©゙’doubtnut

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 01

Paper 2 Mathematics

1. If $y=x^{x^{x^{x^{x \ldots}}}}$, then $\frac{d y}{d x}$ is equal to
A. $y x^{y-1}$
B. $\frac{y^{2}}{x(1-y \log x)}$
C. $\frac{y}{x(1+y \log x)}$
D. None of these

Answer: B

- Watch Video Solution

2. If $f(x)$ and $g(x)$ are two functions with $g(x)=$ $x-\frac{1}{x}$ and $f o g(x)=x^{3}-\frac{1}{x^{3}}$ then $\mathrm{f}(\mathrm{x})$ is
A. $3 x^{2}+3$
B. $x^{2}-\frac{1}{x^{2}}$
C. $1+\frac{1}{x^{2}}$
D. $3 x^{2}+\frac{3}{x^{4}}$

Answer: A
3. The value of f at $x=0$ so that funcation $f(x)=\frac{2^{x}-2^{-x}}{x}, x \neq 0$ is continuous at $\mathrm{x}=0$ is
A. 0
B. $\log 2$
C. 4
D. $\log 4$

Answer: D

D Watch Video Solution

4. For the function $f(x)=\frac{e^{\frac{1}{x}}-1}{e^{1 / x}+1}, x=0$, which of the following is correct .
A. $\lim _{x \rightarrow 0} f(x)$ does not exist
B. $\lim _{x \rightarrow 0} f(x)=1$
C. $\lim _{x \rightarrow 0} f(x)$ exist but $\mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=0$
D. $f(x)$ is continuous at $x=0$

Answer: A

D Watch Video Solution

5. The solution of the differential $x(x-y) \frac{d y}{d x}=y(x+y)$, is
A. $\frac{x}{y}+\log (x y)=c$
B. $\frac{y}{x}+(\log (x y)=0$
C. $\frac{x}{y}+y \log x=c$
D. $\frac{x}{y}+x \log y=c$

D Watch Video Solution

6. The general solution of
$y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$, is
A. $\tan ^{-1}\left(\frac{y}{x}\right)=\log x y+c$
B. $2 \tan ^{-1}\left(\frac{x}{y}\right)+\log x+c=0$
C. $\log y+\sqrt{x^{2}+y^{2}}+\log y+c=0$
D. $\sinh ^{-1}\left(\frac{x}{y}\right)+\log y+c=0$

Answer: A

7. The degree of the differential equation
$x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2!}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3!}\left(\frac{d y}{d x}\right)^{3}+\ldots .$.
A. 3
B. 2
C. 1
D. not defined

Answer: C

- Watch Video Solution

8. To open a lock, a key is taken out from a collection of n keys at random. If the lock is not opend with this key, it is put back into the collection and another key is tried. The process is repeated again and again. If it is given that with only one key
in the collection, the lock can be opend, then the probability that the lock will open in n trials, is
A. $\left(\frac{1}{n}\right)^{n}$
B. $\left(\frac{n-1}{n}\right)^{n}$
C. $1-\left(\frac{n-1}{n}\right)^{n}$
D. None of these

Answer: C

D Watch Video Solution

9. Two dice are tossed once. Find the probability of getting an even number on the first die or a total of 8.
A. $1 / 36^{`}$
B. $\frac{3}{36}$
C. $\frac{11}{36}$
D. $\frac{5}{9}$

Answer: D

(D) Watch Video Solution

10. The probability distribution of a random variable X is given
as

Then, the value of p is

| X | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X)$ | p | $2 p$ | $3 p$ | $4 p$ | $5 p$ | $7 p$ | $8 p$ | $9 p$ | $10 p$ | $11 p$ | $12 p$ |

A. $\frac{1}{72}$
B. $\frac{3}{73}$
C. $\frac{5}{72}$
D. $\frac{1}{74}$

Answer: A

- Watch Video Solution

11. The slopes of lines represented by $x^{2}+2 h x y+2 y^{2}=0$ are in the ratio $1: 2$, then h equals .
A. $\pm \frac{1}{2}$
B. $\pm \frac{3}{2}$
C. ± 1
D. ± 3

- Watch Video Solution

12. The total number of subsets of a finite set A has 56 more elements than the total number of subsets of another finite set B. What is the number of elements in the set A ?
A. 5
B. 6
C. 7
D. 8

Answer: B

13.

$R=\{(3,3),(6,6),(9,9),(12,12),(6,12),(3,9(,(3,12),(3,6)\}$
be relation on the set $A=\{3,6,9,12\}$. The relation is-
A. an equivalance relation
B. relflexive and symmetric
C. reflexive and transitive
D. only reflexive

Answer: C

- Watch Video Solution

14. The domain of the function $f(x)=\sqrt{\cos x}$ is
A. $\left[\frac{3 \pi}{2}, 2 \pi\right]$
B. $\left[0, \frac{\pi}{2}\right]$
C. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
D. $\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]$

Answer: C

D Watch Video Solution

15. If the sum of first 75 terms of an AP is 2625 , then the 38 th term of an AP is
A. 39
B. 37
C. 36
D. 35

- Watch Video Solution

16. Consider an infinite geometric series with first term a and common ratio r. if the sum is 4 and the sencond term is $3 / 4$,then
A. $\mathrm{a}=23, r=\frac{3}{8}$
B. $a=\frac{4}{7}, r=\frac{3}{7}$
C. $a=\frac{3}{2}, r=\frac{1}{2}$
D. $a=3, r=\frac{1}{4}$

Answer: D

17. A straight line perpendicular to the line $2 x+y=3$ is passing through $(1,1)$ Its -intercept is
A. 1
B. 2
C. 3
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

18. The solutions of the equation $4 \cos ^{2}+6 \sin ^{2} x=5$ are
A. $x=n \pi \pm \frac{\pi}{4}$
B. $x=n \pi \pm \frac{\pi}{3}$
C. $x=n \pi \pm \frac{\pi}{2}$
D. $x=n \pi \frac{2 \pi}{3}$

Answer: A

- Watch Video Solution

19. $\int_{a}^{b} \sqrt{(x-a)(b-x)} d x,(b>a)$ is equal to
A. $\frac{\pi(b-a)^{2}}{8}$
B. $\frac{\pi(b+a)^{2}}{8}$
C. $(b-a)^{2}$
D. $(b+a)^{2}$

D Watch Video Solution

20. The valueof integral $\int_{0}^{4}|x-1| d x$ is
A. 4
B. 5
C. 7
D. 9

Answer: B

- Watch Video Solution

21. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{2 n} \frac{r}{\sqrt{n^{2}+r^{2}}}$ equals
A. $1+\sqrt{5}$
B. $-1+\sqrt{5}$
C. $-1+\sqrt{2}$
D. $1+\sqrt{2}$

Answer: B

- Watch Video Solution

22. If in $\triangle A B C, a=4, b=3, A=60^{\circ}$ then c is a root of the equation.
A. $c^{2}-3 c-7=0$
B. $c^{2}-3 c+7=0$
C. $c^{2}-c+7=0$
D. $c^{2}+3 c-7=0$

Answer: A

D Watch Video Solution

23. If $\mathrm{A}=[\mathrm{a}, \mathrm{b}], \mathrm{B}=[-\mathrm{b},-\mathrm{a}]$ and $C=\left[\begin{array}{c}a \\ -a\end{array}\right]$ then the correct statement is
A. $A=-A$
B. $A+B=A-B$
C. $A C=B C$
D. $C A=C B$

- Watch Video Solution

24. Let p and q be two statement s , then $(p v q) v \sim p$ is
A. tautology
B. contradiction
C. both (a) and (b)
D. none of the above

Answer: A

25. If $a+b+c=0$ and $|a|=1,|b|=1,|c|=\sqrt{3}$, then the angle between a and b is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

D Watch Video Solution

26. Which of the term is not used in a linear programming problem ?
A. slack variables

B. Objective function

C. Concave region
D. Feasible solution

Answer: C

Watch Video Solution

27. The function $f(x)=a \sin x+\frac{1}{3} \sin 3 x$ has maximum value at $x=\frac{\pi}{3}$, the value of a is
A. 3
B. $\frac{1}{3}$
C. 2
D. $\frac{1}{2}$

D Watch Video Solution

28. The equation of the normal to the curve $y=\sin x \cos x$ at $x=\frac{\pi}{2}$, is
A. $x=2$
B. $x=\pi$
C. $x+\pi=0$
D. $2 x=\pi$

Answer: D

D Watch Video Solution
29. The function x^{x} is increasing when
A. $x>\frac{1}{e}$
B. $x<\frac{1}{e}$
C. $x<0$
D. $\forall \times \in R$

Answer: A

D Watch Video Solution

30. $\int_{0}^{\pi / 2} \frac{d x}{1+\sqrt[3]{\tan x}}$ is equal to
A. $\frac{\pi}{2}$
B. 0
C. $\frac{\pi}{4}$
D. None of these

Answer: C

- Watch Video Solution

31. The value of $\int_{-\pi / 4}^{\pi / 4} x^{3} \sin ^{4} x d x$ is equal to
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{8}$
D. 0

Answer: D

32. Area bounded by the curves $\mathrm{y}=\mathrm{x}, \mathrm{y}=\tan x$ and $x=\frac{\pi}{4}$ is
A. $\frac{\pi}{4}$ sq unit
B. $\left(\log \sqrt{2}=\frac{\pi^{2}}{32}\right)$ sq unit
C. $\left(\log 2-\frac{\pi^{2}}{16}\right)$ sq unit
D. none of these

Answer: B

D Watch Video Solution

33. The solution of differential edquation
$\frac{d y}{d x}+1=\operatorname{cosec}(x+y)$ is
A. $\cos (x+y)+x=c$
B. $\cos (x+y)=c$
C. $\sin (x+y)+x=c$
D. None of these

Answer: A

D Watch Video Solution

34. If area bounded by the curve $y^{2}=4 a x$ and $y=m x$ is $a^{2} / 3$, then the value of m, is
A. 2
B. -2
C. $\frac{1}{2}$
D. None of these

Answer: A

(D) Watch Video Solution

35. $\int \sin x d(\cos x)$ is equal to
A. $\frac{1}{4} \sin 2 x+\frac{x}{2}+c$
B. $\frac{1}{4} \sin 2 x-\frac{x}{2}+c$
C. $2 \sin ^{2} x+c$
D. $\sin x+\cos x$

Answer: B

36. $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+5 x+3}{x^{2}+x+3}\right)^{x}$ is equal to
A. e^{4}
B. e^{2}
C. e^{3}
D. e

Answer: A

(D) Watch Video Solution

37. If $f(x)=\left\{\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} \quad\right.$ for
$1 \leq x<0$ and $2 x^{2}+3 x-2 f$ or $0 \leq x \leq 1$ is continuous at $x-0$ then k
A. -4
B. -3
C. -2
D. -1

Answer: C

D Watch Video Solution

38. Two cards drawn without replacement from a well shuffled pack of 52 cards. Find the probability that cards drawn are aces.
A. $\frac{2}{13}$
B. $\frac{1}{51}$
C. $\frac{1}{221}$
D. $\frac{2}{21}$

Answer: A

- Watch Video Solution

39. The minimum value of linear objective function $z=2 x+2 y$ under linear constraints
$3 x+2 y \geq 12, x+3 y \geq 11$ and $x, y \geq 0$ is
A. 10
B. 12
C. 6
D. 5

(D) Watch Video Solution

40. The angle between the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and the plane 3 $x+2 y-3 z=4$ is
A. 45°
B. 0°
C. $\cos ^{-1}\left(\frac{24}{\sqrt{29} \sqrt{22}}\right)$
D. 90°

Answer: D

- Watch Video Solution

41. Which of the following is not a proposition ?
A. $\sqrt{3}$ is a prime
B. $\sqrt{2}$ is irrational
C. Mathematics is interesting
D. 5 is an even integer

Answer: C

- Watch Video Solution

42. A line $A B$ in three-dimensional space makes angles $45 o a n d 120 o$ with the positive x-axis and the positive y-axis respectively. If $A B$ makes an acute angle q with the positive z axis, then q equals (1) $45 o$ (2) $60 o$ (3) $75 o$ (4) $30 o$
A. 30°
B. 45°
C. 60°
D. 75°

Answer: C

- Watch Video Solution

43. The value of k such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y=z=7$ is a. 7 b. -7 c. no real value d. 4
A. 7
B. -7
C. no real value
D. 4

Answer: A

- Watch Video Solution

44. if $a=(2,1,-1), b=(1,-1,0), c=(5,-1,1)$ then unit vector parallel to $\mathrm{a}+\mathrm{b}-\mathrm{c}$ but opposite direction
A. $\frac{1}{3}(2 \hat{i}-\hat{j}+2 \hat{k})$
B. $\frac{1}{2}(2 \hat{i}-\hat{j}+2 \hat{k})$
C. $\frac{1}{3}(2 \hat{i}-\hat{j}-2 \hat{k})$
D. none of these

Answer: A
45. The function $f(x)=2 x^{3}+3 x^{2}-12 x+1$ decreases in the interval
A. $(2,3)$
B. $(1,2)$
C. $(-2,1)$
D. $(-3,-2)$

Answer: C

- Watch Video Solution

46. A circle of radius $\sqrt{8}$ is passing through origin the point
$(4,0)$. If the centre lies on the line $y=x$, then the equation of
the circle is
A. $(x-2)^{2}+(y-2)^{2}=8$
B. $(x+2)^{2}+(y+2)^{2}=8$
C. $(x-3)^{2}+(y-3)^{2}=8$
D. $(x+3)^{2}+(y+3)^{2}=8$

Answer: A

(D) Watch Video Solution

47. The length (in units) of tangent from point $(5,1)$ to the circle $x^{2}+y^{2}+6 x-4 y-3=0$ is
A. 81
B. 29
C. 7
D. 21

Answer: C

- Watch Video Solution

48. The curve $5 x^{2}+12 x y-22 x-12 y-19=0$ is.
A. ellispe
B. parabola
C. hyperbola
D. parallel striaight lines

Answer: C
49. The locus of the point of intersection of the tangents at the extremities of the chords of the ellipse $x^{2}+2 y^{2}=6$ which touch the ellipse $x^{2}+4 y^{2}=4$, is $x^{2}+y^{2}=4$ (b) $x^{2}+y^{2}=6 x^{2}+y^{2}=9$ (d) None of these
A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}=6$
C. $x^{2}+y^{2}=9$
D. None of these

Answer: C

50. The length of the straight line $x-3 y=1$ intercepted by the hyperbola $x^{2}-4 y^{2}=1$ is $\frac{6}{\sqrt{5}}$ b. $3 \sqrt{\frac{2}{5}}$ c. $6 \sqrt{\frac{2}{5}}$ d. none of these
A. $\frac{3}{5} \sqrt{10}$
B. $\frac{6}{5} \sqrt{10}$
C. $\frac{5}{3} \sqrt{10}$
D. $\frac{5}{6} \sqrt{10}$

Answer: B

- Watch Video Solution

