

MATHS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 24

Paper 2 Mathmatics

1. The switching function for the following network is

A.
$$(p+q\cdot r)+r$$

B.
$$(p+q\cdot r)\cdot t$$

C.
$$p \cdot r + q \cdot r$$

D. None of these

Answer: b

2. Find the incentre of the triangle with vertices $(1, \sqrt{3}), (0, 0)$ and (2, 0)

A.
$$\left(1, \frac{\sqrt{3}}{2}\right)$$

$$\mathsf{B.}\left(\frac{2}{3},\,\frac{1}{\sqrt{3}}\right)$$

$$\mathsf{C.}\left(\frac{2}{3},\,\frac{\sqrt{3}}{2}\right)$$

D.
$$\left(1, \frac{1}{\sqrt{3}}\right)$$

Answer: d

3. Find the length of the latus rectum of the parabola

$$169\Big\{(x-1)^2+(y-3)^2\Big\}=(5x-12y+17)^2$$

A.
$$\frac{14}{13}$$

B.
$$\frac{26}{13}$$

c.
$$\frac{12}{13}$$

D. None of these

Answer: b

4. The solution set of the inequation 2x+y>5 is

A. half plane that contains the origin

B. open half plane not containing the origin

C. whole xy-plane except the points typing

on the line 2x + y = 5

D. None of these

Answer: b

5. Let A and B be two events such that P(A)=0.3 and $P(A\cup B)=0.8$. If A and B are independent events, then P(B) =

A.
$$\frac{5}{7}$$
B. $\frac{2}{3}$

$$B. \frac{2}{3}$$

D. None of these

Answer: a

6. If
$$\sin^{-1}x+\sin^{-1}y=\frac{\pi}{2}$$
, then $\frac{dy}{dx}$ is equal to

A.
$$\frac{x}{y}$$

$$\mathsf{B.} - \frac{x}{y}$$

$$\mathsf{C.}\,rac{y}{x}$$

$$\mathsf{D.} - \frac{y}{x}$$

Watch Video Solution

7.
$$\int \frac{(\tan^{-1}x)^3}{1+x^2} dx$$
 is equal to

A.
$$3(\tan^{-1}x)^2 + c$$

$$\mathsf{B.}\,\frac{\left(\tan^{-1}x\right)^4}{4}+c$$

C.
$$(\tan^{-1} x)^4 + c$$

D. None of these

Answer: b

8. The solution of $\frac{dy}{dx} = 2^{y-x}$ is

A.
$$2^x + 2^y$$

B.
$$2^{x} - 2^{y}$$

C.
$$\frac{1}{2^x} - \frac{1}{2^y} = c$$

D.
$$\frac{1}{2^x} + \frac{1}{2^y} = c$$

Answer: c

9. If the line y = 7x - 25 meets the circle $x^2+y^2=25$ in the points A,B then the distance between A and B is

A.
$$\sqrt{10}$$

C.
$$5\sqrt{2}$$

Answer: c

10. Dual of $x\cdot (y+x)=x$ is

$$\mathsf{A.}\,x + (y \cdot x) = x$$

$$\mathsf{B.}\,x\cdot(y\cdot x)=x$$

$$\mathsf{C.}\,(x+y)\cdot(x+x)=x$$

D. None of these

Answer: a

11. The angle between the tangents drawn at the points (5,12) and $(12,\,-5)$ to the circle $x^2+y^2=169$ is:

- A. $45^{\,\circ}$
- B. 60°
- C. 30°
- D. 90°

Answer: d

12. Equation of radical axis of the circles

$$x^2 + y^2 - 3x - 4y + 5 = 0$$

and

$$2x^2 + 2y^2 - 10x - 12y + 12 = 0$$
 is

A.
$$2x + 2y - 1 = 0$$

B.
$$2x + 2y + 1 = 0$$

$$C. x + y + 7 = 0$$

D.
$$x + y - 7 = 0$$

Answer: a

13. Given two vectors are $\hat{i} - \hat{j}$ and $\hat{i} + 2\hat{j}$.

The unit vector coplanar with the two vectors nad perpendicular to first is (A) $\frac{1}{\sqrt{2}} \left(\hat{i} + \hat{j} \right)$ (B) $\frac{1}{\sqrt{5}} \left(2\hat{i} + \hat{j} \right)$ (C) $\pm \frac{1}{\sqrt{2}} \left(\hat{i} + \hat{j} \right)$ (D) none

A.
$$\dfrac{1}{\sqrt{2}}\Big(\hat{i}+\hat{k}\Big)$$

of these

B.
$$\dfrac{1}{\sqrt{5}}\Big(2\hat{i}+\hat{j}\Big)$$

$$\mathsf{C.}\pmrac{1}{\sqrt{2}}\Big(\hat{i}+\hat{j}\Big)$$

D. None of these

Answer: c

14. The value of
$$\lim_{x \to 7} \left(\frac{2 - \sqrt{x - 3}}{x^2 - 49} \right)$$
 is

A.
$$\frac{2}{9}$$

B.
$$-\frac{2}{49}$$

$$C. - \frac{1}{56}$$

D.
$$-\frac{1}{59}$$

Answer: c

15. If $4x^2+py^2=45$ and $x^2-4y^2=5$ cut orthogonally, then the value of p is

A.
$$\frac{1}{9}$$

B. 9

C. 3

D. 18

Answer: b

$$\textbf{16.} \int_0^\pi e^{\sin^2 x} \cos^3 x dx$$

A. -1

B. 0

C. 1

D. π

Answer: b

17. If the sum of 12th and 22nd terms of an AP is 100 then the sum of the first 33 terms of an AP is

- A. 1700
- B. 1650
- C. 3300
- D. 3400

Answer: b

18. The negation of the statement

$$''2 + 3 = 5 \text{ and } 8 < 10 \text{ is}$$

A.
$$2+3 \neq 5$$
and < 10

B.
$$2 + 3 = 5 =$$
and $8 < 10$

C. 2 + 3 ne 5 or
$$8 < 10$$

D. None of these

Answer: c

19. If
$$\begin{bmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{bmatrix}$$
 is a singular matrix

then x is

$$\text{A.}\ \frac{13}{25}$$

$$\mathrm{B.}-\frac{25}{13}$$

C.
$$\frac{5}{13}$$
D. $\frac{25}{13}$

Answer: b

20. A straight line through P(1,2) is such that its intercept between the axes is bisected at P its equation :

A.
$$x + y = -1$$

B.
$$x + y = 3$$

$$C. x + 2y = 5$$

D.
$$2x + y = 4$$

Answer: d

21. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is x

= 4, then the equation of ellipse is

A.
$$3x^2 + 4y^2 = 1$$

B.
$$3x^2 + 4y^2 = 12$$

C.
$$4x^2 + 3y^2 = 12$$

D.
$$4x^2 + 3y^2 = 1$$

Answer: b

22. The diection cosines of two lines are proportional to (2, 3, -6) and (3, -4, 5),

then the scute angle between them is (Λ)

then the acute angle between them is (A)
$$\cos^{-1}\left\{\frac{49}{36}\right\} \text{ (B) } \cos^{-1}\left\{\frac{18\sqrt{2}}{35}\right\} \text{ (C) } 96^0 \text{ (D)}$$

$$\cos^{-1}\left(\frac{18}{35}\right)$$

$$A. \cos^{-1} \left(\frac{49}{36} \right)$$

$$\mathsf{B.}\cos^{-1}\!\left(\frac{18\sqrt{2}}{35}\right)$$

C. 96°

D.
$$\cos^{-1}\left(\frac{18}{35}\right)$$

Watch Video Solution

23. Find the probability that a leap year will have 53 Friday or 53 Saturdays.

A.
$$2/7$$

D.
$$1/7$$

24. If
$$f(x)=\sqrt{1+\cos^2\left(x^2\right)},$$
 then $f'\left(\frac{\sqrt{\pi}}{2}\right)$

is
$$\frac{\sqrt{\pi}}{6}$$
 (b) $-\sqrt{\pi/6}\,1/\sqrt{6}$ (d) $\pi/\sqrt{6}$

A.
$$\frac{\sqrt{\pi}}{6}$$

$$\mathsf{B.}-\sqrt{rac{\pi}{6}}$$

$$\mathsf{C.} \; \frac{1}{\sqrt{6}}$$

D.
$$\frac{7}{\sqrt{6}}$$

Watch Video Solution

25. The sum of the series

$$1^3 + 2^3 + 3^3 + ... + 15^3$$
 is

- A. 22000
- B. 10000
- C.14400
- D. 15000

Answer: c

Watch Video Solution

26. Degree of the differential equation $e^{\frac{dy}{dx}}$ = x

is

A. 1

B. 2

C. 3

D. None of these

Answer: a

Watch Video Solution

27. In a Boolean Algebra B, for all x in B. 1' is equal to

A. 0

B. 1

C. x - 1

D. None of these

Answer: a

Watch Video Solution

28. A survey shows that 63% of the Americans like cheese 4 whereas 76% like apples. If x% of the Americans likes both cheese and apples, find the value of $x.(39 \le x \le 63)$

A.
$$x = 39$$

B.
$$x = 63$$

C.
$$39 \le x \le 63$$

D. None of these

Answer: c

Watch Video Solution

29. Circle $x^2+y^2-2x-\lambda x-1=0$ passes through to fixed points, coordinates of the points are

A. (0 ± 1)

B. $(\pm 1, 0)$

C. (0,1) and (0,2)

D. (0,-1) and (0,-2)

Answer: a

Watch Video Solution

30. If |a|=3, |b|=4 , then a value of λ for which $a+\lambda b$ is perpendicular to $a-\lambda b$ is

A.
$$\frac{9}{16}$$

 $\mathsf{B.}\;\frac{3}{4}$

c.
$$\frac{3}{2}$$

D.
$$\frac{4}{3}$$

Watch Video Solution

to constraints $x \leq 40, y \leq 20$ and $x,y \geq 0$ is

31. The minimum value of P = 6x + 16y subject

A. 240

B. 320

C. 0

D. None of these

Answer: c

Watch Video Solution

32. If a dice is thrown twice, the probability of occurrence of 4 atleast once is

A. $\frac{11}{36}$

B. $\frac{7}{12}$

$$\frac{35}{36}$$

D. None of these

Answer: a

Watch Video Solution

33. If
$$y = \tan^{-1}(\sec x - \tan x)$$
, then $\frac{dy}{dx}$ equal to

A. 2

B. -2

C.
$$\frac{1}{2}$$

Answer: d

Watch Video Solution

34.
$$\int_0^8 |x-5| dx = 17$$

A. 17

B. 12

C. 9

D. 18

Answer: a

Watch Video Solution

35. Let $A = \{1, 2, 3, 4\}$ and R be the relation on A defined by $\{(a, b) : a, be A, a \tilde{A} - b \text{ is an even number}\}$, then the range of R is

A. {1,2,3,4}

B. {2,4}

- C. {2,3,4}
- D. {1,2,4}

Answer: b

Watch Video Solution

36. Which of the following is not a statement?

- A. Roses are red
- B. New Delhi is in India
- C. Every square is a rectangle

D. Alas! I have failed

Answer: d

Watch Video Solution

37. The number of point at which the function

 $f(x) = |x - 1| + [x - 2] + \cos x$, where

 $x \in [0,4]$ is not continuous, is $([.\,]$ denotes

greatest intergest function}

A. 1

- B. 2
- C. 3
- D. 0

Answer: d

Watch Video Solution

38. The radius of a cylinder is increasing at the rate of $3ms^{-1}$ and its altitude is decreasing at the rate of $4ms^{-1}$. The rate of change of

volume when radius is 4m and altitude is 6m

is

A. $80\pi m^3/s$

B. $144\pi m^3/s$

C. $80m^3/s$

D. $64m^3/s$

Answer: a

39. Integrating factor of differential equation

$$\cos x rac{dy}{dx} + y \sin x = 1$$
 is (a) $(b)(c) \cos x(d)$

(e) (b) (f)(g) an x(h) (i) (c) $(d)(e)\sec x(f)$ (g)

(d)
$$(h)(i)\sin x(j)$$
 (k)

A. sec x

B. tan x

C. sin x

D. cot x

Answer: a

rateri video Solution

40. Find the output for the given input for the given circuit

A. $x_1 \cdot x_2 \cdot x_3$

B. x_1', x_2', x_3'

C. $x_1 \cdot x_2 x_3$

D. $x_1 + x_2 x_3$

Answer: c

Watch Video Solution

41. Let S be set of all real numbers and let R be relation on s , defined by $aRb\Leftrightarrow |a-b|\leq 1.$ then R is

A. symmetric and transitive but not reflexive

B. reflexive and transitive but not symmetric

C. reflexive and symmetric but not

transitive

D. an equivalence relation

Answer: c

Watch Video Solution

42. If e and e' are the eccentricities of the ellipse $5x^2+9y^2=45$ and the hyperbola $5x^2-4y^2=45$ respectively , then ee' is equal to

- A. 9
- B. 4
- C. 5
- D. 1

Answer: d

- 43. If O is origin and C is the mid point of A (2,
- -1) and B (-4,3). Then value of OC is

A.
$$\hat{i}+\hat{j}$$

B.
$$\hat{i}-\hat{j}$$

$$\mathsf{C}.-\hat{i}+\hat{j}$$

D.
$$-\hat{i}-\hat{j}$$

Answer: c

Watch Video Solution

44. A letter is taken out at random from

'ASSISTANT and another is taken out from

'STATISTICS. The probability that they are the

same letters, is

- A. $\frac{1}{45}$
- B. $\frac{13}{90}$
- c. $\frac{19}{90}$

D. None of these

Answer: c

45. IF t is a parameter, then
$$x=a\Big(t+rac{1}{t}\Big)$$
 and $y=b\Big(t-rac{1}{t}\Big)$ represents

A. an ellipse

B. a circle

C. a pair of straight lines

D. a hyperbola

Answer: d

46.
$$\int \frac{x^2-1}{x^4+x^2+1} dx$$
 is equal to

A.
$$\log(x^4 + x^2 + 1) + c$$

B.
$$rac{\log \left(x^2-x+1
ight)}{x^2+x+1}+c$$

C.
$$\frac{1}{2} \frac{\log(x^2 - x + 1)}{x^2 + x + 1} + c$$

D.
$$\frac{1}{2} \frac{\log(x^2 + x + 1)}{x^2 - x + 1} + c$$

Answer: c

47.
$$\int_{-1}^{0} \frac{dx}{x^2 + 2x + 2}$$
 is equal to

A. 0

B. $\pi/4$

 $\mathsf{C}.\,\pi/2$

 $\mathsf{D.}-\frac{\pi}{4}$

Answer: b

48. The number of normals drawn to the parabola $y^2=4x$ from the point (1,0) is

- A. 0
- B. 1
- C. 2
- D. 3

Answer: b

49. If A,B,C are the vertices of a triangle whose position vectros are $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ and G is the centroid of the ΔABC , then $\overline{GA}+\overline{GB}+\overline{GC}=$

$$B. A+B+C$$

$$\mathsf{C.}\,\frac{a+b+c}{3}$$

D.
$$\frac{a-b-c}{3}$$

Answer: a

50. If $y=\sec(\tan^{-1}x)$, then $\frac{dy}{dx}$ at x=1 is equal to: $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$ (c) 1 (d) $\sqrt{2}$

A.
$$\frac{1}{1+x^2}$$

B.
$$\frac{2}{1+x^2}$$

C.
$$\dfrac{x^2}{2\sqrt{1+x^2}\Big(\sqrt{1+x^2}-1\Big)}$$

D.
$$\frac{1}{2(1+x^2)}$$

Answer: d

