-\frac{99y}{101x}$$

D. $\frac{99y}{101x}$

Answer: A

Watch Video Solution

22.
$$\left(\frac{\int \frac{x}{2}}{-\frac{x}{2}}\right) \log \left(\frac{2-\sin x}{2+\sin x}\right)$$
 dx is equal to

A. 1

B. 3

C. 2

D. 0

Answer: D

23.
$$\int \left(\left(x^2 + 2 \right) rac{a^{\left(x + an^{-1} x
ight)}}{x^2 + 1}
ight)$$
 dx is equal to

A.
$$\log a. \ a^{x + \tan^{-1} x} + c$$

$$\mathsf{B.} \, \frac{\frac{x + \tan^{-1}}{\log a}}{\log a} + c$$

$$\mathsf{C.}\,\frac{a^{x+\tan^{-1}x}}{\log a}+c$$

$$D.\log a(x+\tan^{-1}+c$$

Answer: C

24. The degree and order of the differential equation

$$\left[1+\left(rac{dy}{dx}
ight)^3
ight]^{rac{7}{3}}=7igg(rac{d^2y}{dx^2}igg)$$
 respectively are

- A. 3 and 7
- B. 3 and 2
- C. 7 and 3
- D. 2 and 3

Answer: B

Watch Video Solution

25. The acute angle between the line $r=\left(\hat{i}+2\hat{j}+\hat{k}
ight)+\lambda\left(\hat{i}+\hat{j}+\hat{k}
ight)$ and the plane

$$r.\left(2\hat{i}\,-\hat{j}+\hat{k}
ight)=5$$

A.
$$\cos^{-1}\!\left(\frac{\sqrt{2}}{3}\right)$$
B. $\sin^{-1}\!\left(\frac{\sqrt{2}}{3}\right)$
C. $\tan^{-1}\!\left(\frac{\sqrt{2}}{3}\right)$
D. $\sin^{-1}\!\left(\frac{\sqrt{2}}{3}\right)$

Answer: B

Watch Video Solution

the curve $y=2x-x^2$ and the x-axis.

26. Find by integration the area of the region bounded by

A.
$$\frac{2}{3}$$
 sq units

- B. $\frac{4}{3}$ sq units
- C. $\frac{5}{3}$ sq units
- D. $\frac{8}{3}$ sq units

Answer: B

27. If
$$\int \frac{f(x)}{\log \sin x} dx = \log \cdot \log \sin x$$
, then f(x) is equal to

- A. cot x
- B. tan x
- C. sec x
- D. cosec x

Answer: A

Watch Video Solution

28. If A and B are foot of perpendicular drawn from point Q(a,b,c) to the planes yz and zx, then equation of plane through the point A,B, and O is

A.
$$\frac{x}{a} + \frac{y}{b} - \frac{z}{c} = 0$$

$$B. \frac{x}{a} - \frac{y}{b} + \frac{z}{c} = 0$$

$$C. \frac{x}{a} - \frac{y}{b} - \frac{z}{c} = 0$$

$$D. \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$$

Answer: A

29.

$$a=\hat{i}+\hat{k}-2\hat{k},$$
 $b=2\hat{i}-\hat{j}+\hat{k}$ and $c=3\hat{i}-\hat{k}c=ma+nb$

If

then m+n ios equal to

A. 0

B. 1

C. 2

D. -1

Answer: C

30.
$$\int_0^{\pi/2} \left(rac{n\sqrt{\sec x}}{n\sqrt{\sec x} + n\sqrt{\cos ecx}}
ight) \! dx$$
 is equal to

- A. $\frac{\pi}{2}$
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{4}$
- D. $\frac{\pi}{6}$

Answer: C

Watch Video Solution

31. If the probability density function of a random varaible X is given as

then F(0) is equal to

A.
$$P(X < 0)$$

B.
$$P(X > 0)$$

C.
$$1 - P(X > 0)$$

D.
$$1 - P(X < 0)$$

Answer: C

View Text Solution

32. Find the particular solutions of the following differential equation :

(1)
$$y(1+\log x)rac{dx}{dy}-x\log x=0,$$
 when, $x=e,$ $y=e^2$

- A. y=ex log x
- B. ey=x log x
- C. xy=e log x
- D. y logx=ex

Answer: A

Watch Video Solution

33. If M and N are the mid-points of the diagonals AC and BD respectively of a quadrilateral ABCD, then the of $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} \text{ equals}$

- A. 2MN
- B. 2NM

C. 4MN

D. 4MN

Answer: C

Watch Video Solution

34. If $\sin x$ is an integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$, then write the value of P.

A. log sin x

B. cos x

C. tan x

D. cot x

Answer: D

Watch Video Solution

35. Which of the following equation does not represent a pair of lines ?

A.
$$x^2 - x = 0$$

$$B. xy - x = 0$$

C.
$$y^2 - x + 1 = 0$$

D.
$$xy + x + y + 1 = 0$$

Answer: C

36. Probability of guessing correctly atleast 7 out of 10 answers in a 'True' or 'False' test is equal to

- A. $\frac{11}{64}$
- B. $\frac{11}{32}$
- c. $\frac{11}{16}$
- D. $\frac{27}{32}$

Answer: A

Watch Video Solution

37. Principal solutions of the equation $\sin 2x + \cos 2x = 0$, where $\pi < x < 2\pi$

A.
$$\frac{7\pi}{8}$$
, $\frac{11\pi}{8}$

B.
$$\frac{9\pi}{8}$$
, $\frac{13\pi}{8}$

c.
$$\frac{11\pi}{8}$$
, $\frac{15\pi}{8}$

D.
$$\frac{15\pi}{8}, \frac{19\pi}{8}$$

Answer: C

B (B) C (C) D (D) A

Watch Video Solution

 $6ar{a}-4ar{b}+4ar{c}$ and $-4ar{c}$ respectively, and the line joining the points C and D having position vectors $-ar{a}-2ar{b}-3ar{c}$ and $ar{a}+2ar{b}-5ar{c}$ intersect, then their point of intersection is (A)

38. If line joining points A and B having position vectors

C.D

B. C

D. A

Answer: A

Watch Video Solution

39. If
$$A=egin{bmatrix}2&2\-3&2\end{bmatrix}, B=egin{bmatrix}0&-1\1&0\end{bmatrix}$$
 then $\left(B^{-1}A^{-1}
ight)^{-1}$ is

equal to

A.
$$\begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$$

 $\mathsf{B.} \left[\begin{array}{cc} 2 & 2 \\ -2 & 3 \end{array} \right]$ $\mathsf{C.} \left[\begin{array}{cc} 2 & -3 \\ 2 & 2 \end{array} \right]$

D.
$$\begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

Answer: A

- **40.** If p: Every square is a rectangle.
- q : Every rhombus is a kite, then truth values of p o q and
- $p \leftrightarrow q$ are _____ and ____ respectively.
 - A. F,F
 - B. T,F
 - C. F,T
 - D. T,T

Answer: A

Watch Video Solution

41. If G(ar g), H(ar h) and P(ar p) are centroid, orthocenter and circumcenter of a triangle and xar p+yar h+zar g=0 then (x,y,z)=

- A. 1,1,-2
- B. 2,1,-3
- C. 1,3,-4
- D. 2,3,-5

Answer: B

42. Which of the following quantified statement is true?A)

The square of every real number is positive

A. The square of a every number is positive

B. There exists a real number, whose square is negative

C. There exists a real number, whose square is not positive

D. Every real number is rational

Answer: A

43. The general solution of the equation $an^2 x = 1$ is

A.
$$n\pi+rac{\pi}{4}$$

B.
$$n\pi-rac{\pi}{4}$$

C.
$$n\pi \frac{\pi}{4}$$

D.
$$2n\pi\pmrac{\pi}{4}$$

Answer: C

Watch Video Solution

44. The shaded part of given figure indicates in feasible region.

then the constraints are

A. $x, y > 0, x + y > 0, x \ge 5, y < 3$

 $\operatorname{B.} x,y\geq 0, x-y\geq 0, x\leq 5, y\leq 3$

 $\mathsf{C.}\,x,y\geq 0, x-y\geq 0, x\leq 5, y\geq 3$

 $\mathsf{D}.\,x,y\geq 0, x-y\geq 0, x\leq 5, y\geq 3$

Answer: B

View Text Solution

45. Direction ratios of the line which is perpendicular to the lines with direction ratios (-1,2,2) and (0,2,1) are

A. 1,1,2

B. 2,-1,2

C. -2, 1, 2

Answer: B

Watch Video Solution

46. If matrix $A=\begin{bmatrix}1&2\\4&3\end{bmatrix}$, such that AX=l, then X is equal to

$$A. \frac{1}{5} \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$

$$\mathsf{B.} \ \frac{1}{5} \left[\begin{array}{cc} 4 & 2 \\ 4 & -1 \end{array} \right]$$

$$\mathsf{C.}\,\frac{1}{5}\!\left[\begin{array}{cc} -3 & 2 \\ 4 & -1 \end{array}\right]$$

D.
$$\frac{1}{5}\begin{bmatrix} -1 & 2\\ -1 & 4 \end{bmatrix}$$

Answer: C

47. If

$$a=\hat{i}+\hat{j}+\hat{k}, b=2\hat{i}+\lambda\hat{i}+\lambda\hat{j}+\hat{k}, c=\hat{i}-\hat{j}+4\hat{k}$$
 and

$$a.\,(b imes c)=10$$
 then λ is equal to

Answer: A

View Text Solution

48. If random variable $X imes B igg(n = 5, P = rac{1}{3} igg)$, then 'P(2 It X

It 4) is equal to

A.
$$\frac{80}{243}$$

B.
$$\frac{40}{243}$$

c.
$$\frac{40}{343}$$

Answer: B

Watch Video Solution

49. The objective function $z=x_1+x_2$, subject to $x_1+x_2\leq 10,\ -2x_1+3x_2\leq 15, x_1\leq 6, x_1, x_2\leq 0$ has maximum value of the feasible region.

- A. at only one point
- B. at only two points
- C. at every point of the segment joining two points
- D. at every of the segment joining two equivalent to'

Answer: C

Watch Video Solution

50.

- A. $p \lor -q$
- B. $p \vee -q$
- $\mathsf{C}.\,P\Leftrightarrow q$

D. `None of these

Answer: D

View Text Solution