# đず doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - MHTCET PREVIOUS YEAR

 PAPERS AND PRACTICE PAPERS
## PRACTICE SET 24

## Paper 2 Mathmatics

1. The switching function for the following

A. $(p+q \cdot r)+r$
B. $(p+q \cdot r) \cdot t$
C. $p \cdot r+q \cdot r$
D. None of these

Answer: b

## D Watch Video Solution

2. Find the incentre of the triangle with
vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: d

## D Watch Video Solution

3. Find the length of the latus rectum of the parabola

$$
169\left\{(x-1)^{2}+(y-3)^{2}\right\}=(5 x-12 y+17)^{2}
$$

A. $\frac{14}{13}$
B. $\frac{26}{13}$
C. $\frac{12}{13}$
D. None of these

Answer: b
4. The solution set of the inequation $2 x+y>5$ is
A. half plane that contains the origin
B. open half plane not containing the origin
C. whole xy-plane except the points typing
on the line $2 x+y=5$
D. None of these
5. Let $A$ and $B$ be two events such that
$P(A)=0.3$ and $P(A \cup B)=0.8$. If A and B are independent events, then $P(B)=$

5
A. $\frac{5}{7}$
B. $\frac{2}{3}$
C. 1
D. None of these
6. If $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$, then $\frac{d y}{d x}$ is equal to

> A. $\frac{x}{y}$
> B. $-\frac{x}{y}$
> C. $\frac{y}{x}$
> D. $-\frac{y}{x}$

Answer: b
7. $\int \frac{\left(\tan ^{-1} x\right)^{3}}{1+x^{2}} d x$ is equal to
A. $3\left(\tan ^{-1} x\right)^{2}+c$
B. $\frac{\left(\tan ^{-1} x\right)^{4}}{4}+c$
C. $\left(\tan ^{-1} x\right)^{4}+c$
D. None of these

Answer: b

## 8. The solution of $\frac{d y}{d x}=2^{y-x}$ is

A. $2^{x}+2^{y}$

$$
\begin{aligned}
& \text { B. } 2^{x}-2^{y} \\
& \text { C. } \frac{1}{2^{x}}-\frac{1}{2^{y}}=\mathrm{c} \\
& \text { D. } \frac{1}{2^{x}}+\frac{1}{2^{y}}=c
\end{aligned}
$$

## Answer: c

## D Watch Video Solution

9. If the line $y=7 x-25$ meets the circle $x^{2}+y^{2}=25$ in the points $\mathrm{A}, \mathrm{B}$ then the distance between $A$ and $B$ is
A. $\sqrt{10}$
B. 10
C. $5 \sqrt{2}$
D. 5

Answer: c

- Watch Video Solution

10. Dual of $x \cdot(y+x)=x$ is
A. $x+(y \cdot x)=x$
B. $x \cdot(y \cdot x)=x$
C. $(x+y) \cdot(x+x)=x$
D. None of these

Answer: a
11. The angle between the tangents drawn at
the points $(5,12)$ and $(12,-5)$ to the circle $x^{2}+y^{2}=169$ is:
A. $45^{\circ}$
B. $60^{\circ}$
C. $30^{\circ}$
D. $90^{\circ}$

Answer: d

D Watch Video Solution
12. Equation of radical axis of the circles
$x^{2}+y^{2}-3 x-4 y+5=0$
$2 x^{2}+2 y^{2}-10 x-12 y+12=0$ is
A. $2 x+2 y-1=0$
B. $2 x+2 y+1=0$
C. $x+y+7=0$
D. $x+y-7=0$

Answer: a

D Watch Video Solution
13. Given two vectors are $\hat{i}-\hat{j}$ and $\hat{i}+2 \hat{j}$.

The unit vector coplanar with the two vectors nad perpendicular to first is (A) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
(B) $\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j})$ (C) $\pm \frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
(D) none of these

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}}(\hat{i}+\hat{k}) \\
& \text { B. } \frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j}) \\
& \text { C. } \pm \frac{1}{\sqrt{2}}(\hat{i}+\hat{j})
\end{aligned}
$$

D. None of these
14. The value of $\lim _{x \rightarrow 7}\left(\frac{2-\sqrt{x-3}}{x^{2}-49}\right)$ is
A. $\frac{2}{9}$
B. $-\frac{2}{49}$
C. $-\frac{1}{56}$
D. $-\frac{1}{59}$

Answer: c

- Watch Video Solution

15. If $4 x^{2}+p y^{2}=45$ and $x^{2}-4 y^{2}=5$ cut orthogonally, then the value of $p$ is
A. $\frac{1}{9}$
B. 9
C. 3
D. 18

Answer: b
16. $\int_{0}^{\pi} e^{\sin ^{2} x} \cos ^{3} x d x$
A. -1
B. 0
C. 1
D. $\pi$

Answer: b

- Watch Video Solution

17. If the sum of 12 th and 22 nd terms of an AP
is 100 then the sum of the first 33 terms of an
AP is
A. 1700
B. 1650
C. 3300
D. 3400

Answer: b

- Watch Video Solution

18. The negation of the statement ${ }^{\prime} 2+3=5$ and $8<10$ is-
A. $2+3 \neq 5$ and $<10$
B. $2+3=5=$ and $8<10$
C. $2+3$ ne 5 or $8<10$
D. None of these

## Answer: c

(D) Watch Video Solution
19. If $\left[\begin{array}{lll}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right]$ is a singular matrix
then $x$ is

$$
\begin{aligned}
& \text { A. } \frac{13}{25} \\
& \text { B. }-\frac{25}{13} \\
& \text { C. } \frac{5}{13} \\
& \text { D. } \frac{25}{13}
\end{aligned}
$$

## Answer: b

20. A straight line through $P(1,2)$ is such that its intercept between the axes is bisected at $P$ its equation :
A. $x+y=-1$
B. $x+y=3$
C. $x+2 y=5$
D. $2 x+y=4$

Answer: d
21. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is $x$ $=4$, then the equation of ellipse is
A. $3 x^{2}+4 y^{2}=1$
B. $3 x^{2}+4 y^{2}=12$
C. $4 x^{2}+3 y^{2}=12$
D. $4 x^{2}+3 y^{2}=1$

## Answer: b

22. The diection cosines of two lines are proportional to $(2,3,-6)$ and $(3,-4,5)$, then the acute angle between them is (A)

$$
\begin{aligned}
& \cos ^{-1}\left\{\frac{49}{36}\right\}\left(\text { (B) } \cos ^{-1}\left\{\frac{18 \sqrt{2}}{35}\right\} \text { (C) } 96^{0}\right. \text { (D) } \\
& \cos ^{-1}\left(\frac{18}{35}\right)
\end{aligned}
$$

A. $\cos ^{-1}\left(\frac{49}{36}\right)$
B. $\cos ^{-1}\left(\frac{18 \sqrt{2}}{35}\right)$
C. $96^{\circ}$
D. $\cos ^{-1}\left(\frac{18}{35}\right)$

Answer: b

## - Watch Video Solution

23. Find the probability that a leap year will have 53 Friday or 53 Saturdays.
A. $2 / 7$
B. $3 / 7$
C. $4 / 7$
D. $1 / 7$

Answer: b

## - Watch Video Solution

24. If $f(x)=\sqrt{1+\cos ^{2}\left(x^{2}\right)}$, thenf $f^{\prime}\left(\frac{\sqrt{\pi}}{2}\right)$

$$
\text { is } \frac{\sqrt{\pi}}{6} \text { (b) }-\sqrt{\pi / 6} 1 / \sqrt{6} \text { (d) } \pi / \sqrt{6}
$$

A. $\frac{\sqrt{\pi}}{6}$
B. $-\sqrt{\frac{\pi}{6}}$
C. $\frac{1}{\sqrt{6}}$
D. $\frac{\pi}{\sqrt{6}}$

Answer: b

## - Watch Video Solution

$$
\begin{aligned}
& \text { 25. The sum of the series } \\
& 1^{3}+2^{3}+3^{3}+\ldots+15^{3} \text { is }
\end{aligned}
$$

A. 22000
B. 10000
C. 14400
D. 15000

## Answer: c

## - Watch Video Solution

26. Degree of the differential equation $e^{\frac{d y}{d x}}=\mathrm{x}$
is
A. 1
B. 2
C. 3
D. None of these

Answer: a

## D Watch Video Solution

27. In a Boolean Algebra B, for all $x$ in $B .1$ is equal to
A. 0
B. 1
C. $x-1$
D. None of these

## Answer: a

## D Watch Video Solution

28. A survey shows that $63 \%$ of the Americans
like cheese 4 whereas $76 \%$ like apples. If $x \%$ of the Americans likes both cheese and apples, find the value of $\mathrm{x} .(39 \leq x \leq 63)$
A. $x=39$
B. $x=63$
C. $39 \leq x \leq 63$

## D. None of these

## Answer: c

## D Watch Video Solution

29. Circle $x^{2}+y^{2}-2 x-\lambda x-1=0$ passes
through to fixed points, coordinates of the points are
A. $(0 \pm 1)$
B. $( \pm 1,0)$
C. $(0,1)$ and $(0,2)$
D. ( $0,-1$ ) and ( $0,-2$ )

## Answer: a

## D Watch Video Solution

30. If $|a|=3,|b|=4$, then a value of $\lambda$ for which $a+\lambda b$ is perpendicular to $a-\lambda b$ is
A. $\frac{9}{16}$
B. $\frac{3}{4}$
C. $\frac{3}{2}$
D. $\frac{4}{3}$

Answer: b

## - Watch Video Solution

31. The minimum value of $P=6 x+16 y$ subject to constraints $x \leq 40, y \leq 20$ and $x, y \geq 0$ is
A. 240
B. 320
C. 0
D. None of these

## Answer: c

## D Watch Video Solution

32. If a dice is thrown twice, the probability of occurrence of 4 atleast once is
A. $\frac{11}{36}$
B. $\frac{7}{12}$
C. $\frac{35}{36}$
D. None of these

## Answer: a

## D Watch Video Solution

## 33. If $y=\tan ^{-1}(\sec x-\tan x)$, $\operatorname{then} \frac{d y}{d x}$ is

 equal toA. 2
B. -2
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Answer: d

## - Watch Video Solution

34. $\int_{0}^{8}|x-5| d x=17$
A. 17
B. 12
C. 9

## D. 18

## Answer: a

## D Watch Video Solution

35. Let $A=\{1,2,3,4)$ and $R$ be the relation on $A$
defined by $\{(a, b): a$, be $A, a \tilde{A}-b$ is an even
number\}, then the range of $R$ is
A. $\{1,2,3,4\}$
B. $\{2,4\}$
C. $\{2,3,4\}$
D. $\{1,2,4\}$

Answer: b

- Watch Video Solution

36. Which of the following is not a statement ?
A. Roses are red

B. New Delhi is in India

C. Every square is a rectangle

## D. Alas ! I have failed

## Answer: d

## D Watch Video Solution

37. The number of point at which the function
$f(x)=|x-1|+[x-2]+\cos x, \quad$ where
$x \in[0,4]$ is not continuous, is ([.] denotes greatest intergest function\}
A. 1
B. 2
C. 3
D. 0

## Answer: d

## D Watch Video Solution

38. The radius of a cylinder is increasing at the
rate of $3 \mathrm{~ms}^{-1}$ and its altitude is decreasing at
the rate of $4 m s^{-1}$. The rate of change of
volume when radius is $4 m$ and altitude is 6 m
is
A. $80 \pi m^{3} / s$
B. $144 \pi m^{3} / \mathrm{s}$
C. $80 \mathrm{~m}^{3} / \mathrm{s}$
D. $64 \mathrm{~m}^{3} / \mathrm{s}$

Answer: a

- Watch Video Solution

39. Integrating factor of differential equation $\cos x \frac{d y}{d x}+y \sin x=1$ is (a) $(b)(c) \cos x(d)$ (e) (b) $(f)(g) \tan x(h)$ (i) (c) (d)(e) $\sec x(f)$ (g)
(d) $(h)(i) \sin x(j)(\mathrm{k})$
A. $\sec x$
B. $\tan x$
C. $\sin x$
D. $\cot x$

Answer: a

# 40. Find the output for the given input for the 

 given circuit
A. $x_{1} \cdot x_{2} \cdot x_{3}$
B. $x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, x^{\prime}{ }_{3}$
C. $x_{1} \cdot x_{2} x_{3}$
D. $x_{1}+x_{2} x_{3}$

## Answer: c

## D Watch Video Solution

41. Let $S$ be set of all real numbers and let $R$ be
relation on s, defined by $a R b \Leftrightarrow|a-b| \leq 1$. then $R$ is
A. symmetric and transitive but not reflexive
B. reflexive and transitive but not
C. reflexive and symmetric but not transitive
D. an equivalence relation

## Answer: c

## D Watch Video Solution

42. If $e$ and $e^{\prime}$ are the eccentricities of the ellipse $5 x^{2}+9 y^{2}=45$ and the hyperbola $5 x^{2}-4 y^{2}=45$ respectively, then $e e^{\prime}$ is
A. 9
B. 4
C. 5
D. 1

Answer: d

## D Watch Video Solution

43. If $O$ is origin and $C$ is the mid - point of $A(2$,
$-1)$ and $B(-4,3)$. Then value of $O C$ is
A. $\hat{i}+\hat{j}$
B. $\hat{i}-\hat{j}$
C. $-\hat{i}+\hat{j}$
D. $-\hat{i}-\hat{j}$

## Answer: c

D Watch Video Solution
44. A letter is taken out at random from
'ASSISTANT and another is taken out from
'STATISTICS. The probability that they are the same letters, is
A. $\frac{1}{45}$
B. $\frac{13}{90}$
C. $\frac{19}{90}$
D. None of these

Answer: c
( Watch Video Solution
45. IF t is a parameter, then $x=a\left(t+\frac{1}{t}\right)$ and $y=b\left(t-\frac{1}{t}\right)$ represents

A. an ellipse

B. a circle
C. a pair of straight lines
D. a hyperbola

Answer: d

## D Watch Video Solution

46. $\int \frac{x^{2}-1}{x^{4}+x^{2}+1} d x$ is equal to
A. $\log \left(x^{4}+x^{2}+1\right)+c$
B. $\frac{\log \left(x^{2}-x+1\right)}{x^{2}+x+1}+c$
C. $\frac{1}{2} \frac{\log \left(x^{2}-x+1\right)}{x^{2}+x+1}+c$
D. $\frac{1}{2} \frac{\log \left(x^{2}+x+1\right)}{x^{2}-x+1}+c$

Answer: c

- Watch Video Solution

47. $\int_{-1}^{0} \frac{d x}{x^{2}+2 x+2}$ is equal to
A. 0
B. $\pi / 4$
C. $\pi / 2$
D. $-\frac{\pi}{4}$

Answer: b

- Watch Video Solution

48. The number of normals drawn to the parabola $y^{2}=4 x$ from the point $(1,0)$ is
A. 0
B. 1
C. 2
D. 3

Answer: b

D Watch Video Solution
49. If $A, B, C$ are the vertices of a triangle whose position vectros are $\vec{a}, \vec{b}, \vec{c}$ and $G$ is the centroid of the $\triangle A B C$, then $\overline{G A}+\overline{G B}+\overline{G C}=$
A. 0
B. $A+B+C$
C. $\frac{a+b+c}{3}$
D. $\frac{a-b-c}{3}$

Answer: a
50. If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{d y}{d x}$ at $x=1$ is equal to: $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$ (c) 1 (d) $\sqrt{2}$

$$
\begin{aligned}
& \text { A. } \frac{1}{1+x^{2}} \\
& \text { B. } \frac{2}{1+x^{2}} \\
& \text { C. } \frac{x^{2}}{2 \sqrt{1+x^{2}}\left(\sqrt{1+x^{2}}-1\right)} \\
& \text { D. } \frac{1}{2\left(1+x^{2}\right)}
\end{aligned}
$$

Answer: d

