© 'doubtnut

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS
 AND PRACTICE PAPERS

PRACTICE SET 14

Paper 2 Mathematics

1. The radius of the circle passing through the foci of $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and having centre $(0,3)$ is
A. 4
B. $\frac{3}{7}$
C. $\sqrt{12}$
D. $\frac{7}{2}$

Answer: A

- Watch Video Solution

$$
\begin{aligned}
& \text { 2. The parabola } y^{2}=4 x \text { and the circle } \\
& x^{2}+y^{2}-6 x+1=0
\end{aligned}
$$

A. intersect at exactly one point
B. touch each other at two distinct points
C. touch each other at exactly one point

D. intersect at two distinct points

Answer: D

- Watch Video Solution

3. The equation of circle which touches the line $y=x$ at origin and passes through the point $(2,1)$ is $x^{2}+y^{2}+p x+q y=0$ Then p, q are
A. $-5,-5$
B. $-5,5$
C. $5,-5$
D. None of these

Answer: B

D Watch Video Solution

4. The measure of the chord intercepted by circle $x^{2}+y^{2}=9$ and the line $x-y+2=0$ is
A. $\sqrt{28}$
B. $2 \sqrt{5}$
C. 7
D. 5

Answer: A
5. If $\frac{5+9+13+\ldots \text { upto } \mathrm{n} \text { terms }}{7+9+11+\ldots \text { upto } 12 \text { terms }}=\frac{5}{12}$, then n is equal to
A. 5
B. 6
C. 9
D. 12

Answer: B
6. The number of solutions of the pair of equations
$2 s \in^{2} \theta-\cos 2 \theta=0 \quad 2 \cos ^{2} \theta-3 \sin \theta=0 \quad$ in the interval $[0,2 \pi]$ is 0 (b) 1 (c) 2 (d) 4
A. Zero
B. one
C. two
D. four

Answer: C

- Watch Video Solution

7. If $\sin 4 A-\cos 2 A=\cos 4 A-\sin 2 A$
(where, $0<A<\frac{\pi}{4}$), then the value of $\tan 4 \mathrm{~A}$ is
A. 1
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{3}$
D. $\frac{\sqrt{3}-1}{\sqrt{3}+1}$

Answer: C

$$
\begin{aligned}
& \text { 8. Solve the differential equation } \\
& \frac{d y}{d x}=\frac{x(2 \log x+1)}{(\sin y+y \cos y)}
\end{aligned}
$$

$$
\text { A. } y \sin y=x^{2} \log x+c
$$

$$
\text { B. } y \sin y=x^{2}+c
$$

$$
\text { C. } y \sin y=x^{2}+\log x
$$

$$
\text { D. } y \sin y=x \log x+c
$$

Answer: A
9. If $\sin \left(\frac{\sin ^{-1} 1}{5}+\cos ^{-1} x\right)=1$, then find the value of x.
A. -1
B. $2 / 5$
C. $1 / 3$
D. $1 / 5$

Answer: D

D Watch Video Solution
10. In a $\triangle A B C$,
$(b+c)(b c) \cos A+(a+c)(a c) \cos B+(a+b)(a b) \cos C$
is
A. $a^{2}+b^{2}+c^{2}$
B. $a^{3}+b^{3}+c^{3}$
C. $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)$
D. $(a+b+c)(a b+b c+c a)$

Answer: B

- Watch Video Solution

11. $f(x)=\frac{e^{2 x}-1}{e^{2 x}+1}$ is
A. an increasing
B. a decreasing
C. an even
D. None of these

Answer: A

D Watch Video Solution

12. Find the length of normal to the curve $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$.
A. 2 a
B. $\frac{a}{2}$
C. $\frac{a}{\sqrt{2}}$
D. $\sqrt{2} a$

Answer: D

D Watch Video Solution

13. $\begin{aligned} & \text { If } \quad y=\left(x+\sqrt{1+x^{2}}\right)^{n} \quad \text { then } \\ & \left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}\end{aligned}$
A. $n^{2} y$
B. $-n^{2} y$
C. $-y$
D. $2 x^{2} y$

Answer: A

D Watch Video Solution

14. $\frac{d}{d x}\left[\log _{e} e^{\sin \left(x^{2}\right)}\right]$ is equal to
A. $2 \cos \left(x^{2}\right)$
B. $2 \cos x$
C. $2 x \cdot \cos x$
D. $2 x \cos \left(x^{2}\right)$

Answer: D

- Watch Video Solution

15. The area enclosed between the curve
$y=\log _{e}(x+e)$ and the coordinate axes is
A. 4 sq units
B. 3 sq units
C. 2 sq units
D. 1 sq unit

Answer: D

16.

$f(x)=\left\{\begin{array}{ll}\frac{1-\sin x}{\pi-2 x} & , x \neq \frac{\pi}{2} \\ \lambda & , x=\frac{\pi}{2}\end{array}\right.$, be continuous at $x=\frac{\pi}{2}$,
then value of λ is
A. -1
B. 1
C. 0
D. 2

Answer: C
17. The value of $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \sin 5 x}{x^{2} \sin 3 x}$ is
A. $\frac{10}{3}$
B. $\frac{3}{10}$
C. $\frac{6}{5}$
D. $\frac{5}{6}$

Answer: A

D Watch Video Solution

18. The differential equation of the family of parabolas with focus at the origin and the X -axis as axis, is
A. $y\left(\frac{d y}{d x}\right)^{2}+4 x \frac{d y}{d x}=4 y$
B. $-y\left(\frac{d y}{d x}\right)^{2}=2 x \frac{d y}{d x}-y$
C. $y\left(\frac{d y}{d x}\right)^{2}+y=2 x y \frac{d y}{d x}$
D. $y\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}+y=0$

Answer: B

D Watch Video Solution

19. $\int_{-2}^{2} \sin ^{3} x|x| d x$ is equal to
A. 0
B. 1
C. 4
D. None of these

Answer: A

D Watch Video Solution

20.

Find
the
antiderivative
of
$f(x)=\operatorname{In}(\operatorname{In} x)+(\operatorname{In} x)^{-2}$ whose graph passes through (e, e).
A. $x\left[\log (\log x)+(\log x)^{-1}\right]$
B. $x\left[-\log (\log x)+(\log x)^{-1}\right]+e$
C. $x\left[\log (\log x)-(\log x)^{-1}\right]+2 e$

D. None of the above

Answer: C

(D) Watch Video Solution

21. A basket contains 5 apples and 7 oranges and another basket contains 4 apples and 8 oranges. One fruit is picked out from each basket. The probability that the fruits are both apples or both oranges, is
A. $24 / 144$
B. $56 / 144$
C. $68 / 144$
D. $76 / 144$

Answer: D

- Watch Video Solution

22. For the following linear programming problem minimize $Z=4 x+6 y$ subject to the constraints
$2 x+3 y \geq 6, x+y \leq 8, y \geq 1, x \geq 0$, the solution is
A. $(0,2)$ and $(1,1)$
B. $(0,2)$ and $\left(\frac{3}{2}, 1\right)$
C. $(0,2)$ and $(1,6)$
D. $(0,2)$ and $(1,5)$

Answer: B

- Watch Video Solution

23. If $p \rightarrow(\sim p \vee q)$ is false, the truth values of p and q are, respectively
A. F, T
B. F, F
C. T, T
D. T, F

Answer: D
24. Which of the following pair of straight lines intersect at right angle?
A. $2 x^{2}=y(x+2 y)$
B. $(x+y)^{2}=x(y+3 x)$
C. $2 y(x+y)=x y$
D. $y= \pm 2 x$

Answer: A

25. If $\bar{u}, \bar{v}, \bar{w}$ are three non coplanar vectors then $(\bar{u}+\bar{v}-\bar{w}) \cdot\{(\bar{u}-\bar{v}) \times(\bar{v}-\bar{w})\}=$
A. 0
B. $u \cdot(v \times w)$
C. $u \cdot(w \times v)$
D. $3 u \cdot(v \times w)$

Answer: B
26. A five digit number is chosen at random. The probability that all the digits are distinct and digits at odd places are odd and digits at even places are even, is
A. $\frac{1}{60}$
B. $\frac{2}{75}$
C. $\frac{1}{50}$
D. $\frac{1}{75}$

Answer: D

27. The output s as a Boolean expression in the inputs
x_{1}, x_{2} and x_{3} for the logic circuit in the following figure is

A. $x_{1} \cdot x_{2}{ }^{\prime}+x_{2}{ }^{\prime}+x_{3}$
B. $x_{1}+x_{2}^{\prime} \cdot x_{3}+x_{3}$
C. $\left(x_{1} \cdot x_{2}\right)^{\prime}+x_{1} x_{2}{ }^{\prime} x_{3}$
D. $x_{1} \cdot x_{2}{ }^{\prime}+x_{2}{ }^{\prime} \cdot x_{3}$

Answer: D

28.

$\int \frac{\log \left(x+\sqrt{1+x^{2}}\right)}{\sqrt{1+x^{2}}} d x=\operatorname{gof}(x)+$ constant, then
A. $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$
B. $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$ and $g(x)=x^{2}$
C. $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$ and $g(x)=\frac{x^{2}}{2}$
D. $f(x)=\frac{x^{2}}{2}$ and $g(x)=\log \left(x+\sqrt{x^{2}+1}\right)$

Answer: C

- Watch Video Solution

29. If $y=f(x)$ and $y \cos x+\cos y=\pi$, then the value of $f^{\prime \prime}(0)$ is
A. π
B. $-\pi$
C. 0
D. 2π

Answer: A

D Watch Video Solution
30. The statement $(p \Rightarrow q) \Leftrightarrow(\sim p \wedge q)$ is a
A. tautology
B. contradiction
C. Neither (a) nor (b)
D. None of these

Answer: C

D Watch Video Solution

31. In order that the function $f(x)=(x+1)^{\cot x}$ is
continuous at $x=0, f(0)$ must be defined as
A. $f(0)=\frac{1}{e}$
B. $f(0)=0$
C. $f(0)=e$
D. None of these

Answer: C

D Watch Video Solution

32. If $\log _{x} a x, \log _{x} b x$ and $\log _{x} c x$ are in AP, where a, b, c and x , belong to $(1, \infty)$, then a, b and c are in
A. AP
B. HP
C. GP
D. None of these

Answer: C

- Watch Video Solution

33. The angle between the straight lines x-y
$\sqrt{3}=5$ and $\sqrt{3} x+y=7$ is
A. 90°
B. 60°
C. 75°
D. 30°

Answer: A
34. If S is a set with 10 elements and
$A=\{(x, y): x, y \in S, x \neq y\}$, then the number of
elements in A is
A. 100
B. 90
C. 50
D. 45

Answer: B
35. Let r be relation from R (set of real numbers) to R defined by $r=\{(a, b) \mid a, b \in R$ and $a-b+\sqrt{3}$ isan irrational number\}. The relation r is
A. an equivalence relation
B. only reflexive
C. only symmetric
D. only transitive

Answer: B

- Watch Video Solution

36. Let $f(x)=\int e^{x}(x-1)(x-2) d x$. Then f decreases in the interval $(-\infty,-2)$ (b) $-2,-1)$
$(1,2)$ (d) $(2,+\infty)$
A. $(-\infty,-2)$
B. $(-2,-1)$
C. $(1,2)$
D. $(2, \infty)$

Answer: C

- Watch Video Solution

37. The number of critical points of
$f(x)=|x|(x-1)(x-2)(x-3)$ is
A. 1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution
38. The shaded region for the inequality $x+5 y \leq 6$ is
A. at the non-origin side of $x+5 y=6$
B. to the origin side of $x+5 y=6$
C. to the either side of $x+5 y=6$
D. to the either side of $x-5 y=6$

Answer: B

D Watch Video Solution

39. For an LPP, minimise $Z=2 x+y$ subject to constraint $5 x+10 y \leq 50, x+y \geq 1, y \leq 4$ and $x, y \geq 0$ then Z is equal to
A. 0
B. 1
C. 2
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

40. Let $[\mathrm{x}]$ denotes the greatest integer less than or equal to x . If $f(x)=[x \sin \pi x]$, then $\mathrm{f}(\mathrm{x})$ is
A. continuous at $\mathrm{x}=0$
B. continuous in ($-1,0$)
C. differentiable in (-1,1)

D. All of these

Answer: C

D Watch Video Solution

41. If $\mathrm{f}(0)=0$ and $f(x)=\frac{1}{\left(1-e^{-1 / x}\right)}$ for $x \neq 0$.

Then, only one of the following statements on $f(x)$ is true. That is $f(x)$ is
A. continuous at $\mathrm{x}=0$
B. not continuous at $x=0$
C. both continuous and differentiable at $\mathrm{x}=0$
D. not defined at $\mathrm{x}=0$

Answer: B

- Watch Video Solution

42. $\int_{0}^{10}|x(x-1)(x-2)| d x$ is equal to
A. 160.05
B. 1600.5
C. 16.005
D. None of these

Answer: B
43. Statement । $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\tan ^{3} x}$ is $\frac{\pi}{12}$ Statement II
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
A. $\frac{\pi}{12}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: A
$f(x)=\{x-1, x<2$ and $2 x-3, x \geq 2 \quad$ is is
continuous function
A. for $\mathrm{x}=2$ only
B. for all real values of x such that $x \neq 2$
C. for all real values of x
D. for all integral values of x only

Answer: C
45. Area of the region bounded by the curves $y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given by:
A. $3 / \log 2-4 / 3$ sq unit
B. $3 / \log 2+4 / 3$ sq unit
C. $3 \log 2+4 / 3$ sq unit
D. $3 \log 2-4 / 3$ sq unit

Answer: A

D Watch Video Solution
46. The equation of plane passing through a point $A(2$,
$-1,3)$ and parallel to the vectors $\mathrm{a}=(3,0,-1)$ and $\mathrm{b}=(-3$,
2,2) is
A. $2 x-3 y+6 z-25=0$
B. $2 x-3 y+6 z+25=0$
C. $3 x-2 y+6 z-25=0$
D. $3 x-2 y+6 z+25=0$

Answer: A

- Watch Video Solution

47. Show that the disease of the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $(x-y+z=5)$ from the point $(-1,-5,-10)$ is 13 units.
A. 13
B. 12
C. 11
D. 8

Answer: A
48. If $|A|=3,|B|=4,|C|=5$ and a, b, c are such that each is perpendicular to the sum of other two, then $|a+b+c|$ is
A. $5 \sqrt{2}$
B. $\frac{5}{\sqrt{2}}$
C. $10 \sqrt{2}$
D. $10 \sqrt{3}$

Answer: A
49. If a, b, c are three unit vectors such that $a+b+c=0$. Where 0 is null vector, then $a . b+a . c+c . a$ is
A. -3
B. -2
C. $-\frac{3}{2}$
D. 0

Answer: C
50. $a . \hat{i}=a .(2 \hat{i}+\hat{j})=a .(\hat{i}+\hat{j}+3 \hat{k})=1$, then a is equal to
A. $\hat{i}-\hat{k}$
B. $(3 \hat{i}+3 \hat{j}+\hat{k}) / 3$
C. $(\hat{i}+\hat{j}+\hat{k}) / 3$
D. $(3 \hat{i}-3 \hat{j}+\hat{k}) / 3$

Answer: D

D Watch Video Solution

