

India's Number 1 Education App

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 22

Mathematics

1. The point (5, -7) lies outside the circle

A.
$$x^2 + y^2 - 8x = 0$$

B.
$$x^2 + y^2 - 5x + 7y = 0$$

C.
$$x^2 + y^2 - 5x + 7y - 1 = 0$$

D.
$$x^2 + Y^2 - 8x + 7y - 2 = 0$$

Answer: A

2. If
$$x=rac{1-t^2}{1+t^2}$$
 and $y=rac{2t}{1+t^2}$, then $rac{dy}{dx}$ is equal to

A.
$$-\frac{y}{x}$$

$$\operatorname{B.}\frac{y}{x}$$

$$\mathsf{C.} - rac{x}{y}$$

D.
$$\frac{x}{y}$$

Answer: C

Watch Video Solution

3. A vector perpendicular to both of the vectors

 $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}$ is

A.
$$\hat{i}+\hat{j}$$

B.
$$\hat{i}-\hat{j}$$

- C. $cig(\hat{i}-\hat{j}ig)$,c is scalar
- D. None of these

Answer: C

Watch Video Solution

- **4.** In an ellipse length of minor axis is 8 and eccentricity is $\frac{\sqrt{5}}{3}$. The length of major axis is
 - A. 6
 - B. 12
 - C. 10
 - D. 16

Answer: B

5. The integrating factor of the differential equation

$$(1-x^2)rac{dy}{dx}-xy=1$$
, is

$$A.-x$$

$$\mathsf{B.} - \frac{x}{(1-x^2)}$$

C.
$$\sqrt{1-x^2}$$

D.
$$\frac{1}{2}\log(1-x^2)$$

Answer: C

6. The inverse of the statement $(p \wedge { ilde{\hspace{1pt} ext{-}}} q) o r$ is

A. ~
$$r \Rightarrow ~p$$
 ~ q

B.
$$extstyle au p \ extstyle q \Rightarrow extstyle au r$$

D. None of these

Answer: B

Watch Video Solution

7. For the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$, which of the following is correct?

A.
$$A^3+3A^2-l=O$$

$$B. A^3 - 3A^2 - l = O$$

C.
$$A^3 + 2A^2 - l = O$$

$$\mathsf{D}.\,A^3-A^2+l=O$$

Answer: B

Watch Video Solution

8. One of the diameter of the circle

$$x^2 + y^2 - 2x + 4y - 4 = 0$$
, is

A.
$$x - y - 3 = 0$$

B.
$$x + y - 3 = 0$$

$$C. -x + y - 3 = 0$$

D.
$$x + y + 3 = 0$$

Answer: A

Watch Video Solution

9. The angle between the straight lines

$$\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$$

and $\dfrac{x-1}{1}=\dfrac{y+2}{2}=\dfrac{z-3}{-3}$ is

A.
$$45^{\circ}$$

B.
$$30^{\circ}$$

C.
$$60^{\circ}$$

D.
$$90^{\circ}$$

Answer: D

Watch Video Solution

10. Minimize $z = \sum_{j=1}^n \Sigma + (i=1)^m C_{ij} X_{ij}$ subject to

$$\Sigma_{j=1}^n X_{ij} \leq a_i, \qquad i=1,2,....,m$$
Sigma_(i=1)^(m)X_(ij)=b_(j), j=1,2,....n

is a LPP with number of constraints

A. m+n

B. m-n

C. mn

D. $\frac{m}{n}$

Answer: A

11. For the function
$$f(x)=rac{\log_e(1+x)+\log_e(1-x)}{x}$$
 to be continuous at x = 0, the value of f(0) is

A.
$$-1$$

B. 0

$$\mathsf{C.}-2$$

D. 2

Answer: D

Watch Video Solution

12. The rate of change of surface area of a sphere of radius r when the radius is increasing at the rate of 2 cm/sec is proportional to

A.
$$\frac{1}{r}$$

$$\cdot \frac{1}{r^2}$$

Answer: C

Watch Video Solution

- **13.** If $y=\sqrt{x+\sqrt{x+\sqrt{x+
 ightarrow\infty}}}$, then $\dfrac{dy}{dx}$ is equal to....
 - A. $\frac{x}{2y-1}$
 - $\mathsf{B.}\,\frac{2}{2y-1}$
 - $\mathsf{C.} \frac{1}{2y-1}$
 - D. $\frac{1}{2y-1}$

Answer: D

Watch Video Solution

14. $\int_{0}^{2\pi} (\sin x - |\sin x|) dx$ equal to

A. 0

B. 4

C. 8

D. 1

Answer: B

15.

Watch Video Solution

$(\sin x + \cos x)dy + (\cos x - \sin x)dx = 0$ is-

solution

The

A.
$$e^x(\sin x + \cos x) + c = 0$$

of

the

differential

equation

$$B. e^y(\sin x + \cos x) = c$$

$$\mathsf{C.}\,e^y(\cos x - \sin x) = c$$

$$\operatorname{D.} e^x(\sin x - \cos x + x) = c$$

Answer: B

16. Locus of the point of intersection of perpendicular tangents to the circle $x^2+y^2=16$ is

A.
$$x^2 + y^2 = 8$$

$$\mathrm{B.}\,x^2+y^2=32$$

C.
$$x^2 + y^2 = 64$$

D.
$$x^2 + y^2 = 16$$

Answer: B

Watch Video Solution

17. In a Boolean Algebra B, for all x in B, x+1 is equal to

A. 0

B. 1

D. None of these

Answer: B

Watch Video Solution

18. A normal is drawn at a point P(x, y) of a curve It meets the x-axis at Q If

PQ is of constant length k such a curve passing through (0,k) is

A.
$$y rac{dy}{dx} = \ - \ + \sqrt{k^2 - y^2}$$

$$B. x \frac{dy}{dx} = - + \sqrt{k^2 - x^2}$$

$$\mathsf{C.}\, y \frac{dy}{dx} = - + \sqrt{y^2 - k^2}$$

$$D. x \frac{dy}{dx} = - + \sqrt{x^2 - k^2}$$

Answer: A

19. The total area enclosed by the lines y=|x|,y=0 and |x|=1 is

- A. 2 sq unit
- B. 4 sq unit
- C. 1 sq unit
- D. None of these

Answer: C

20.
$$\int \sqrt{\frac{x}{a^3 - x^3}} dx$$
 is equal to

A.
$$\displaystyle \frac{2}{3} \cos^{-1} \Biggl(\displaystyle \frac{x^2/3}{a^2/3} \Biggr) + c$$

$$\mathsf{B.}~\frac{2}{3}\mathrm{sin}^{-1}\bigg(\frac{x^2/3}{a^2/3}\bigg)+c$$

C.
$$\frac{2}{3} \tan^{-1} \left(\frac{x^2/3}{a^2/3} \right) + c$$

D.
$$\dfrac{2}{3}\mathrm{sin}^{-1} \Biggl(\dfrac{x^2/3}{a^2/3}\Biggr) + c$$

Answer: D

Watch Video Solution

21. If f(x)= |cosxl, then $f'\left(\frac{3\pi}{4}\right)$ equal to -

$$\text{A.} - \frac{1}{\sqrt{2}}$$

$$\text{B.} \ \frac{1}{\sqrt{2}}$$

B.
$$\frac{1}{\sqrt{2}}$$

C. 1

D. None of these

Answer: B

Watch Video Solution

22. These is an objective type question with 4 answer choices exactly one of which is correct. A student has not studied the topic on which the question has been set. The probility that the student guesses the correct

answer is

A. 1/2

B.1/4

C.1/8

D. None of these

Answer: B

23.
$$\int \frac{\cos 2x - 1}{\cos 2x + 1} dx$$
 is equal to

A.
$$\tan x - x + c$$

$$B. -x - \tan x + c$$

$$\mathsf{C.}\,x - \tan x + c$$

$$\mathsf{D}. - x - \cot x + c$$

Answer: C

Watch Video Solution

24. The equation of the parabola with its vertex at (1, 1) and focus at (3, 1) is

A.
$$(x-1)^2 = 8(y-1)$$

B.
$$(y-1)^2 = 8(x-3)$$

C.
$$(y-1)^2 = 8(x-1)$$

D.
$$(x-3)^2 = 8(y-1)$$

Answer: C

Watch Video Solution

25. What is the value of (d+a). $[a imes \{b imes (c imes d)\}]$?

Answer: C

Watch Video Solution

26. Let
$$T_r$$
 be the r^{th} term of an A.P whose first term is a and common difference is d IF for some integer m,n, $T_m=\frac{1}{n}$ and $T_n=\frac{1}{m}$ then $a-d=$

B. 1

$$\mathsf{C.}\,\frac{1}{mn}$$

$$\mathsf{D.}\,\frac{1}{m}+\frac{1}{n}$$

Watch Video Solution

27. Let
$$X=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}$$
, $A=\begin{bmatrix}1&-1&2\\2&0&1\\3&2&1\end{bmatrix}$ and $B=\begin{bmatrix}3\\1\\4\end{bmatrix}$.If AX=B, then X is

equal to

A.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
B.
$$\begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix}$$
C.
$$\begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$
D.
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Answer: D

- 28. Which of the following is a statement?
 - A. Open the door
 - B. Do your home work
 - C. Two plus two is four
 - D. Switch on the fan

Answer: C

- **29.** A line passes through the point (2,2) and is perpendicular to the line
- 3x + y = 3, then its *y*-intercept is
 - A. 1/3
 - $\mathsf{B.}\,2/3$
 - C. 1
 - D. 4/3

Answer: D

Watch Video Solution

30. The angle of intersection between the curves $x^2=4(y+1)$ and

A. $\frac{\pi}{6}$

 $x^2 = -4(y+1)$ is

- B. $\frac{\pi}{4}$
- C. 0
- D. $\frac{\pi}{2}$

Answer: C

Watch Video Solution

31. If the sum of first n natural numbers is $\frac{1}{78}$ times the sum of their cubes, then the value of n is

- B. 12
- C. 13
- D. 14

Answer: B

Watch Video Solution

tangent to the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$, is

32. The locus of the foot of the perpendicular from the foci an any

A.
$$l=a^2, m=b^2$$

B.
$$l=b^2, m=a^2$$

Answer: A

33. The feasible for the following constraints

 $L_1 \leq 0, L_2 \geq 0, L_3 = 0, x \geq 0, y \geq 0$ in the diagram shown is

A. area DHF

B. area AHC

C. line segment EG

D. line segment Gl

Answer: C

Watch Video Solution

- **34.** The value of $\lim_{x o 1} rac{x^7 2x^5 + 1}{x^3 3x^2 + 2}$ is
 - A. 0
 - B. 1
 - C. -1
 - D. None of these

Answer: B

A. x=1 is a point of maximum

B. x = -1 is a point of minimum

C. maximum value > minimum value

D. maximum value < minimum value

Answer: D

Watch Video Solution

36. The derivative of
$$f(x) = \int_{x^2}^{x^3} rac{1}{\log_e(t)} dt,$$
 $(x>0)$, is

A.
$$\frac{1}{3\log x}$$

$$\mathsf{B.} \; \frac{1}{3\log x} - \frac{1}{2\log x}$$

$$\mathsf{C.} \left(\log x\right)^{-1} x (x-1)$$

D.
$$\frac{3x^2}{\log x}$$

Answer: C

37. In a certain twon, $25\,\%$ families own a cell phone, $15\,\%$ families own a scooter and $65\,\%$ families own both a cell phone and a scooter, then the total number of families in the town is

- A. 10000
- B. 20000
- C. 30000
- D. 40000

Answer: C

View Text Solution

38. If $A=\{1,2,3,4,5\}$, then find the domain in the relation from A to A by $R=\{(x,y)\colon y=2x-1\}.$

A. {1,2,3}

Answer: A

Watch Video Solution

39. If $x^y=e^{x-y}$, then $\frac{dy}{dx}$ is equal to

A.
$$\frac{1}{1 + \log x}$$

$$\mathsf{B.}\; \frac{\log x}{\left(1+\log x\right)^2}$$

$$\mathsf{C.}\,\frac{x}{\left(1+\log x\right)^2}$$

$$\mathsf{D.}\; \frac{\log x}{1+\log x}$$

Answer: B

- 40. In Boolean Algebra, the unit element '1'
 - A. has two vectors
 - B. is unique
 - C. has at least two values
 - D. None of the above

Answer: B

- **41.** If $A = \left[egin{array}{cc} 1 & 1 \ 1 & 1 \end{array}
 ight]$,then A^{100} is equal to
 - A. 2^{100}
 - B. $2^{99}A$
 - C. 100 A
 - D. 299 A

Watch Video Solution

42. The value of the integral $\int \frac{1+x^2}{1+x^4} dx$ is equal to

A.
$$\frac{1}{\sqrt{2}} an^{-1}\left(\frac{x^2}{\sqrt{2}}\right)+c$$

B.
$$\dfrac{1}{\sqrt{2}} an^{-1}\!\left(\dfrac{x^2-1}{\sqrt{2}x}
ight)+c$$

C.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^2 + 1}{x} \right) + c$$

D.
$$\tan^{-1}\!\left(\frac{x^2-1}{\sqrt{2}x}\right)+c$$

Answer: B

Watch Video Solution

43. The minimum value of 2^{x^2-3} $\hat{}$ (3+27) is 2^{27} (b) 2 (c) 1 (d) none of these

B. 2

 $C. 2^{27}$

A. 1

D. None of these

Answer: A

Watch Video Solution

44. If f(2)=2 and f'(2)=1, and then $\lim_{x o 2} \frac{2x^2 - 4f(x)}{x-2}$ is equal to

B.-4

C. 2

D.-2

Answer: A

A. 4

45. The probability that a man will live 10 more years is 1/4 and the probability that his wife will live 10 more years is 1/3. Then the probability that neither will be alive in 10 years, is

- A. $\frac{5}{12}$
- $\mathsf{B.}\;\frac{1}{2}$
- c. $\frac{7}{12}$
- D. $\frac{11}{12}$

Answer: B

Watch Video Solution

46. If $A=\{x,y,z\}$ and $B=\{a,b,c,d\}$. Then, which one of the following is not a relation from A to B ?

A. $\{(x,a), (x,c)\}$

B. $\{(y,c), (y,d)\}$

C. $\{(z,a), (z,d)\}$

D. {(z,b), (y,b),(a,d)}

Answer: D

Watch Video Solution

$$\left[\left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \left(\overrightarrow{b} \times \overrightarrow{c} \right) \right. \left(\overrightarrow{b} \times \overrightarrow{c} \right) \times \left(\overrightarrow{c} \times \overrightarrow{a} \right) \left. \left(\overrightarrow{c} \times \overrightarrow{a} \right) \times \left(\overrightarrow{a} \times \overrightarrow{a} \right) \right] \times \left(\overrightarrow{c} \times \overrightarrow{a} \right) \times \left(\overrightarrow{c} \times \overrightarrow{a} \right$$

47.

Answer: C

A.
$$\left[abc\right]^2$$

 $B. \left[abc\right]^3$

C.
$$\left[abc
ight]^4$$

D. None of these

48. Equation of circle whose centre is $(3,\,-1)$ and which cut off an intercept of length 6 unit from the line : 2x-5y+18=0 is:

A.
$$x^2 + y^2 - 6x + 2y - 18 = 0$$

$$B. x^2 + y^2 - 6x + 2y - 38 = 0$$

$$\mathsf{C.}\,x^2 + y^2 - 6x + 2y - 28 = 0$$

D. None of the above

Answer: C

Watch Video Solution

49. If $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$, then $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is equal to

A.
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Answer: B

50. The three straight lines ax+by=c, bx+cy=a and cx +ay =b are collinear, if

A. b+c=a

Answer: C

