

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MOCK TEST 5

Mcqs

1. On a multiple choice examination with three possible answers (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

A.
$$\frac{3}{243}$$

B.
$$\frac{1}{243}$$

C. $\frac{25}{243}$
D. $\frac{11}{243}$

Answer: D

2. The function
$$f(x) = \log \Bigl(x + \sqrt{x^2 + 1}\Bigr)$$
 is

A. an even function

B. an odd function

C. a periodic function

D. neither an even nor an odd function

Answer: B

3. If f is a real valued function such that f(x + y) = f(x) + f(y) and f(1) = 5, then the value of f(100) is

A. 200

B. 300

C. 400

D. 500

Answer: D

Watch Video Solution

4. मान लीजिए दो पासों को फेंकने पर प्राप्त संख्याओं के योग को X से व्यक्त किया गया है। X का प्रसारण और मानक विचलन ज्ञात कीजिए।

D. None of these

Answer: B

5. If y=f(x) passing through (1,2) satisfies are differential equation

y(1+xy)dx-x dy=0, then

A.
$$f(x) = rac{2x}{2-x^2}$$

B. $f(x) = rac{x+1}{x^2+1}$
C. $f(x) = rac{x-1}{4-x^2}$
D. $f(x) = rac{4x}{1-2x^2}$

Answer: A

Watch Video Solution

6. The sine and cosine curves intersect infinitely many times , bounding regions of equal areas . Sketch one of these regions and find its area .

A. $\sqrt{2}$ sq units

B. $2\sqrt{2}$ sq units

C. $3\sqrt{2}$ sq units

D. $4\sqrt{2}$ sq units

Answer: B

> Watch Video Solution

7. If $A=\int_0^\pi rac{\cos x}{\left(x+2
ight)^2}\,dx$, then $\int_0^{\pi/2} rac{\sin 2x}{x+1}\,dx$ is equal to

A.
$$A - \frac{1}{2} - \frac{1}{\pi + 2}$$

B. $\frac{1}{2} + \frac{1}{\pi + 2} - A$
C. $\frac{1}{\pi + 2} - A$
D. $1 + \frac{1}{\pi + 2} - A$

Answer: B

8. The equation of the circumcircle of the triangle formed by the

lines x=0, y=0, 2x+3y=5, is

A.
$$6ig(x^2+y^2ig)+5(3x-2y)=0$$

B.
$$x^2 + y^2 - 2x - 3y + 5 = 0$$

C. $x^2 + y^2 + 2x - 3y - 5 = 0$

D.
$$6 ig(x^2 + y^2ig) - 5 (3x + 2y) = 0$$

Answer: D

D Watch Video Solution

$$\begin{array}{l} \textbf{9.} \int_{2-a}^{2+a} f(x) dx is equa < o[where f(2-\alpha) = f(2+\alpha) \, \forall \alpha \in R] \\ 2 \int_{2}^{2+a} f(x) dx \, (b) \, 2 \int_{0}^{a} f(x) dx \, 2 \int_{2}^{2} f(x) dx \, (d) \text{ none of these} \\ \textbf{A.} \, 2 \int_{0}^{2+a} f(x) dx \\ \textbf{B.} \, 2 \int_{0}^{a} f(x) dx \\ \textbf{C.} \int_{0}^{2} f(x) dx \end{array}$$

D. None of these

Answer: A

$$\begin{aligned} & \text{10.} \int \frac{(1+x)\sin x}{(x^2+2x)\cos^2 x - (1+x)\sin 2x} dx \\ & \text{A.} \ \frac{1}{2} \log_e \left| \frac{\sin x - (x+1)\cos x - 1}{\sin x - (x+1)\cos x + 1} \right| + C \\ & \text{B.} \ \frac{1}{2} \tan^{-1} \{\sin x - (x+1)\cos x\} + C \\ & \text{C.} \ \frac{1}{2} \sin^{-1} \{\sin x - (x+1)\cos x\} + C \\ & \text{D.} \ \frac{1}{2} \sin^{-1} (\cos x + \sin x) + C \end{aligned}$$

Answer: A

11.
$$\int \frac{x \cos x + 1}{\sqrt{2x^3 e^{\sin x} + x^2}} dx$$

$$\begin{array}{l} \text{A.} \log \mid \frac{\sqrt{2xe^{\sin x} + 1} - 1}{\sqrt{2xe^{\sin x} + 1} + 1} \right) + C \\ \text{B.} \log \left| \frac{\sqrt{2xe^{\sin x} - 1} + 1}{\sqrt{2xe^{\sin x} - 1} + 1} \right| + C \\ \text{C.} \log \mid \frac{\sqrt{2xe^{\sin x} + 1} + 1}{\sqrt{2xe^{\sin x} - 1} + 1} \right\} + C \end{array}$$

$$\mathsf{D}.\log \left|rac{\sqrt{2xe^{\sin x}+1}+1}{\sqrt{2xe^{\sin x}-1}-1}
ight|+C$$

Answer: A

12. in [0, 1], lagrange mean value theorem is NOT applicable to

$$\begin{array}{l} \mathsf{A.} \ f(x) = \begin{cases} \displaystyle \frac{1}{2} - x, & x < \frac{1}{2} \\ \displaystyle \left(\frac{1}{2} - x \right)^2, & x \geq \frac{1}{2} \end{cases} \\ \mathsf{B.} \ f(x) = \begin{cases} \displaystyle \frac{\sin x}{x}, & x \neq 0 \\ \displaystyle 1, & x = 0 \end{cases} \\ \mathsf{C.} \ f(x) = x |x| \end{array}$$

D.
$$f(x) = |x|$$

Answer: A

13. The point in the interval $(0,2\pi)$ where $f(X)=e^x$ sinx has maximum slope is

Answer: B

14. If
$$f(x)=|x|, ext{ then } f'(x), ext{ where } x
eq 0$$
 is equal to

A. -1

 $\mathsf{B.}\,0$

C. 1

D. $\frac{|x|}{x}$

Answer: D

Watch Video Solution

15. If
$$y= an^{-1}\sqrt{\left(rac{1+\sin x}{1-\sin x}
ight)}, rac{\pi}{2} < x < \pi, ext{ then } rac{dy}{dx}$$
 equals to

A.
$$-1/2$$

- B. -1
- C.1/2
- $\mathsf{D}.\,1$

Answer: A

16. The function f(x)=|x-1|+|x-2| is

A. continuous and differentiable everywhere

B. continuous at x=1,2, but differentiable anywhere

C. continuous everywhere, but not differentiable at x=1,2

D. None of the above

Answer: C

Watch Video Solution

17. If
$$x = 2\cos t - \cos 2t$$
, $y = 2\sin t - \sin 2t$, find $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{2}$.

A. -5/2

B. - 3/2

C.3/2

D. 5/2

Watch Video Solution

18. Anil wants to invest at the most Rs.12000 in bonds. A and B. According to rules, he has to invest at least Rs.2000 in Bond A is 8% per annum and on Bond B, it is 10% per annum, how should he invest his money for maximum interest ? Solve the problem graphically.

A. Rs 1000 and Rs 2000

B. Rs 2000 and 10000

C. Rs 6000 and Rs 6000

D. None of these

Answer: B

19. ~ $(p \leftrightarrow q)$ is a

A. ~ $p \wedge$ ~q

B. ~ $p \lor$ ~q

 $\mathsf{C}.\,(p\wedge {\,{\scriptstyle{\sim}}} q) \vee (\,{\scriptstyle{\sim}} p \wedge q)$

D. None of these

Answer: C

Watch Video Solution

20. Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.

A.
$$\frac{1}{190}$$

B.
$$\frac{1}{120}$$

C. $\frac{3}{190}$
D. $\frac{5}{190}$

Answer: C

21. The chance of defective screws in three boxes A, B, Care1/5, 1/6, 1/7, respectively. A box is selected at random and a screw draw in from it at random is found to be defective. Then find the probability that it came from box A.

A.
$$\frac{16}{29}$$

B. $\frac{1}{15}$
C. $\frac{27}{59}$

D.
$$\frac{42}{107}$$

Answer: D

22. Find the perpendicular distasnce of the point (1,0,0) from the lines (x-1)/2=(y+1)/(-3)=(z+10)/8

A. (5, -8, -4)B. (3, -4, 2)C. (5, -4, -8)D. (3, 4, -2)

Answer: A

Watch Video Solution

23. The equation of the plane through (3,1,-3) and (1,-2,2) are parallel

to the line with direction ratios 1,1,-2 is

A. x-y+z+1=0

B. x+y-z+1=0

C. x-y-z-1=0

D. x+y+z-1=0

Answer: D

Watch Video Solution

24. The projection of the line segment joining (2,5,6) and (3,2,7) on the line with direction rations 2,1,-2 is

A.
$$\frac{1}{2}$$

B. $\frac{1}{3}$

C. 2

D. 1

Answer: D

Watch Video Solution

25. If the sum of the slopes of the lines given by $4x^2 + 2\lambda xy - 7y^2 = 4$ is equal to the product of the slopes,then λ is equal to?

 $\mathsf{A}_{\!\!\!}-4$

B. 4

 $\mathsf{C}.-2$

D. 2

Answer: C

26. A plane passes through the point (1,-2,3) and is parallel to the plane 2x - 2y + z = 0. The distance of the point (-1,2,0) from the plane, is

A. 2

B. 3

C. 4

D. 5

Answer: D

27. let a,b, and c be three unit vectors such that a is perpendicular to the plane off b and c. if the angle betweenn b annd c is $\frac{\pi}{3}$, then $|a \times b - a \times c|$ is equal to

A. 1/3

B. 1/2

C. 1

D. 2

Answer: C

Watch Video Solution

28. If the lines represented by $x^2 - 2pxy - y^2 = 0$ are rotated about the origin through ann angle θ , one clockwise direction and other in anti-clockwise direction, then the equationn of the bisectors of the angle between the lines in the new position is

A.
$$px^2+2xy-py^2=0$$

B. $px^2+2xy+py^2=0$

$$\mathsf{C.}\,x^2-2pxy+y^2=0$$

D. None of these

Answer: A

Vatch Video Solution

29. The number of solutions of the equation $x^3 + x^2 + 4x + 2\sin x = 0$ in $0 \le x \le 2\pi$ is

A. zero

B. one

C. two

D. four

Answer: B

Answer: C

31. The area Δ of a triangle ABC is given by $\Delta = a^2 - (b-c)^2$ then $aniggl(rac{A}{2}iggr) =$

 $\mathsf{A.}-1$

B. 0

C.
$$\frac{1}{4}$$

D. $\frac{1}{2}$

Answer: C

32. Which of the following statements is a tautology?

A. (~
$$p \lor q$$
(~ $(p \lor ~q)$

B.
$$(\neg p \lor \neg q)
ightarrow p \lor q$$

C. $(p \lor \neg q) \land (p \lor q)$
D. $(\neg p \lor \neg q) \lor (p \lor q)$

Answer: D

33. The value of
$$\frac{\cot 54^{\circ}}{\tan 36^{\circ}} + \frac{\tan 20^{\circ}}{\cot 70^{\circ}}$$
 is
A. 0
B. 2
C. 3
D. 1

Answer: B

34. With $1, \omega, \omega^2$ as cube roots of unity, inverse of which of the following matrices exists?

$$\begin{array}{ccc} \mathsf{A}. \begin{bmatrix} 1 & \omega \\ \omega & \omega^2 \end{bmatrix} \\ \mathsf{B}. \begin{bmatrix} \omega^2 & 1 \\ 1 & \omega \end{bmatrix} \\ \mathsf{C}. \begin{bmatrix} \omega & \omega^2 \\ \omega^2 & 1 \end{bmatrix} \end{array}$$

D. None of these

Answer: D

Watch Video Solution

35. The value of *a* for which
$$ax^2 + \sin^{-1}(x^2 - 2x + 2) + \cos^{-1}(x^2 - 2x + 2) = 1$$
 has a real
solution is $\frac{\pi}{2}$ (b) $-\frac{\pi}{2}$ (c) $\frac{2}{\pi}$ (d) $-\frac{2}{\pi}$

A.
$$-\frac{2}{\pi}$$

B. $\frac{2}{\pi}$
C. $-\frac{\pi}{2}$
D. $\frac{\pi}{2}$

Answer: C

36. Which of the following is logically equivalent to ~(~p
ightarrow q)?

A. $p \wedge q$

B. $p \wedge {\scriptstyle{\sim}} q$

C. ~ $p \wedge q$

D. ~ $p \wedge$ ~q

Answer: D

Watch Video Solution

37. The matrices

 $P[(u_1,v_1,w_1),(u_2,v_2,w_2),(u_3,v_3w_3)] ext{ and } Q = rac{1}{9} egin{bmatrix} 2 & 2 & 1 \ 12 & -5 & m \ -8 & 1 & 5 \end{bmatrix}$

are such that PQ=I, an identify matrix. Solving the equation $\begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$, the value of y comes out to be -3,

then the value of m is equal to

A. 27

B. 7

C. - 27

D.-7

Answer: D

38. If A_1 and A_2 are two A.M.s between a and b and G_1 and G_2 are

two G.M.s between the same numbers then what is the value of $\frac{A_1+A_2}{G_1G_2}$

A.
$$\frac{a+b}{2ab}$$

B.
$$\frac{2ab}{a+b}$$

C.
$$\frac{a+b}{ab}$$

D.
$$\frac{a+b}{\sqrt{ab}}$$

Answer: C

39. The equation of the pair of lines passing through the origin and having slope $m \in l$ for which equation (x-3)(x+m)+1=0 has integral roots is

A.
$$y^2 - 6xy + 5x^2 = 0$$

B. $y^2 + 6xy - 5x^2 = 0$
C. $y^2 + 6xy + 5x^2 = 0$
D. $y^2 - 6xy - 5x^2 = 0$

View Text Solution

Answer: C

B. $4^{1/3}$

C. $8^{1/3}$

D. $2^{1/5}$

Answer: B

41. Write the vector the vector equation of the line passing through

A.
$$r = \left(\hat{i} + 2\hat{j} + 3\hat{k}
ight) + \lambda\left(\hat{i} + 2\hat{j} - 5\hat{k}
ight)$$

B. $r = \left(\hat{i} + 2\hat{j} - 5\hat{k}
ight) + \lambda\left(\hat{i} + 2\hat{j} + 3\hat{k}
ight)$
C. $r = \left(\hat{i} + 2\hat{j} + 3\hat{k}
ight) + \lambda\left(-8\hat{k}
ight)$

D. None of the above

Answer: A

D. 2

Answer: B

$$f(x)=\sin^{-1}(\sin x)+\cos^{-1}(\sin x) ext{ and } \phi(x)=f(f(f(x))),$$
then $\phi'(x)$ is equal to

B. sin x C. 0 D. 2

A. 1

Answer: C

Watch Video Solution

44. If
$$5f(x) + 3f\left(rac{1}{x}
ight) = x+2$$
 and $y = xf(x), ext{ then find } rac{dy}{dx}$ at $x=1.$

B.7/8

C. 1

D. 15

Answer: B

45. A variable straight line is drawn through the point of intersection of the straight lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ and meets the coordinate axes at A and B. Show that the locus of the midpoint of AB is the curve 2xy(a + b) = ab(x + y)

A. 2xy (a+b)=ab(x+y)

B. 2xy(a-b)=ab(x-y)

C. 2xy(a+b)=ab(x-y)

D. None of the above

Answer: A

46. In what ratio, the line joining +(-1,1) and (5,7) is divided by

the line x + y = 4?

A. 2:1

 $\mathsf{B}.\,1\!:\!2$

C. 1:2 externally

D. None of the above

Answer: C

Watch Video Solution

47. If $0 < a < \pi$ then $\int \!\! \frac{dx}{1-2a\cos 2x + a^2}$ is equal to

A.
$$rac{1}{1-a^2} an^{-1} \left(t \cdot rac{1-a}{a+a}
ight) + C$$

B. $rac{2}{1-a^2} an^{-1} \left(t \cdot rac{1+a}{1-a}
ight) + C$
C. $rac{1}{1+a^2} an^{-1}(t) + C$

D. None of these

Answer:

$$48. \int \frac{\cos ec^2 x - 2005}{\cos^{2005} x} \, dx$$
A. $\frac{\cot x}{(\cos x)^{2005}} + C$
B. $\frac{\tan x}{(\cos x)^{2005}} + C$
C. $-\frac{\tan x}{(\cos x)^{2005}} + C$

$$\mathsf{D}.\,\frac{-\cot x}{\left(\cos x\right)^{2005}}+C$$

Answer: D

$$\sqrt{1+x^2}+\sqrt{1+y^2}=\lambdaigg(x\sqrt{1+y^2}-y\sqrt{1+x^2}igg)$$
 is

A. 1

- B. 2
- C. 3

D. 4

Answer: A

50. Let X denote the number of hours you study during a randomly selected school day The probability that X can take the values x. has the following form, where k is some unknown constant. $P(X=x) = \{0.1, """" if """" x=0 k x, """"" if """ x=1"""" or """" 2k(5-x)$

A. 0.35

B. 0.3

C. 0.15

D. 0.2

Answer: C

