©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 13

Paper li Objective Type

1. The shortest distance between the lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$
is a. $\sqrt{30} \mathrm{~b} .2 \sqrt{30} \mathrm{c} .5 \sqrt{30}$ d. $3 \sqrt{30}$
A. $\sqrt{30}$
B. $2 \sqrt{30}$
C. $5 \sqrt{30}$
D. $3 \sqrt{30}$

Answer: D

- Watch Video Solution

2. The switching function of network is

A. $-\rho . r+(-q+\sim r)+p^{\prime} . q$
B. $(-p+r)+(\sim q . \sim r)+p^{\prime} . q$
C. $(\sim p+r)+(\sim q . \sim r)+p^{\prime} \cdot q$
D. None of the above

Answer: A
3. A five digit number is formed but the digits $1,2,3,4,5$ without repetition. Find the probability that the number is divisible by 4 .
A. $\frac{3}{5}$
B. $\frac{18}{5}$
C. $\frac{1}{5}$
D. $\frac{6}{5}$

Answer: C

4. If $f(x)=\{\sin x, x \neq n \pi, n \in I 2$, otherwise
$g(x)=\left\{x^{2}+1, x \neq 0,4, x=05, x=2\right.$
then
$(\lim) \underset{x \overrightarrow{0}}{ } g\{f(x)\} i s=$
A. 1
B. 0
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

5. If $f(x)=\log _{x}\left(\log _{e} x\right)$, then $f^{\prime}(x)$ at $x=e$ is equal

 toA. 1
B. 2
C. 0
D. $\frac{1}{e}$

Answer: D

- Watch Video Solution

6. The value of $\lim _{x \rightarrow a} \frac{\log (x-a)}{\log \left(e^{x}-e^{a}\right)}$ is
A. 0
B. 1
C. a
D. does not exist

Answer: B

(D) Watch Video Solution

7. if $2^{x}+2^{y}=2^{x+y}$ then the value of $\frac{d y}{d x}$ at
$x=y=1$
A. 0
B. -1
C. 1
D. 2

Answer: B

- Watch Video Solution

8. $\int x^{3} \log x d x$ is equal to
A. $\frac{x^{4} \log x}{4}+C$
B. $\frac{1}{16}\left[4 x^{4} \log x-x^{4}\right]+C$
C. $\frac{1}{8}\left[x^{4} \log x c-4 x^{2}\right]+C$
D. $\frac{1}{16}\left[4 x^{4} \log x+x^{4}\right]+C$

- Watch Video Solution

9. The value of $\int_{2}^{3} \frac{x+1}{x^{2}(x-1)} d x$ is
A. $\log \frac{16}{6}+\frac{1}{6}$
B. $\log \frac{16}{9}-\frac{1}{6}$
C. $2 \log 2-\frac{1}{6}$
D. $\log \frac{4}{3}-\frac{1}{6}$

Answer: B
10. if $|\vec{a}|=4,|\vec{b}|=2$ and the angle between
\vec{a} and \vec{b} is $\frac{\pi}{6}$ then $(\vec{a} \times \vec{b})^{2}$ is equal to
A. 48
B. 16
C. a
D. None of these

Answer: B

- Watch Video Solution

11. The differential equation of the rectangular hyperbola whose axes are the asymptotes of the hyperbola, is

$$
\begin{aligned}
& \text { A. } y \frac{d y}{d x}=x \\
& \text { B. } x \frac{d y}{d x}=-y \\
& \text { C. } x \frac{d y}{d x}=y \\
& \text { D. } x d y+y d x=c
\end{aligned}
$$

Answer: B
12. The statement $p \vee \sim p$ is
A. lautology
B. contradiction
C. neigther a lautology nor a contradiction
D. None of the above

Answer: A

D Watch Video Solution

13. If birth to amale child and birth to a femal child are equal probable, then what is the probability that at
least one of the three children born to a couple is male?
A. $\frac{4}{5}$
B. $\frac{7}{8}$
C. $\frac{8}{7}$
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

14. If $y=\tan ^{-1}\left[\frac{\sin x+\cos x}{\cos x-\sin x}\right]$ then $\frac{d y}{d x}$ is
A. $\frac{1}{2}$
B. $\frac{\pi}{4}$
C. 0
D. 1

Answer: D

D Watch Video Solution

15.

The
equation
$12 x^{2}+7 x y-12 y^{2}-18 x+y+6=0$ represents
A. a pair of straight lines
B. a parabola
C. an ellipse

D. a hyperbola

Answer: A

(D) Watch Video Solution

16. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccenricityh is $\frac{1}{2}$, then length of semi-major axis is
A. $5 / 3$
B. $8 / 3$
C. $2 / 3$
D. $4 / 3$

- Watch Video Solution

17. A parabola is drawn with focus at $(3,4)$ and vertex at the focus of the parabola $y^{2}-12 y-4 y+4=0$. The equation of the parabola is

$$
\begin{aligned}
& \text { A. } y^{2}-8 x-6 y+25=0 \\
& \text { B. } y^{2}-6 x-8 y-25=0 \\
& \text { C. } x^{2}-6 x-8 y+25=0 \\
& \text { D. } x^{2}+6 x-8 y-25-0
\end{aligned}
$$

- Watch Video Solution

18. If a circle passes through $(0,0)$ and $(a, 0)$ and $(0, b)$, then the coordinates of its centre are
A. $\left(\frac{b}{2}, \frac{a}{2}\right)$
B. $\left(\frac{a}{2}, \frac{b}{2}\right)$
C. (b, a)
D. (a, b)

Answer: B

- Watch Video Solution

19. A line is drawn through the point $P(3,11)$ to cut the circle $x^{2}+y^{2}=9$ at A and B . Then $P A . P B$ is equal to
A. 9
B. 121
C. 205
D. 139

Answer: B

- Watch Video Solution

20. If the first, second and last terms of an arithmetic
series are a,b, and c respectively, then the number of
terms is
A. $\frac{b+c-2 a}{b-a}$
B. $\frac{b+c+2 a}{b-a}$
C. $\frac{b+c-2 a}{b+a}$
D. $\frac{b+c+2 a}{b+a}$

Answer: A

- Watch Video Solution

21. The denominator of a fraction is greater than 16 of
the square of numerator, then least value of fraction is
A. $-\frac{1}{4}$
B. $-\frac{1}{8}$
C. $\frac{1}{12}$
D. $\frac{1}{16}$

Answer: B

- Watch Video Solution

22. The equation of tangent to the curve $y=b e^{-x / a}$ at the point where it crosses Y -axis is
A. $a x+b y=1$
B. $a x-b y=1$
C. $\frac{x}{a}-\frac{y}{b}=1$
D. $\frac{x}{a}+\frac{y}{b}=1$

Answer: D

- Watch Video Solution

23. The function $f(x)=x^{-x},(x \varepsilon R)$ attains a maximum value at x is
A. 2
B. 3
C. $\frac{1}{e}$
D. 1

Answer: C

- Watch Video Solution

24. The mean and varaince of binomial distribution are

4 and 3, respectively. Then, the probability of getting exactly six success in this distribution is
A. ${ }^{16} C_{6}\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{10}$
B. ${ }^{16} C_{6}\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{20}$
C. ${ }^{16} C_{6}\left(\frac{1}{4}\right)^{8}\left(\frac{3}{4}\right)^{12}$
D. ${ }^{16} C_{9}\left(\frac{1}{4}\right)^{16}\left(\frac{3}{4}\right)^{20}$

Answer: A
25. The value of
$\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\ldots \ldots \ldots \ldots .+\frac{n}{n^{2}+n^{2}}\right]$
, is
A. $\frac{\pi}{4}$
B. $\log 2$
C. 0
D. 1

Answer: A

- Watch Video Solution

26. The value of $\int_{-2}^{4}|x+1| d x$ is equal to
A. 12
B. 14
C. 13
D. 16

Answer: C

- Watch Video Solution

27. The function $f: R \sim\{0\} \vec{R}$ given by
$f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ can be made continuous at $\mathrm{x}=0$
by defining $f(0)$ as (1) $2(2)-1(3) 0(4) 1$
A. 2
B. -1
C. 0
D. 1

Answer: D

- Watch Video Solution

28. Define f on R into itself by
$f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & \text { when } x \neq 0 \\ 0 & \text { when } x=0\end{array}\right.$ then
A. f is continuous at 0 but not differentiable at 0
B. f is both continuous and differentiable at 0
C. f is differentiable but no continuous at 0
D. None of the above

Answer: A

- Watch Video Solution

29. If $y=x-x^{2}$, then the derivative of y^{2} w.r.t x^{2} is
A. $2 x^{2}+3 x-1$
B. $2 x^{1}-3 x+1$
C. $2 x^{2}+3 x+1$
D. $2 x^{2}-3 x-1$

Answer: B

- Watch Video Solution

30. If $f^{\prime}(x)=g(x)$ and $g^{\prime}(x)=-f(x)$ for all x and
$f(2)=4=f^{\prime}(2)$ then $f^{2}(4)+g^{2}(4)$ is
A. 8
B. 16
C. 32
D. 64

Answer: C

- Watch Video Solution

31. The point on the curve $y^{2}=x$ the tangent at which makes an angle 45° with X -axis is
A. $\left(\frac{1}{4}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{1}{4}\right)$
C. $\left(\frac{1}{2},-\frac{1}{2}\right)$
D. $\left(\frac{1}{2}, \frac{1}{2}\right)$

Answer: A
32. The smallest circle with centre on Y-axis and passing through the point $(7,3)$ has radius
A. $\sqrt{58}$
B. 7
C. 3
D. 4

Answer: B

33. The function $f(x)=x(x+3) e^{-\left(\frac{1}{2}\right) x}$ satisfies the conditions of Rolle's theorem in $(-3,0)$. The value of c, is
A. 0
B. -1
C. -2
D. -3

Answer: C

- Watch Video Solution

34. For what values of x the function $f(x)=x^{4}-4 x^{3}+40$ si monotonic decreassing?
A. $0<x<1$
B. $1<x<2$
C. $2<x<3$
D. $4<x<5$

Answer: B

- Watch Video Solution

35. If a is a positive number such that the arithmatic
mean of a and 2 exceeds their geometric mean by 1.
Then, the value of a is
A. 3
B. 5
C. 9
D. 8

Answer: D

- Watch Video Solution

36. A line passing through origin and is perpendicular to two given lines $2 x+y+6=0 \quad$ and
$4 x+2 y-9=0$. The ratio in which the origin divides
this line is
A. 1:2
B. 2: 1
C. $4: 2$
D. $4: 3$

Answer: D
(D) Watch Video Solution
37. If A and B are two sets, then $(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)$
is equal to
A. A^{\prime}
B. A
C. B^{\prime}
D. None of these

Answer: A

D Watch Video Solution

38. If a relation R on the set N of natural numbers is defined as $(x, y) \Leftrightarrow x^{2}-4 x y+3 y^{2}=0, \operatorname{Aax}, y \varepsilon N$.

Then the relation R is
A. reflexive
B. symmetric
C. transitive
D. an aquivalence relation

Answer: A

- Watch Video Solution

39. If $5 \cos 2 \theta+2 \cos ^{2} \frac{\theta}{2}+1=0$, when $(0<\theta<\pi)$ the the value of θ are

$$
\text { A. } \frac{\pi}{3} \pm \pi
$$

B. $\frac{\pi}{3} \cdot \cos ^{-1}\left(\frac{3}{5}\right)$
C. $\cos ^{-1}\left(\frac{3}{5}\right) \pm \pi$
D. $\frac{\pi}{3} \cdot \pi-\cos ^{-1}\left(\frac{3}{5}\right)$

Answer: D

D Watch Video Solution

40. If in $\triangle A B C, a=12 c m, b=12 \mathrm{~cm}$ and $c=5 \mathrm{~cm}$
then distance from a to side $B C$ is
A. $144 / 13$
B. $65 / 12$
C. $60 / 13$
D. $25 / 13$

Answer: C

- Watch Video Solution

41. The value of $\cos \left[2 \tan ^{-1}(-7)\right]$ is
A. $\frac{49}{50}$
B. $-\frac{49}{50}$
C. $\frac{24}{25}$
D. $-\frac{24}{25}$

Answer: D

42. Solution of the differential equation

$$
x \frac{d y}{d x}=y+\sqrt{x^{2}+y^{2}} \text {, is }
$$

A. $y-\sqrt{x^{2}+y^{2}}=c x^{2}$
B. $y+\sqrt{x^{2}+y^{2}}=c x^{2}$
C. $y+\sqrt{x^{2}+y^{2}}=c y^{2}$
D. $x-\sqrt{x^{2}+y^{2}}=c y^{2}$

Answer: B

- Watch Video Solution

43. The differential equation satistied by the family of curves $y=a x \cos \left(\frac{1}{x}+b\right)$, where a,b are parameters, is
A. $x^{2} y_{2}+y=0$
B. $x^{4} y_{2}+y=0$
C. $x y_{2}-y=0$
D. $x^{4} y_{2}-y=0$

Answer: B

- Watch Video Solution

44. The value of $\sqrt{2} \int \frac{\sin x}{\sin \left(x-\frac{\pi}{4}\right)} d x$, is
A. $x-\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+C$
B. $x+\log \left|x-\frac{\pi}{4}\right|+C$
C. $x-\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$
D. $x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$

Answer: D

- Watch Video Solution

45. The slope of the tangent to a curve $y=f(x)$ at $(x, f(x))$ is $2 x+1$. If the curve passes through the
point $(1,2)$ then the area of the region bounded by the curve, the x-axis and the line $x=1$ is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1
A. $5 / 6$
B. $6 / 5$
C. 6
D. 1

Answer: A
46. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 2:1
B. 3: 1
C. 3:2
D. None of these

Answer: A
47. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of each of x-axis and y-axis, then the angle that the line makes with the positive direction of the z axis is (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: D

48. Find the ratio in which the line joining $(2,4,5)$ and $(3,5,4)$ is divided by the $y z$-plane.
A. 2:3
B. 3: 2
C. $-2: 3$
D. 4: -3

Answer: C

(D) Watch Video Solution

49. If a and b are the two vectors such that $|a|-3 \sqrt{3},|b|=4$ and $|a+b|=\sqrt{7}$, then the angle
between a and b is
A. 120°
B. 60°
C. 30°
D. 150°

Answer: D

- Watch Video Solution

50. If f be a function such that $f(9)=9$ and
$f^{\prime}(9)=3$, then $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$ is equal to
A. 9
B. 3
C. 1
D. None of these

Answer: B

- Watch Video Solution

