©゙’doubtnut

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 19

Paper 2 Mathematics

1. If in a triangle $A B C, 4 \sin A=4 \sin B=3 \sin C$, then $\cos C=$
A. $1 / 3$
B. $1 / 9$
C. $1 / 27$
D. $1 / 18$

Answer: B

- Watch Video Solution

2. $\left\{x \in R: \cos 2 x+2 \cos ^{2} x=2\right\}$ is equal to
A. $\left\{2 n \pi+\frac{\pi}{3}: n \in Z\right\}$
B. $\left\{n \pi \pm \frac{\pi}{6}: n \in Z\right\}$
C. $\left\{n \pi+\frac{\pi}{3}: n \in Z\right\}$
D. $\left\{2 n \pi-\frac{\pi}{3}: n \in Z\right\}$

Answer: B
3. If θ and ϕ are acute angles satisfying $\sin \theta=\frac{1}{2}, \cos \phi=\frac{1}{3}$ then $\theta+\phi=$
A. $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
B. $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$
C. $\left(\frac{2 \pi}{3}, \frac{5 \pi}{6}\right)$
D. $\left(\frac{5 \pi}{6}, \pi\right)$

Answer: B

- Watch Video Solution

4. $\cot ^{-1} 9+\operatorname{cosec}^{-1} \frac{\sqrt{41}}{4}=\frac{\pi}{4}$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. π

Answer: B

- Watch Video Solution

5. The equation of one of the curves whose slope of tangent at any point is equal to $y+2 x$ is $y=2\left(e^{x}+x-1\right)$

$$
\begin{equation*}
y=2\left(e^{x}-x-1\right) y=2\left(e^{x}-x+1\right) y=2\left(e^{x}+x+1\right) \tag{5}
\end{equation*}
$$

$y=e^{x}-x-1$
A. $y=2\left(e^{x}+x-1\right)$
B. $y=2\left(e^{x}-x-1\right)$
C. $y=2\left(e^{x}-x+1\right)$
D. $y=2\left(e^{x}+x+1\right)$

Answer: B

D Watch Video Solution

6. $\frac{d y}{d x}=\frac{x y+y}{x y+x}$, then the solution of differential equation is
A. $x+y=\log \left(\frac{c y}{x}\right)$
B. $x+y=\log (c x y)$
C. $x-y=\log \left(\frac{c x}{y}\right)$
D. $y-x=\log \left(\frac{c x}{y}\right)$
7. The differential equation representing the family of curves $y^{2}=2 c\left(x+c^{2 / 3}\right)$, where c is a positive parameter, is of
A. order 3, degree 3
B. order 2, degree 4
C. order 1, degree 5
D. order 5, degree 1

Answer: C

- Watch Video Solution

8. Prove that the product of the matrices $\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]$ and $\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin ^{\beta}\end{array}\right]$ is
the null matrix when α and β differ by an odd multiple of $\frac{\pi}{2}$.
A. 0
B. multiple of π
C. an odd multiple of $\pi / 2$
D. None of these

Answer: C

- Watch Video Solution

9. $\int \sqrt{1+\sin \left(\frac{x}{4}\right)} d \mathrm{x}$ is equal to
A. $8\left(\sin \frac{x}{8}+\cos \frac{x}{8}\right)+c$
B. $8\left(\sin \frac{x}{8}-\cos \frac{x}{8}\right)+c$
C. $8\left(\cos ^{\prime}(\mathrm{x}) /(8)-\sin \frac{x}{8}\right)+c$
D. $\frac{1}{8}\left(\sin \frac{x}{8}-\cos \frac{x}{8}\right)+c$

Answer: B

- Watch Video Solution

10.

Area bounded
by the
curves
$4 y=\left|x^{2}-4\right|$ and $y+|x|=7$, is equal to :
A. 32
B. 16
C. 24
D. None of these

Answer: A
11. If $f(t)$ is an odd function, then $\varphi(x)=\int_{a}^{x} f(t) d x$ is an even function.
A. an odd function
B. an even function
C. Neither even nor odd
D. 0

Answer: B

- Watch Video Solution

12. If $f(x)$ is a function satisfying $f\left(\frac{1}{x}\right)+x^{2} f(x)=0$ for all nonzero x, then evaluate $\int_{\sin \theta}^{\operatorname{cosec} \theta} f(x) d x$
A. 0
B. 1
C. 2
D. 3

Answer: A

D Watch Video Solution

13. The value of $\int_{3}^{5} \frac{x^{2}}{x^{2}-4} d x$ is
A. $2-\log _{e}\left(\frac{15}{7}\right)$
B. $2+\log _{e}\left(\frac{15}{7}\right)$
C. $2+4 \log _{e} 3-4 \log _{e} 7+4 \log _{e} 5$
D. $2-\tan ^{-1}\left(\frac{15}{7}\right)$

- Watch Video Solution

14. The plane $2 x+3 y+4 z=1$ meets the coordinate axis in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. The centroid of the $\Delta A B C$ is
A. $(2,3,4)$
B. $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right)$
C. $\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right)$
D. $\left(\frac{3}{2}, \frac{3}{3}, \frac{3}{4}\right)$

Answer: C

15. The equation of straight line equally inclined to the axes and equidistant from the point $(1,-2)$ and $(3,4)$ is:
A. $a=1, b=-1, c=3$
B. $a=1, b=-1, c=-3$
C. $a=1, b=1, c=-3$
D. None of these

Answer: C

- Watch Video Solution

16. Let $P(-1,0), Q(0,0), R(3,3 \sqrt{3})$ be three points then the equation of the bisector of the angle $\angle P Q R$ is :
A. $\sqrt{3} x+y=0$
B. $x+\frac{\sqrt{3}}{2} y=0$
C. $\frac{\sqrt{3}}{2} x+y=0$
D. $x+\sqrt{3} y=0$

Answer: A

D Watch Video Solution

17. Let A and B be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set X then how that $\mathrm{A}=\mathrm{B}$
A. $A-B=A \cap B$
B. $A=B$
C. $B-A=A \cap B$
D. None of the above

- Watch Video Solution

18.

$R=\{(3,3),(6,6),(9,9),(12,12),(6,12),(3,9(,(3,12),(3,6)\}$
be relation on the set $A=\{3,6,9,12\}$. The relation is-
A. reflexive and symmetric
B. an equivalence relattion
C. reflexive only
D. reflexive and transitive

Answer: D

19. The first four terms of an AP are a, $9,3 a-b, 3 a+b$.

The 2011 th term of an AP is

A. 2015
B. 4025
C. 5030
D. 8045

Answer: D

- Watch Video Solution

20. The shortest distance between the straight lines

$$
\frac{x-6}{1}=\frac{2-y}{2}=\frac{z-2}{2} \text { and } \frac{x+4}{3}=\frac{y}{-2}=\frac{1-z}{2} \text { is }
$$

A. 9
B. $\frac{25}{3}$
C. $\frac{16}{3}$
D. 4

Answer: B

(D) Watch Video Solution

21. An urn contains 4 white and 3 red balls. Three balls are drawn with replacement from this urn. Then, the standard deviation of the number of red balls/drawn is
A. $\frac{6}{7}$
B. $\frac{36}{49}$
C. $\frac{5}{7}$
D. $\frac{25}{49}$

Answer: A

(Watch Video Solution

22. Two aeroplanes I and II bomb a target in succession. The probabilities of I and II scoring a hit correctly are 0.3 and 0.2 , respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the
second plane is (1) 0.06 (2) 0.14 (3) 0.2 (3) 0.7
A. 0.06
B. 0.14
C. 0.32
D. 0.7

(D) Watch Video Solution

23. If $y=\log _{2} \log _{2}(x)$, then $\frac{d y}{d x}$ is equal to
A. $\frac{\log _{2} e}{\log _{e} x}$
B. $\frac{\log _{2} e}{x \log _{x} 2}$
C. $\frac{\log _{2} x}{\log _{e} 2}$
D. $\frac{\log _{2} e}{x \log _{e} x}$

Answer: D

- Watch Video Solution

24. If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$, then $\operatorname{det}(\operatorname{adj}(\operatorname{adj} A)$ is
A. 12^{4}
B. 13^{4}
C. 14^{4}
D. None of these

Answer: C

(D) Watch Video Solution

25. Dual of $x \wedge(y \vee x)=x$ is
A. $x \vee(y \wedge x)=x$
B. $x \vee(y \vee x)=x$
С. $(x \wedge y) \vee(x \wedge x)=x$
D. None of these

Answer: A

- Watch Video Solution

26. If given constraints are $5 x+4 y \geq 2, x \leq 6, y \leq 7$, then the maximum value of the function $z=x+2 y$ is
A. 13
B. 14
C. 15
D. 20

- Watch Video Solution

27. The angle between the pair of straight lines
$y^{2} \sin ^{2} \theta-x y \sin ^{2} \theta+x^{2}\left(\cos ^{2} \theta-1\right)=0$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

28.

$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ at any θ is such that
A. it is at a constant distance from the origin
B. it passes through $\left(a \frac{\pi}{2},-a\right)$
C. it makes angle $\frac{\pi}{2}+\theta$ with the X -axis
D. it passes through the origin

Answer: A

D Watch Video Solution

29. If $f(x)=\left\{\begin{array}{ll}x^{\alpha} \log x & x>0 \\ 0 & x=0\end{array}\right.$ and Rolle's theorem is applicable to $f(x)$ for $x \in[0,1]$ then α may equal to (A) -2 (B)
$-1(C) 0(D) \frac{1}{2}$
A. -2
B. -1
C. 0
D. $\frac{1}{2}$

Answer: D

(D) Watch Video Solution

30. if the line $x \cos \alpha+y \sin \alpha=p$ is normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ then
A. $a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha=p^{2}$
B. $a^{2}+b^{2} \sin ^{2} \alpha=p^{2} \cos e c^{2} \alpha$
C. $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$
D. None of the above

Answer: C

- Watch Video Solution

31. $\int \sec ^{8 / 9} x \cos e c^{10 / 9} x \mathrm{dx}$ is equal to
A. $-(\cot x)^{1 / 9}+c$
B. $9(\tan x)^{1 / 9}+c$
C. $-9(\cot x)^{1 / 9}+c$
D. $-\frac{1}{9}(\cot x)^{9}+c$

Answer: C
32. Switching function of the network is

A. $(a+b) \cdot c+\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$
B. $(a+b) \cdot c \cdot\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$
C. $(a . b)+c+\left(a^{\prime} . b^{\prime} . c^{\prime}\right)$
D. None of the above

Answer: B
33. Find the equation of the plane containing the lines

$$
\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5} \text { and } \frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}
$$

A. $17 x-47 y-24 z+152=0$
B. $17 x+47 y-24 z+172=0$
C. $17 x+47 y+24 z+172=0$
D. $17 x-47 y+24 z+172=0$

Answer: A

D Watch Video Solution

34. If $\bar{a}, \bar{b}, \bar{c}$ are non coplanar vectors and λ is a real number then $\left[\lambda(\bar{a}+\bar{b}) \lambda^{2} \bar{b} \lambda \bar{c}\right]=[\bar{a} \bar{b}+\bar{c} \bar{b}]$ for
A. exactly two values of λ
B. exactly three values of λ
C. no value of λ
D. exactly one value of λ

Answer: C

- Watch Video Solution

35. If the vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$, then the length of the median through A is (A) $\sqrt{33}$ (B) $\sqrt{45}$ (C) $\sqrt{18}$ (D) $\sqrt{720}$
A. $\sqrt{18}$
B. $\sqrt{72}$
C. $\sqrt{33}$
D. $\sqrt{288}$

Answer: C

(D) Watch Video Solution

36. I f $\int \frac{d x}{\cos ^{3} x \sqrt{\sin 2 x}}=a\left(\tan ^{2} x+b\right) \sqrt{\tan x}+c$
A. $a=\frac{\sqrt{2}}{5}, b=\frac{1}{\sqrt{5}}$
B. $a=\frac{\sqrt{2}}{5}, b=5$
C. $a=\frac{\sqrt{2}}{5}, b=-\frac{1}{\sqrt{5}}$
D. $a=\frac{\sqrt{2}}{5}, b=\sqrt{5}$

Answer: B
37. Area bounded by the curve $y=\sin ^{2} x$ and lines $x=\frac{\pi}{2}, x=\pi$ and X -axis is
A. $\frac{\pi}{2}$ sq unit
B. $\frac{\pi}{4}$ sq unit
C. $\frac{\pi}{8}$ sq unit
D. None of these

Answer: B

- Watch Video Solution

38. If p and q are two statements, then $(p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)$ is
A. contradiction
B. tautology
C. Neither (a) nor (b)
D. None of these

Answer: B

(D) Watch Video Solution

39. Inequation $y-x \leq 0$ represents
A. the half plane that contains the positive x
B. closed half plane above the line $y=x$ which contains
positive Y-axis
C. half plane that contain the negative X -axis
D. None of the above

- Watch Video Solution

40. The 5 th term of the series $\frac{10}{9}, \frac{1}{3} \sqrt{\frac{20}{3}}, \frac{2}{3}, \ldots$ is
A. $\frac{1}{3}$
B. 1
C. $\frac{2}{5}$
D. $\sqrt{\frac{2}{3}}$

Answer: C

(D) Watch Video Solution
41. Let (x, y) be any point on the parabola $y^{2}=4 x$. Let P be the point that divides the line segment from (0,0) and (x, y) n the ratio $1: 3$. Then the locus of P is :
A. $x^{2}=y$
B. $y^{2}=2 x$
C. $y^{2}=x$
D. $x^{2}=2 y$

Answer: C

- Watch Video Solution

42. Equation of the ellipse whose foci are $(2,2)$ and $(4,2)$ and the major axis is of length 10 is
A. $\frac{(x+3)^{2}}{24}+\frac{(y+2)^{2}}{25}=1$
B. $\frac{(x-3)^{2}}{24}+\frac{(y-2)^{2}}{25}=1$
C. $\frac{(x+3)^{2}}{25}+\frac{(y+2)^{2}}{24}=1$
D. $\frac{(x-3)^{2}}{25}+\frac{(y-2)^{2}}{24}=1$

Answer: D

- Watch Video Solution

43. $\frac{\sin 5 \theta+\sin 3 \theta}{\cos 5 \theta+\cos 3 \theta}$ is equal to
A. $\sin 4 \theta$
B. $\cos 4 \theta$
C. $\tan 4 \theta$
D. None of these

- Watch Video Solution

44. For the two circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}-2 y=0$, there is/are
A. one pair of common tangents
B. only one common tangent
C. three common tangents
D. no common tangent

Answer: D

$x_{1}+x_{2} \leq 3,2 x_{1}+5 x_{2} \geq 10 x_{1}, x_{2} \geq 0 \quad$ which of the following point does not lie in the feasible region ?
A. $(2,2)$
B. $(1,2)$
C. $(2,1)$
D. $(4,2)$

Answer: C

D View Text Solution

46. Suppose the cubic $x^{3}-p x+q$ has three distinct real roots, where $p>0$ and $q>0$. Then which one of the following holds?
A. The cubic has maxima at both $\sqrt{\frac{\rho}{3}}$ and $-\sqrt{\frac{\rho}{3}}$
B. The cubic has minima at $\sqrt{\frac{\rho}{3}}$ and maxima at $-\sqrt{\frac{\rho}{3}}$
C. The cubic has minima at $-\sqrt{\frac{\rho}{3}}$ and maxima at $\sqrt{\frac{\rho}{3}}$
D. The cubic has minima at both $\sqrt{\frac{\rho}{3}}$ and $-\sqrt{\frac{\rho}{3}}$

Answer: B

- Watch Video Solution

47. If $f(x+y)=f(x) f(y)$ for all real x and $\mathrm{y}, f(6)=3$ and
$f^{\prime}(0)=10$, then $f^{\prime}(6)$ is
A. 30
B. 13
C. 10
D. 0

Answer: A

(Watch Video Solution

48. A ladder 10 m long rests against a vertical wall with the lower end on the horizontal ground. The lower end of the ladder is pulled along the ground away from the wall at the rate of $3 \mathrm{~m} / \mathrm{s}$. The height of the upper end while it is descending at the rate of $4 \mathrm{~m} / \mathrm{s}$, is
A. $4 \sqrt{3} \mathrm{~m}$
B. $5 \sqrt{3} \mathrm{~m}$
C. $5 \sqrt{2} \mathrm{~m}$
D. 6 m

D Watch Video Solution

49. If $a x^{2}+b x+4$ attains its minimum value -1 at $x=1$, then the values of a and b are respectively
A. $5,-10$
B. $5,-5$
C. 5,5
D. $10,-5$

Answer: A

50. The equation of the tangent to the curve $y=(2 x-1) e^{2(1-x)}$ at the point of its maximum, is
A. $y-1=0$
B. $x-1=0$
C. $x+y-1=0$
D. $x-y+1=0$

Answer: A

