

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 06

Paper 2 Mathematics

1. The equation of the lines through ((1,1) and making angles of 45° with the line x+y=0 are

Answer: D

Watch Video Solution

2. If any point P is at the equal distances from points A(a+b,a-b) and B(a-b,a+b), then locus of a point is

Answer: A

Watch Video Solution

3. The straight lines $y=\pm x$ intersect the parabola $y^2=8x$ in points P and Q, then length of PQ is

A. 4

B. $4\sqrt{2}$

C. 8

D. 16

Answer: D

Watch Video Solution

4. eliiipse the For $24x^2 + 9y^2 - 120x - 90y + 225 = 0$, the

eccentricity is equal to

A.
$$\frac{2}{5}$$

$$\mathsf{B.}\;\frac{3}{5}$$

c.
$$\sqrt{\frac{15}{24}}$$

D.
$$\frac{1}{5}$$

Answer: C

Vatch Video Solution

5. The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the point (2, 3) is (1) $\frac{10}{3}$ (2) $\frac{3}{5}$ (3) $\frac{6}{5}$ (4) $\frac{5}{3}$

D. $\frac{5}{3}$

Answer: A

A. $\frac{10}{3}$

 $\mathsf{B.}\;\frac{3}{5}$

 $\mathsf{C.}\;\frac{6}{5}$

6. if
$$A=egin{bmatrix}1&-1&1\\1&2&0\\1&3&0\end{bmatrix}$$
, then $|adjA|$ is equal

to

A.
$$-1$$

D. None of these

Answer: B

7. The maximum value of function

$$f(x) = \sin x (1 + \cos x), \xi niR$$
 is

A.
$$\frac{3^{3/2}}{4}$$

B.
$$\frac{3^{5/3}}{4}$$

$$\mathsf{C.}\,\frac{3}{2}$$

D.
$$\frac{3^{7/5}}{4}$$

Answer: A

8. Rolle's theorem is not applicable to the

function $f(x) = |x| ext{for} - 2 \le x \le 2$ becase

A. f is continuous for $-2 \leq x \leq 2$

B. f is not derivable for x=0

C.
$$f(-2) = f(2)$$

D. f is not a constant function

Answer: B

9. The angle between the lines represented by the equation $2x^2 + 3xy - 5y^2 = 0$, is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{2}$$

C.
$$\tan^{-1} \left| \frac{12}{5} \right|$$

D.
$$\tan^{-1}\left|\frac{7}{3}\right|$$

Answer: D

10. The differential coefficient of $f(\log x)$ with respect to x, where $f(x) = \log x$, is

A.
$$\frac{x}{\log x}$$

B.
$$(x \log x)^{-1}$$

$$\mathsf{C.} \; \frac{\log x}{x}$$

D. None of these

Answer: B

11.
$$\lim_{x o 0} \left[(1+3x)^{1/x}
ight] = k$$
, then for continuity at x=0, k is

- **A.** 3
- B.-3
- $\mathsf{C}.\,e^3$
- D. e^{-3}

Answer: C

12. If 'a' and 'b' are unit vectors and

$$|a+b|=1$$
, then $|a-b|$ is equal to

- A. $\sqrt{2}$
- B. 1
- C. $\sqrt{5}$
- D. $\sqrt{3}$

Answer: D

13. If
$$k \int_0^1 x f(3x) dx = \int_0^3 t f(t) dt$$
, then the value of k is

- A. 9
- B. 3
- c. $\frac{1}{9}$
- D. $\frac{1}{3}$

Answer: A

14. If a function f(x) satisfies f'(x) = g(x).

Then, the value of $\int_a^b f(x)g(x)dx$ is

A.
$$rac{1}{2}\Big[\Big\{(f(b)ig\}^2-\{f(a)\}^2\Big]$$

B.
$$rac{1}{2} \Big[\left\{ f(b)
ight\}^2 + \left\{ f(a)
ight\}^2 \Big]$$

C.
$$rac{1}{2}[f(b)-f(a)]^2$$

D. None of these

Answer: A

15. The triangle formed by the tangent to the curve $f(x)=x^2+bx-b$ at the point (1,1) and the coordinate axes, lies in the first quadrant. If its area is 2, then the value of b is (a)-1 (b) 3 (c) -3 (d) 1

$$A. - 1$$

$$\mathsf{B.}-\frac{5}{2}$$

$$\mathsf{C.}-3$$

D. 1

Answer: C

16.
$$\int \cos^{-3/7} x \sin^{-11/7} x dx$$
 is equal to

A.
$$\log \left| \sin^{4/7} x \right| + c$$

$$\mathsf{B.}\,\frac{4}{7}\mathrm{tan}^{4/7}\,x+c$$

C.
$$-\frac{7}{4} \tan^{-4/7} x + c$$

D.
$$\log \left|\cos^{3/7}x\right| + c$$

Answer: C

17. If
$$\int\!\! rac{dx}{x\log x} = f(x) + ext{constant, then f(x) is}$$
 equal to

A.
$$\frac{1}{\log x}$$

 $B. \log x$

 $\mathsf{C}.\log(\log x)$

D.
$$\frac{x}{\log x}$$

Answer: C

18. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is 3/5 b. 1/5 c. 2/5 d. 4/5

- A. $\frac{4}{5}$
- $\mathsf{B.}\;\frac{3}{5}$
- $\mathsf{C.}\,\frac{1}{5}$
- D. $\frac{2}{5}$

Answer: D

19. Two numbers are selected randomly from the set $S=\{1,2,3,4,5,6\}$ without replacement one by one. The probability that minimum of the two numbers is less than 4 is 1/15 b. 14/15 c. 1/5 d. 4/5

A. 1/15

B. 14/15

 $\mathsf{C}.\,1/5$

D. 4/5

Answer: D

Watch Video Solution

20. If X follows a binomial distribution with parameters n=100 and $p=\frac{1}{3}$, then

$$P(X=r)$$
 is maximum when

A. 16

B. 32

C. 33

D. None of these

Answer: C

Watch Video Solution

21. In any $\Delta ABC, \ \dfrac{ anrac{A}{2}- anrac{B}{2}}{ anrac{A}{2}+ anrac{B}{2}}$ is equal to

A.
$$\frac{a-b}{a+b}$$

B.
$$\frac{a-b}{c}$$

$$\mathsf{C.}\;\frac{a-b}{a+b+c}$$

D.
$$\frac{c}{a+b}$$

Answer: B

22. The value of
$$\sin\left|2\cos^{-1}\frac{\sqrt{5}}{3}\right|$$
 is

A.
$$\frac{\sqrt{5}}{3}$$

$$\mathsf{B.}\; \frac{2\sqrt{5}}{3}$$

$$\mathsf{C.}\ \frac{4\sqrt{5}}{9}$$

D.
$$\frac{2\sqrt{5}}{9}$$

Answer: C

Watch Video Solution

23. The equation of the two tangents from (-5,-4) to the circle

$$x^2 + y^2 + 4x + 6y + 8 = 0$$
 are

A.
$$x + 2y + 13 = 0$$
, $2x - y + 6 = 0$

B.
$$2x + y + 13 = 0, x - 2y = 6$$

C.
$$3x + 2y + 23 = 0$$
, $2x - 3y + 4 = 0$

D.
$$x - 7y = 23$$
, $6x + 13y = 4$

Answer: A

Watch Video Solution

24. If the sequence (a_n) is in GP, such that $a_4/a_6=1/4$ and $a_2+a_5=216$, then a_1 is equal to

A. 12 or 108/7

B. 10

C. 7 or 54/7

D. None of these

Answer: A

Watch Video Solution

25. If the sum of first n terms of an AP 2,4,6, . . .

240, then the value of n is

A. 14

B. 15

C. 16

D. 17

Answer: B

Watch Video Solution

26. The value of
$$\frac{\sin 55^{\circ} - \cos 55^{\circ}}{\sin 10^{\circ}}$$
 is

A.
$$\frac{1}{\sqrt{2}}$$

B. 2

C. 1

D. $\sqrt{2}$

Answer: D

27. Number of solutions of $|x-1|=\cos x$ is

A. 2

B. 3

C. 4

D. None of these

Answer: A

28. The equation of family of a curve is $y^2=4a(x+a),$ then differential equation of the family is

$$A. x = y' + x$$

$$B. y = y + x$$

C.
$$y = 2y' + yy'^2$$

D.
$$y + y' + y^2 = 0$$

Answer: C

29. Solutio of the differential eqaution

$$\frac{dy}{dx} + \frac{y}{x} = \sin x$$
 is

$$A. x(y + \cos x) = \sin x + c$$

$$B. x(y - \cos x) = \sin x + c$$

$$\mathsf{C.}\,x(y\cos x)=\sin x+c$$

$$D. x(y - \cos x) = \cos x + c$$

Answer: A

30. The two variables vectors $3x\hat{i} - y\hat{j} - 3\hat{k} \text{ and } x\hat{i} - 4y\hat{j} + 4\hat{k}$ are orthogonal to each other, then the locus of (x,y) is

A. hyperbola

B. circle

C. straight line

D. ellipse

Answer: A

31. Let O be the origin and P be the point at a distance 3 units from origin. If direction ratios of OP are (1,-2,-2), then coordinates of P is given by

A. (1,-2-2)

B. (3,-6,-6)

C. (1/3,-2/3,-2/3)

D. (1/9,-2/9,-2/9)

Answer: A

Watch Video Solution

32. Equation of the plane containing the straight line $\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}$ and perpendicular

to the plane containing the straight lines

$$rac{x}{2}=rac{y}{4}=rac{z}{2}$$
 and $rac{x}{4}=rac{y}{2}=rac{z}{3}$ is

A.
$$x+2y-2z=0$$

B.
$$3x+2y-2z=0$$

C.
$$x-2y+z=0$$

D. 5x+2y-4z=0

Answer: C

Watch Video Solution

33. the distance of the point (2,3,4) from the

line
$$(1-x)=rac{y}{2}=rac{1}{3}(1+z)$$

A.
$$\frac{1}{7}\sqrt{35}$$

$$\mathrm{B.}~\frac{4}{7}\sqrt{35}$$

$$\mathsf{C.}\ \frac{2}{7}\sqrt{35}$$

D.
$$\frac{3}{7}\sqrt{35}$$

Answer: D

Watch Video Solution

34. An OR gate is the Boolean functionn defined of

A.
$$f(x_1,x_2)=x_1\cdot x_2, x_1, x_2\in\{0,1\}$$

B.
$$f(x_1,x_2)=x_1+x_2, x_1, x_2 \in \{0,1\}$$

C.
$$f(x_1,x_2)=x_1,x_1,x_2\in\{0,1\}$$

D.
$$f(x_1, x_2) = x_2, x_1, x_2 \in \{0, 1\}$$

Answer: B

Watch Video Solution

35. In a college, 25% of the boys and 10% of the girls offer mathematics. The girls constitute 60% of the total number of strudents. If a student is selected at random and is found to be studying Mathematics. The probability that the student is a girl is

$$\frac{1}{6}$$

B.
$$\frac{3}{8}$$

c.
$$\frac{5}{8}$$

$$\mathsf{D.}\;\frac{5}{6}$$

Answer: B

Watch Video Solution

36. the area of triangle whose vertices are (1,2,3),(2,5-1) and (-1,1,2) is

B. 145 sq unit

C.
$$\frac{\sqrt{155}}{2}$$
 sq unit

D.
$$\frac{155}{2}$$
 sq unit

Answer: C

Watch Video Solution

37. If
$$\lim_{x o 0}rac{\log(3+x)-\log(3-x)}{x}=k$$
,

then value of k is

B.
$$-\frac{1}{3}$$

$$\mathsf{C.}\,\frac{2}{3}$$

$$\mathsf{D.}-\frac{2}{3}$$

Answer: C

Watch Video Solution

38. if
$$a = 2\hat{i} + \hat{j} + 2\hat{t}\,k$$
 and $b = 5\hat{i} - 3\hat{j} + \hat{k}$

, then the projection of 'b' and 'a' is

- **A.** 3
- B. 4
- C. 5
- D. 6

Watch Video Solution

39. Given two mutually exclusive events A and

B such that P(A)=0.45 and P(B)=0.35, $P(A\cap B)$

is equal to

$$\frac{63}{400}$$

B.0.8

c.
$$\frac{63}{200}$$

D. 0

Answer: D

Watch Video Solution

40.
$$\int \frac{3^x}{\sqrt{9^x-1}} dx$$
 is equal to

A.
$$rac{1}{\log 3} \! \log \! \left| 3^x + \sqrt{9^x - 1}
ight| + c$$

B.
$$rac{1}{\log 3} \log \left| 9^x + \sqrt{9^x - 1} \right| + c$$

C.
$$rac{1}{\log 9} \! \log \! \left| 3^x + \sqrt{9^x - 1}
ight| + c$$

D.
$$rac{1}{\log 9} \log ig| 3^x - \sqrt{9^x - 1} ig| + c$$

41.

Watch Video Solution

41. Angle between the
$$r=\left(-\,\hat{i}\,+3\hat{j}\,+3\hat{k}
ight)+t\left(2\hat{i}\,+3\hat{j}\,+6\hat{k}
ight)$$
 and the plane $r\Big(-\,\hat{i}\,+\hat{j}\,+\hat{k}\Big)$ is

line

$$A. \sin^{-1} \left(\frac{1}{\sqrt{3}} \right)$$

$$\mathsf{B.}\sin^{-1}\!\left(\frac{1}{\sqrt{2}}\right)$$

$$\mathsf{C.}\sin^{-1}\!\left(rac{2}{\sqrt{3}}
ight)$$
 $\mathsf{D.}\sin^{-1}\!\left(rac{3}{\sqrt{2}}
ight)$

Watch Video Solution

42. Objective function of an LPP is

A. a constraint

B. a function to be optimised

C. a relation between the variables

D. none of the above

Answer: B

Watch Video Solution

43. If $f(x) = \sin x - \cos x$, the function decreasing in $0 \le x \le 2\pi$ is

A.
$$\left[\frac{5\pi}{6}, \frac{3\pi}{4}\right]$$

B.
$$\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$$

$$\mathsf{C.}\left[\frac{3\pi}{2},\frac{5\pi}{2}\right]$$

D. none of these

Answer: D

Watch Video Solution

44.
$$\int \frac{\cos 2x - 1}{\cos 2x + 1} dx$$
 is equal to

A. tanx-x+c

B. x+tanx+c

C. x-tanx+c

 $\mathsf{D.} - x - \cot x + c$

Answer: C

Watch Video Solution

45. If heta is the angle between the vectors $a=2\hat{i}+2\hat{j}-\hat{k}$ and $b=6\hat{i}-3\hat{j}+2\hat{k}$, then

A.
$$\cos \theta = \frac{4}{21}$$

$$\mathsf{B.}\cos\theta = \frac{3}{19}$$

$$\mathsf{C.}\cos\theta = \frac{2}{19}$$

D.
$$\cos heta = rac{5}{21}$$

Watch Video Solution

 $y=x^3$ and $y=\sqrt{x}$ is

- A. 5/3
- B.5/4
- C.5/12
- D. 12/5

Answer: C

Watch Video Solution

5x - 6y + 7z = 3, is

47. The equation of the plane passing through the point A(2,3,4) and parallel to the plane

A.
$$5x - 6y + 7z + 20 = 0$$

B.
$$5x - 6y + 7z - 20 = 0$$

$$\mathsf{C.} - 5x + 6y - 7z + 3 = 0$$

D.
$$5x + 6y + 7z + 3 = 0$$

Answer: B

Watch Video Solution

48. The value of $\lim_{x o 2} rac{3^{x/2}-3}{x^3-9}$ is

A. 0

B.
$$\frac{1}{3}$$

c.
$$\frac{1}{6}$$

D. ln 3

Answer: C

Watch Video Solution

49. The minimum value of linear objective function z=2x+2y under linear constraints

$$3x + 2y \ge 12, x + 3y \ge 11 \text{ and } x, y \ge 0 \text{ is}$$

- A. 10
- B. 12
- C. 6
- D. 5

Watch Video Solution

50. In the adjoining circuit, the output of s is

A.
$$x \cdot (y' + z)$$

B.
$$x \cdot (y' + z')$$

$$\mathsf{C}.\,x\cdot(y+z)$$

D.
$$(x + y) \cdot z$$

Answer: A

Watch Video Solution