©゙" doubtnut

MATHS

BOOKS - MHTCET PREVIOUS YEAR

 PAPERS AND PRACTICE PAPERS
PRACTICE SET 10

Paper 2 Mathematics

1. If $A=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$

$$
B=
$$

$\left[\begin{array}{cc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$
$\theta-\phi=(2 n+1) \frac{\pi}{2}$ Find AB.

$$
\begin{aligned}
& \text { A. } \theta=n \phi, n=0,1,2, \ldots \\
& \text { B. } \theta+\phi=n \pi, n=0,1,2 \ldots \\
& \text { C. } \theta=\phi+(2 n+1) \frac{\pi}{2}, n=0,1,2 \ldots \\
& \text { D. } \theta=\phi+n \frac{\pi}{2}, n=0,1,2, \ldots
\end{aligned}
$$

Answer: C

D Watch Video Solution

2. If $f(0)=0$ and
 $f(x)=\frac{1}{\left(1-e^{-1 / x}\right)}$ for $x \neq 0$. Then, only

one of the following statements on $f(x)$ is true.

That is $f(x)$ is
A. continuous at $x=0$
B. not continuous at $x=0$
C. both continuous and differentiable at

$$
x=0
$$

D. not defined at $x=0$

Answer: B

- Watch Video Solution

3. if statements p and r are false and q is true,
then trueth value of $\sim \pi m p l i e s(q \wedge r) \vee r$ is
A. T
B. F
C. Either T or F
D. Neither T nor F

Answer: B

D View Text Solution

4. Let p and q be two statements, then
$(p \wedge q) \vee \sim p$ is
A. tautology
B. contradiction
C. both (a) and (b)
D. none of the above

- View Text Solution

5. If $\int \sqrt{2}(\sqrt{1+\sin x} d x=4 \cos (a x+b)+c$,
then the value of a, b are
A. $\frac{1}{2}, \frac{\pi}{4}$
B. $1, \frac{\pi}{2}$
C. 1,1
D. none of these

Answer: A

D View Text Solution

6. $\int_{-1}^{1} \log \left(x+\sqrt{x^{2}+1}\right) d x=$?
A. 0
B. $\log 2$
C. $\log \frac{1}{2}$
D. none of these
7. Area lying between parabola $y^{2}=4 a x$ and
it's latuscrectum is
A. $\frac{4}{3} a^{2}$ sq unit
B. $\frac{16}{3} a^{2}$ sq unit
C. $\frac{8}{3} a^{2}$ sp unit
D. None of these

Answer: C
8. Solution of $\mathrm{y} d x-x d y=x^{2} y d x$ is
A. $\frac{y}{x}+e^{x}=c$
B. $\frac{x}{y}+e^{x}=c$
C. $x+e^{y}=c$
D. $y+e^{x}=c$

Answer: A

D Watch Video Solution
9. The second order derivative of $a \sin ^{3} t$ w.r.t,
$a \cos ^{3} t$ at $t=\frac{\pi}{4}$ is
A. $\frac{4 \sqrt{2}}{3 a}$
B. 2
C. $\frac{1}{12 a}$
D. None of these

Answer: A

D Watch Video Solution
10. The equation of the plane passing through the points (1,2,3), (-1,4,2) and (3,1,1) is

$$
\text { A. } 5 x+y+12 z-23=0
$$

B. $5 x+6 y+2 z-23=0$
C. $x+6 y+2 z-13=0$
D. $x+y+z-13=0$

Answer: B

- Watch Video Solution

11. To maximise the objective function

$$
\begin{aligned}
& z=x+2 y \quad \text { under the constraints } \\
& x-y \leq 2, x+y \leq 4 \text { and } x, y \geq 0 \text { is }
\end{aligned}
$$

A. $1 x=0, y=4, z=8^{`}$
B. $x=1, y=2, z=5$
C. $x=1, y=4, z=9$

$$
\text { D. } x=0, y=3, z=6
$$

Answer: A

D Watch Video Solution
12. If $\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$, then show that $\frac{\tan x}{\tan y}=\frac{a}{b}$.

> A. $\frac{a^{2}}{b^{2}}$
> B. $\frac{a}{b}$
> C. $\frac{b}{a}$
> D. $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$

Answer: B

D Watch Video Solution

$\lambda x^{2}+(2 \lambda-3) y^{2}-4 x-1=0$ represents a circle, then its radius is
A. $\frac{\sqrt{11}}{3}$
B. $\frac{\sqrt{13}}{3}$
C. $\frac{\sqrt{7}}{3}$
D. $\frac{1}{3}$

Answer: C

D Watch Video Solution
14. If the lines joining the origin to the points of intersection of the line $y=m x+2$ and the curve $x^{2}+y^{2}=1$ are at right-angles, then
A. $m=\sqrt{3}$
B. $m= \pm \sqrt{7}$
C. $m=1$
D. $m=\sqrt{5}$

Answer: B
15. The distance between the foci of the conic
$7 x^{2}-9 y^{2}=63$ is equal to
A. 8
B. 4
C. 3
D. 7

Answer: A

- Watch Video Solution

16. The line $l x+m y+n=0$ is a normal to
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. then prove that
$\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$
A. n
B. n^{2}
C. n^{3}
D. None of these

Answer: B
17. The angle of intersection of the curves
$y=x^{2}$ and $x=y^{2}$ at $(1,1)$ is
A. $\tan ^{-1}\left(\frac{4}{3}\right)$
B. $\tan ^{-1}(1)$
C. 90°
D. $\tan ^{-1}\left(\frac{3}{4}\right)$

Answer: D
18. A straight line passing through the point
$(2,2)$ and the axes enclose an area λ. The intercepts on the axes made by the line are given by the two roots of:
(A) $\quad x^{2}-2|\lambda| x+|\lambda|=0$
$x^{2}+|\lambda| x+2|\lambda|=0$
(C) $\quad x^{2}-|\lambda| x+|2 \lambda|=0 \quad$ (D) None of
these

$$
\text { A. } x^{2}-2 \lambda x+\lambda=0
$$

$$
\text { B. } x^{2}+\lambda x+2 \lambda=0
$$

C. $x^{2}-\lambda x+2 \lambda=0$
D. None of these

Answer: C

D Watch Video Solution

19. If a committee of 3 is to be chosen from a group of 38 people of which you are a member. What is the probability that you will be on the committee?
A. $\left(\frac{38}{3}\right)$
B. $\left(\frac{37}{2}\right)$
C. $\left(\frac{37}{2}\right) /\left(\frac{38}{2}\right)$
D. $\frac{666}{8436}$

Answer: D

D Watch Video Solution

20. The real number x when added to its inverse given the minimum value of the sum at
x equal to 1 (b) -1 (c) -2 (d) 2
A. -2
B. 2
C. 1
D. -1

Answer: C

D Watch Video Solution

$$
e^{3 x-6}-1
$$

21. The value of $\frac{x \rightarrow 2}{\sin (2-x)}$
A. $\frac{3}{2}$
B. 3
C. -3
D. -1

Answer: C

- Watch Video Solution

22. If $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$, then
$f(x)$ is
A. increasing in $(-\infty, 2)$ and in $(0,1)$
B. increasing in $(-2,0)$ and in $(1, \infty)$
C. decreasing in $(-2,0)$ and in $(0,1)$
D. decreasing in $(-\infty,-2)$ and in $(1, \infty)$

Answer: B

D Watch Video Solution

23. In which of the following functions, Rolle's
theorem is applicable?
A. $f(x)=|x|$ in $-2 \leq x \leq 2$
B. $f(x)=\tan x$ in $0 \leq x \leq \pi$
C. $f(x)=1+(x-2)^{\frac{2}{3}}$ in $1 \leq x \leq 3$
D. $f(x)=x(x-2)^{2}$ in $0 \leq x \leq 2$

Answer: D

D Watch Video Solution

24. An edge of a variable cube is increasing at
the rate of $10 \mathrm{~cm} / \mathrm{sec}$. How fast the volume of
the cube is increasing when the edge is 5 cm long?
A. $750 \mathrm{~cm}^{2} / \mathrm{s}$
B. $75 \mathrm{~cm}^{3} / \mathrm{s}$
C. $300 \mathrm{~cm}^{3} / \mathrm{s}$
D. $150 \mathrm{~cm}^{3} / \mathrm{s}$

Answer: A

- Watch Video Solution

25. The general solution of

$$
y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0, \text { is }
$$

A. $\tan ^{-1}\left(\frac{x}{y}\right)+\log y+c=0$
B. $2 \tan ^{-1}\left(\frac{x}{y}\right)+\log x+c=0$
C. $\left.\log \left(y+\sqrt{x^{2}}+y^{2}\right)\right)+\log y+c=0$
D. $\sinh ^{-1}\left(\frac{x}{y}\right)+\log y+c=0$

Answer: A

D Watch Video Solution

26. $\cos \left\{\cos ^{-1}\left(-\frac{1}{7}\right)+\sin ^{-12}\left(-\frac{1}{7}\right)\right\}=$
A. $-\frac{1}{3}$
B. 0
C. $\frac{1}{3}$
D. $\frac{4}{9}$

Answer: B
(D) Watch Video Solution
27. In any triangle $A B C$ if
$a=18, b=24, c=30$, findsinA, $\sin \mathrm{B}, \sin \mathrm{C}$
A. 43835
B. 43895
C. 43866
D. None of these

Answer: B

- Watch Video Solution

28. $\frac{d}{d x}(\log x)^{4}$ is equal to
A. $4 \log x^{3}$
B. $\frac{4(\log x)^{3}}{x}$
C. $\frac{(4 \log x)^{3}}{x}$
D.

Answer: C
(Watch Video Solution
29. The set of points where the function
$f 9 x)=x|x|$ is differentiable is $(-\infty, \infty)$
$(-\infty, 0) \cup(0, \infty)(0, \infty)(d)[0, \infty)$
A. $(-\infty, \infty)$
B. $(-\infty, 0) \cup(0, \infty)$
C. $(0, \infty)$
D. $[0, \infty)$

Answer: A

D Watch Video Solution
30. The value of α, which satisfy $\int_{\frac{\pi}{2}}^{\alpha} \sin x d x=\sin 2 \alpha(\alpha \in[0,2 \pi]$ are equal
A. $\frac{\pi}{2}$
B. $\frac{3 \pi}{2}$
C. $\frac{7 \pi}{6}$
D. all of these

Answer: D

- Watch Video Solution

31. For a party 7 guests are invited by a husband and his wife. They sit in a row for dinner. The probability that the husband and his wife sit together, is
A. $\frac{2}{7}$
B. $\frac{2}{9}$
C. $\frac{1}{9}$
D. $\frac{4}{9}$

Answer: B
32. Find the area of the closed figure bounded
by the
curves
$y=\sqrt{x}, y=\sqrt{4-3 x} a n d y=0$
A. $4 / 9$
B. 44052
C. $16 / 9$
D. none of these

Answer: B
33. $\int \frac{d x}{x \sqrt{x^{6}-16}}=$
A. $\frac{1}{3} \sec ^{-1}\left(\frac{x^{3}}{4}\right)+c$
B. $\cos ^{-1}\left(\frac{x^{3}}{4}\right)+c$
C. $\frac{1}{12} \sec ^{-1}\left(\frac{x^{3}}{4}\right)+c$
D. $\sec ^{-1}\left(\frac{x^{3}}{4}\right)+c$

Answer: C

- Watch Video Solution

34. The locus of the point which divides the double ordinates of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the ratio 1:2 internally is $\frac{x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
(b) $\frac{x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=\frac{1}{9} \quad \frac{9 x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
none of these
A. $\frac{x^{2}}{a^{2}}-\frac{9 y^{2}}{b^{2}}=\frac{1}{9}$
B. $\frac{x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
C. $\frac{9 x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
D. None of these
35. Determine the ratio in which the line $3 x+y-9=0$ divides the segment joining the points (1,3) and (2,7).
A. 3:4 externally
B. 3:4 internally
C. 4:5 internally
D. 5:6 externally
36. The angle between the lines
$\sqrt{3} x-y-2=0$ and $x-\sqrt{3} y+1=0$ is
A. 90°
B. 60°
C. 45°
D. 30°

Answer: D
37. The bisector of the acute angle formed between the lines $4 x-3 y+7=0$ and $3 x-4 y+$ $14=0$ has the equation
A. $x+y+3=0$
B. $x-y-3=0$
C. $x-y+3=0$
D. $3 x+y-7=0$
38. The value of $i^{2}+i^{4}+i^{6}+i^{8} \ldots$ upto
$(2 \mathrm{n}+1)$ terms, where $i^{2}=-1$, is equal to:
A. 0
B. 1
C. -1
D. k

Answer: C
39. The coordinate of the point of intersection
of the line $\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-2}{-2}$ with the plane
A. $(5,10,6)$
B. $(10,5,6)$
C. $(5,5,-6)$
D. $(5,10,-6)$

Answer: D
40. The acute angle between the line joining the points $(2,1,-3)$ and ($-3,1,7$) and a line parallel to $\frac{x-1}{3}=\frac{y}{4}=\frac{z+3}{5}$ through the point $(-1,0,4)$ is

$$
\begin{aligned}
& \text { A. } \cos ^{-1}\left(\frac{1}{\sqrt{10}}\right) \\
& \text { B. } \cos ^{-1}\left(\frac{1}{5 \sqrt{10}}\right) \\
& \text { C. } \cos ^{-1}\left(\frac{7}{5 \sqrt{10}}\right) \\
& \text { D. } \cos ^{-1}\left(\frac{3}{5 \sqrt{10}}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

41. If Oltaltb, then $\lim _{n \rightarrow \infty} \frac{a^{n}+b^{n}}{a^{n}-b^{n}}$
A. equals 0
B. equals -1
C. equals 1
D. does not exist
42. if $\tan (k+1) \theta=\tan \theta$, then θ belongs to the

set

A. $\{n \pi: n \in l\}$
B. $\{n \pi / 2: n \in l\}$
C. $\{n \pi / k: n \in l\}$
D. $\{n \pi / 2 k: n \in l\}$

Answer: C
43. If A and B are two matrices such that $A B=B$
and $\mathrm{BA}=\mathrm{A}$, then $A^{2}+B^{2}=$
A. 2BA
B. $A+B$
C. 2 AB
D. None of these

Answer: B

- Watch Video Solution

44. If $|a|=|b|=1$ and $|a+b|=\sqrt{3}$, then
the value of $(3 a-4 b)(2 b+5 b)$ is
A. -21
B. $-\frac{21}{2}$
C. 21
D. $\frac{21}{2}$

Answer: B
45.

The
value
of
$\sec \left[\tan ^{-1}\left(\frac{b+a}{b-a}\right)-\tan ^{-1}\left(\frac{a}{b}\right)\right]$ is
A. 2
B. $\sqrt{2}$
C. 4
D. 1

Answer: B

D Watch Video Solution
46. If, in $\triangle A B C, a=16, b=24, c=20$ then,
$\sin \left(\frac{A}{2}\right)=_{-}$

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \sqrt{2}} \\
& \text { B. } \frac{1}{\sqrt{2}} \\
& \text { C. } \frac{3}{2 \sqrt{2}} \\
& \text { D. None of these }
\end{aligned}
$$

Answer: A

- Watch Video Solution

47. A person draws a card from a well shuffled pack of 52 playing cards. Replaces it and
shuffles the pack. He continues doing so until he draws as pade. The chance that he fails first two times is

$$
\begin{aligned}
& \text { A. } \frac{9}{64} \\
& \text { B. } \frac{1}{64} \\
& \text { C. } \frac{1}{16} \\
& \text { D. } \frac{9}{16}
\end{aligned}
$$

48. The mean and the variance of a binomial
distribution are 4 and 2 respectively. Then, the probability of 2 successes is

> A. $\frac{37}{256}$
> B. $\frac{219}{256}$
> C. $\frac{128}{256}$
> D. $\frac{28}{256}$
49. if $\triangle A B C, a=18, b=24, c=30$, then the area of the triangle is
A. 196
B. 216
C. 64
D. none of these

Answer: B
50. The number of values of θ in the interval
$[-\pi, \pi] \quad$ satisfying the equation
$\cos \theta+\sin 2 \theta=0$ is
A. 1
B. 2
C. 3
D. 4
(Watch Video Solution

