# ©゙" doubtnut 

India's Number 1 Education App

## PHYSICS

# BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS 

## CURRENT ELECTRICITY

Example

1. A current in a circuit is due to a potential
difference of 30 V applied to a resistor of
resistance $300 \Omega$. What resistance would permit the same current to flow, if the supply voltage was 300 V ?
А. $3 k \Omega$
B. $6 k \Omega$
C. $9 k \Omega$
D. $300 \Omega$

Answer: A

D Watch Video Solution
2. The value of equivalent resistance for the circuit shown below is,

A. $2.123 \Omega$
B. $5.123 \Omega$
C. $4.23 \Omega$
D. $6.283 \Omega$

Answer: B

D Watch Video Solution
3. The resistance of eureka wire is $2.5 \Omega$. What is the value of specific resistance of write of 14 m length and diameter of 0.14 cm ?
A. $27.5 \times 10^{-6} \Omega-\mathrm{cm}$
B. $20.6 \times 10^{-6} \Omega-\mathrm{cm}$
C. $25.3 \times 10^{-6} \Omega-\mathrm{cm}$
D. None of the above

Answer: A

## Watch Video Solution

4. A piece of copper wire has a resistance of $25 \Omega$ at $10^{\circ} \mathrm{C}$. What is the maximum operating temperature, if the resistance of the wire is to be increased by $20 \%$ ? (Assume $\alpha$ at

$$
\left.10^{\circ} C=0.0041 / .^{\circ} C^{-1}\right) .
$$

A. $60.38^{\circ} \mathrm{C}$
B. $58.78^{\circ} \mathrm{C}$
C. $40.73^{\circ} \mathrm{C}$
D. $20.23^{\circ} \mathrm{C}$

Answer: B

## D Watch Video Solution

5. In the figure, a carbon resistor has band of different colours on its body. The resistanceof the following body is

A. $2.2 k \Omega$
B. $3.3 k \Omega$
C. $5.6 k \Omega$
D. $9.1 k \Omega$

## Answer: D

## D Watch Video Solution

6. A current of 16 A is distributed in a circuit
having two branches when connected on 220
$V$ supply. If the resistance of one branch is
20 Omeg, then what is the resistance of other
branch and power taken by both the branches.

A. $44 \Omega$ and 3520 W
B. $50 \Omega$ and 3000 W
C. $20 \Omega$ and 2000 W
D. $26 \Omega$ and 2320 W
7. What is the electrical energy of a circuit ? If
the current flowing from the source is 5 A for duration of 2 s and the resistance of the circuit is $5 \Omega$.
A. 125 J
B. 25 J
C. 300 J
D. 250 J

## Answer: D

## D Watch Video Solution

8. A secondary cell have source emf of 3 V .

When this cell is connected to a load of 0.25
then load emf calculated is 2.10 V . The internal resistance of cell and power consumed are
A. $0.107 \Omega$ and 7.56 W
B. $0.208 \Omega$ and 3.34 W
C. $1.234 \Omega$ and 6.28 W

## D. None of the above

## Answer: A

## D Watch Video Solution

9. If 8 cells having an emf of 1.5 V are connected in series across a load having resistance of $10 \Omega$. What is the current drawn by the load ? Assume internal resistance of all be $0.5 \Omega$.
A. 0.234 A
B. 0.632 A
C. 0.857 A
D. None of these

## Answer: C

## - Watch Video Solution

10. What is the magnitude of current branch

OX of the circuit as shown in figure?

A. 1.5 A
B. 6.5 A
C. 10.5 A
D. 11.5 A

Answer: D

- Watch Video Solution

11. A battery 10 V and $0.5 \Omega$ internal resistance
is connected to a battery of 12 V and $0.8 \Omega$ internal resistance and one terminal of battery
is connected to a $20 \Omega$ resistance, then the current flow in $20 \Omega$ resistance is
A. 0.3023 A
B. 0.8034 A
C. 0.5303 A
D. 1.238 A

Answer: C

## - View Text Solution

12. In the Wheatstone bridge network $A B C D$ is
balanced when $P=500 \Omega, Q=250 \Omega$ and
$S=12 \Omega$, what is the value of R ?

A. $2 \Omega$
B. $4 \Omega$
C. $8 \Omega$
D. $6 \Omega$

## Answer: D

## D Watch Video Solution

13. A Wheatstone bride is almost balanced with point $C$ grounded. Calculate (a) the potential of point $B(\mathrm{~b})$ the potential of point
$D$ (c) If a galvanometer is connected between $B$ and $D$, what is the direction of current through it ? (d) For what value of the resistance $B C$ would the bridge be in balanced state ?

A. $33 \mathrm{~V}, 32 \mathrm{~V}$ and $22 \Omega$

## B. $30 \mathrm{~V}, 23 \mathrm{~V}$ and $11 \Omega$

C. $32 \mathrm{~V}, 33 \mathrm{~V}$ and $10 \Omega$
D. $15 \mathrm{~V}, 20 \mathrm{~V}$ and $20 \Omega$

Answer: A

## D Watch Video Solution

14. A potentiometer wire of length 1 m has a resistance of $100 \Omega$. It is connected to a 6 V battery in series with a resistance of $5 \Omega$.

Determine the emf of the primary cell which gives a balance point at 40 cm .
A. 1.2 V
B. 1.8 V
C. 1.6 V
D. 1.9 V

Answer: C

D Watch Video Solution
15. In a potentiometer arrangement, a cell of emf 2.25 V gives a balance point at 30.0 cm
length of the wire. If the cell is replaced by another cell and the balance point shifts to
60.0 cm , then what is the emf of the second cell?
A. 4.5 V
B. 6.5 V
C. 5.6 V
D. 7.0 V

Answer: A

## D Watch Video Solution

16. A cell can be balanced against 110 cm and

100 cm of potentiometer wire, respectively with and without being short circuited through a resistance of $10 \Omega$. Its internal resistance is
A. $1 \Omega$
B. $2 \Omega$
C. $3 \Omega$
D. $4 \Omega$

Answer: A

## - Watch Video Solution

## Exercise 1

1. A wire of resistance $4 \Omega$ is stretched to twice
its original length. The resistance of stretched
wire would be
A. $2 \Omega$
B. $4 \Omega$
C. $8 \Omega$
D. $16 \Omega$

## Answer: D

## D Watch Video Solution

2. A current 4.0 A exist in a wire of crosssectional area $2.0 \mathrm{~mm}^{2}$. If each cubic metre of
the wire contains $12.0 \times 10^{28}$ free electrons,
then the drift spped is

> A. $2 \times 10^{-8} m s^{-1}$
> B. $0.5 \times 10^{-3} m s^{-1}$
> C. $1.04 \times 10^{-4} m s^{-1}$
D. None of these

Answer: C

## D Watch Video Solution

3. With the rise of temperature the resistivity of a semiconductor
A. remains unchanged
B. increases
C. decreases
D. first increases and then decreases

Answer: C
( Watch Video Solution
4. A carbon film resistor has colour green, black, violet and gold. The value of the resistor is
А. $50 \mathrm{M} \Omega$
B. $500 \mathrm{M} \Omega$
C. $(500 \pm 5 \%) M \Omega$
D. $(500 \pm 10 \%) M \Omega$

## Answer: C

5. Two wires of the same material but of different diameters carry the same current $i$. If the ratio of their diameters is $2: 1$, then the corresponding ratio of their mean drift velocities will be
A. $4: 1$
B. 1:1
C. 1:2
D. 1: 4

## - Watch Video Solution

6. For a metallic wire, the ratio $\frac{V}{i}$ ( $V=$ applied potential difference and $i=$ current flowing ) is
A. independent of temperature
B. increases as the temperature rises
C. decreases as the temperature rises
D. increases or decreases as temperature
rises depending upon the metal

Answer: B

## - Watch Video Solution

7. Two conductors are made of the same material and have the same length. Conductor
$A$ is a solid wire of diameter 1 mm . Conductor
$B$ is a hollow tube of outer diameter 2 mm
and inner diameter 1 mm . Find the ratio of resistance $R_{A}$ to $R_{B}$.
A. 3
B. 2
C. 1
D. 0.5

## Answer: A

## D Watch Video Solution

8. Two wires of the same dimensions but resistivities $\rho_{1}$ and $\rho_{2}$ are connected in series.

The equivalent resistivity of the combination is
A. $\frac{\rho_{1}+\rho_{2}}{2}$
B. $\rho_{1}+\rho_{2}$
C. $2\left(\rho_{1}+\rho_{2}\right)$
D. $\sqrt{\rho_{1} \rho_{2}}$

Answer: A

## D Watch Video Solution

9. A material ' B ' has twice the specific resistance of ' A '. A circular wire made of ' B ' has twice the diameter of a wire made of ' A '. Then
for the two wires to have the same resistance,
the ratio $l_{B} / l_{A}$ of their respective lengths must be
A. 2
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: A

D Watch Video Solution
10. The resistance of a 10 m long wire is $10 \Omega$.

Its length is increased by $25 \%$ by stretching
the wire uniformly. The resistance of wire will change to
A. $12.5 \Omega$
B. $14.5 \Omega$
C. $15.6 \Omega$
D. $16.6 \Omega$

Answer: C

- Watch Video Solution

11. Calculate the average drift speed of conduction electrons in a copper wire of crosssectional area $1.0 \times 10^{-7} m^{2}$, carrying a current of 1.5 A. Assume that each copper atom contributes roughly one conduction electron. The density of copper is $9.0 \times 10^{3} \mathrm{kgm}^{-3}$ and its atomic mass is 63.5 .

Take Avogadro's number $=6.0 \times 10^{23}$.
A. $1.1 m s^{-1}$
B. $0.11 m m s^{-1}$

## C. $1.1 m m s^{-1}$

$$
\text { D. } 11 m s^{-1}
$$

## Answer: C

## D Watch Video Solution

12. The resistance of a bulb filmanet is $100 \Omega$ at
a temperature of $100^{\circ} \mathrm{C}$. If its temperature coefficient of resistance be 0.005 per.$^{\circ} C$, its resistance will become $200 \Omega$ at a temperature of
A. $500^{\circ} C$
B. $300^{\circ} C$
C. $200^{\circ} \mathrm{C}$
D. $400^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution
13. All the edges of a block with parallel faces
are unequal. Its longest edge is twice its
shortest edge. The ratio of the maximum to minimum resistance between parallel faces is.
A. 8
B. 4
C. 2
D. None of these

Answer: B
( Watch Video Solution
14. Two copper wire of length I and 21 have radii, $r$ and $2 r$ respectively. What si the ratio of their specific resistance.?
A. 1:2
B. 2:1
C. 1:1
D. 1:3

Answer: C

- Watch Video Solution


# 15. Which of the following materials is the best 

 conductor of electricity ?A. Platinum
B. Gold
C. Silicon
D. copper

Answer: B

D Watch Video Solution
16. Electric field (E) and current density $(J)$
have relation
A. $J \propto E$
B. $E \propto J^{2}$
C. $E \propto \frac{1}{J^{2}}$
D. $E^{2} \propto \frac{1}{J}$

Answer: A

D Watch Video Solution
17. The temperature ( $T$ ) dependence of resistivity (rho) of a semiconductor is represented by :


## Answer: C

## - Watch Video Solution

18. A current 4.0 A exist in a wire of crosssectional area $2.0 \mathrm{~mm}^{2}$. If each cubic metre of
the wire contains $12.0 \times 10^{28}$ free electrons, then the drift spped is
A. $6.0 \times 10^{28} m^{-3}$
B. $3.6 \times 10^{29} m^{-3}$
C. $7.0 \times 10^{30} m^{-3}$
D. $8.2 \times 10^{32} m^{-3}$

Answer: A

## D Watch Video Solution

19. A wire of resistance $R$ is elongated $n$ - fold to make a new uniform wire. The resistance of new wire.
A. nR
B. $n^{2} R$
C. $2 n R$
D. $2 n^{2} R$

Answer: B

## - Watch Video Solution

20. The four colours on a resistor are: brown, yellow, green and gold as read from left to right. What is resistance corresponding to these colours.
A. $(1.4 \pm 0.07) M \Omega$
B. $(2.4 \pm 0.05) M \Omega$
C. $(3.4 \pm 0.5) M \Omega$
D. $(1.4 \pm 0.05) M \Omega$

## Answer: D

## D Watch Video Solution

21. The resistance will be least in a wire with length, cross-section area respectively,
A. $L / 2,2 \mathrm{~A}$
B. 2L, A
C. L, A
D. L, 2A

Answer: A

## - Watch Video Solution

22. A wire has resistance of $10 \Omega$. If it is stretched by 1/10th of its length, then its resistance is nearly
А. $9 \Omega$
B. $10 \Omega$
C. $11 \Omega$
D. $12 \Omega$

## Answer: D

## D Watch Video Solution

23. If resistivity of copper conductor is
$1.7 \times 10^{-8} \Omega-m$ and electric field is
$100 \mathrm{Vm}^{-1}$, then current density will be
A. $6 \times 10^{9} A m^{-2}$
B. $1.7 \times 10^{-6} \mathrm{Am}^{-2}$
C. $1.7 \times 10^{-10} \mathrm{Am}^{-2}$
D. $6 \times 10^{7} \mathrm{Am}^{-2}$

Answer: A

## D Watch Video Solution

24. A wire is stretched so as to change its
diameter by $0.25 \%$. The percentage change
in resistance is
A. $4.0 \%$
B. $2.0 \%$
C. $1.0 \%$
D. $0.5 \%$

## Answer: C

## D View Text Solution

25. A potential difference of 100 V is applied to
the ends of a copper wire one metre long .

What is the average drift velocity of electrons

# (Given, $\sigma=5.81 \times 10^{7} \Omega$ <br> $$
\left.n_{C u}=8.5 \times 10^{28} m^{-3}\right)
$$ 

A. $0.43 m s^{-1}$
B. $0.83 m s^{-1}$
C. $0.52 m s^{-1}$
D. $0.95 m s^{-1}$

Answer: A

D Watch Video Solution
26. If power dissipated in the $9 \Omega$ resistor in
the resistor shown is $36 W$, the potential difference across the $2 \Omega$ resistor is

A. 8 V
B. 10 V
C. 2 V
D. 4 V

Answer: B

## - Watch Video Solution

27. The effective resistance between points $A$
and $C$ for the network shown figure is

A. $\frac{2}{3} R$
B. $\frac{3}{2} R$
C. 2R
D. $\frac{1}{2 R}$
28. A resistor of $6 k \Omega$ with tolerance $10 \%$ and another resistance of $4 k \Omega$ with tolerance
$10 \%$ are connected in series. The tolerance of the combination is about
A. 0.05
B. 0.1
C. 0.12
D. 0.15

Answer: B

## - Watch Video Solution

29. In the circuit given $E=6.0$ volt, $R_{1}=100 \Omega, R_{2}=R_{3}=50 \Omega$ and $R_{4}=75 \Omega$.

The equivalent resistance of the circuit, in ohms is

A. 11.875
B. 26.31
C. 118.75
D. None of these

## Answer: C

## D Watch Video Solution

30. The circuit in figure, where there are three resistors $R_{1}, R_{2}$ and $R_{3}$. If the voltage
between A and C is V , the current / is given by


$$
\begin{aligned}
& \text { A. } \frac{V\left(R_{1}+R_{2}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}} \\
& \text { B. } \frac{V\left(R_{1}+R_{3}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}} \\
& \text { C. } \frac{V\left(R_{3} \times R_{2}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}} \\
& \text { D. } \frac{V\left(R_{2}+R_{3}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}
\end{aligned}
$$

## Answer: D

## - Watch Video Solution

31. The resistance across $R$ and $Q$ in the figure is

A. $r / 3$
B. $\mathrm{r} / 2$
C. $2 r$
D. $6 r$

## Answer: A

## D View Text Solution

32. Two resistances are joined in parallel whose equivolent resistance is $\frac{3}{5} \Omega$. One of the resistance wire is broken and the effective resistance becomes $3 \Omega$. The resistance (in ohms) of the wire that got broken was
A. $\frac{4}{3}$
B. 2

> C. $\frac{6}{5}$
> D. $\frac{3}{4}$

## Answer: D

## D Watch Video Solution

33. The equivalent resistance of two resistors connected in series $6 \Omega$ and their parallel equivalent resistance is $\frac{4}{3} \Omega$. What are the value of resistance?
А. $4 \Omega, 6 \Omega$
B. $8 \Omega, 1 \Omega$
C. $4 \Omega, 2 \Omega$
D. $6 \Omega, 2 \Omega$

## Answer: C

D Watch Video Solution
34. Three resistances $2 \Omega, 3 \Omega$ and $4 \Omega$ are connected in parallel. The ratio of currents
passing through them when a potential difference is applied across its ends will be
A. $5: 4: 3$
B. $6: 3: 2$
C. $4: 3: 2$
D. $6: 4: 3$

Answer: D
( Watch Video Solution
35. Four resistances are connected in a circuit in the given figure. The electric cirrent flowing through $40 h m$ and $6 o h m$ resistance is respectively

A. 2 A and 4 A
B. 1 A and 2 A

## C. 1A and 1A

## D. 2 A and 2 A

## Answer: D

## D Watch Video Solution

36. Five resistors are connected as shown in
figure. Find the equivalent resistance between
the points $B$ and $C$.


> A. $\frac{70}{19} \Omega$
> B. $\frac{19}{70} \Omega$
> C. $\frac{16}{5} \Omega$
> D. $\frac{15}{8} \Omega$

Answer: A
37. If $400 \Omega$ of resistance is made by adding
four $100 \Omega$ resistance of tolerance $5 \%$, then the tolerance of the combinations
A. 0.2
B. 0.05
C. 0.1
D. 0.15
38. In the circuit shown below, the ammeter and the voltmeter readings are 3 A and 6 V respectively. Then, the value of the resistance $R$ is

A. $<2 \Omega$
B. $2 \Omega$
C. $\geq 2 \Omega$
D. $>2 \Omega$

Answer: A

## - Watch Video Solution

39. In the circuit show below total resistance between $A$ and $B$ is

A. $5 R$
B. 2 R
C. $\frac{R}{2}$
D. $\frac{6 R}{5}$

## Answer: C

## D Watch Video Solution

40. How many minimum number of $2 \Omega$ resistance can be connected to have an effective resistance of $1.5 \Omega$
A. 3
B. 2
C. 4
D. 6

## Answer: C

D Watch Video Solution
41. Two resistances $R$ and $2 R$ are connected in
parallel in an electric circuit. The thermal energy developed in $R$ and $2 R$ are in the ratio
A. $1: 2$
B. 1: 4
C. $4: 1$
D. 2:1

## Answer: D

## D Watch Video Solution

42. A wire has a resistance of $6 \Omega$. It is cut into
two parts and both half values are connected
in parallel. The new resistance is
A. $3 \Omega$
B. $6 \Omega$
C. $12 \Omega$
D. $1.5 \Omega$

## Answer: D

## D Watch Video Solution

43. Four cells, each of emf $E$ and internal resistance $r$, are connected in series across an
external resistance reverse. Then, the current in the external circuit is

$$
\begin{aligned}
& \text { A. } \frac{2 E}{4 r+R} \\
& \text { B. } \frac{3 E}{4 r+R} \\
& \text { C. } \frac{3 E}{3 r+R} \\
& \text { D. } \frac{2 E}{3 r+R}
\end{aligned}
$$

Answer: A

## D Watch Video Solution

44. Two resistors of resistances $2 \Omega$ and $6 \Omega$ are connected in parallel. This combination is then connected to a battery of emf 2 V and internal resistance $0.5 \Omega$. What is the current flowing through the battery?
A. 4 A
B. $\frac{4}{3} A$
C. $\frac{4}{17} A$
D. 1A

## - Watch Video Solution

45. Tow cells with the same emf E and different
internal resistances $r_{1}$ and $r_{2}$ are connected in
series to an external resistances $R$. The value of $R$ so that the potential difference across the first cell be zero is
A. $\sqrt{r_{1} r_{2}}$
B. $r_{1}+r_{2}$
C. $r_{1}-r_{2}$
D. $\frac{r_{1}+r_{2}}{2}$

## Answer: C

## - Watch Video Solution

46. Consider the following two statement.
(A) Kirchhoff's junction law follows from the conservation of charge.
(B) Krichhoff's loop law follows from the conservation of energy.

Which of the following is correct ?
A. Both (A) and (B) are wrong
B. (A) is correct and (B) is wrong
C. (A) is wrong and (B) is correct
D. Both (A) and (B) are correct

## Answer: D

## - Watch Video Solution

47. For the circuit (figure) the currents is to be measured. The ammeter shown is a galvanometer with a resistance $R_{G}=60.00 \Omega$
converted to an ammeter by a shunt resistance $r_{S}=0.02 \Omega$. The value of the current is

A. 0.79 A
B. 0.29 A
C. 0.99 A

## D. 0.8 A

## Answer: C

## D Watch Video Solution

48. For driving a current of 2 A for 6 minutes in
a circuit, 1000 J of work is to be done. The e.m.f. of the source in the circuit is
A. 1.38 V
B. 1.68 V
C. 2.03 V
D. 3.10 V

## Answer: A

## D Watch Video Solution

49. A 10 m long wire ofresistance $20 \Omega$ is connected in series with battery of EMF $3 V$ and negligible internal resistance and a resistance of $10 \Omega$. The potential gradient along the wire is :
A. 0.02
B. 0.1
C. 0.2
D. 1.2

## Answer: C

## D Watch Video Solution

50. A battery consists of a variable number $n$ of identical cells having internal resistance connected in series. The terminals of the
battery are short circuited and the current $I$
measured. Which one of the graph below
shows the correct relationship between $I$ and $n ?$
A. $\xrightarrow{\text { a. }}$


Answer: C

## - Watch Video Solution

51. What will be the value of current $I$ in the circuit shown?

A. 0.67 A
B. 1A
C. 0.32 A
D. None of these

Answer: A

## D Watch Video Solution

52. In the circuit given here, the points $A, B$ and

C are 70 V , zero, 10 V respectively. Then,

A. the point $d$ will be at a potential of 60 V B. the point D will be at a potential of 20 V
C. currents in the paths AD, DB and DC are in the ratio of $1: 2: 3$
D. currents in the paths AD, DB and DC are in the ratio of $3: 2: 1$

## Answer: D

## - Watch Video Solution

53. In the following circuit $E_{1}=E_{2}=E_{3} 2 V$
and $R_{1}=R_{2}=A \Omega$. The current passing
through battery $E_{2}$ between points A and B is

A. Zero
B. $2 A, B$ and $A$
C. 2A, A and B
D. None of these

## Answer: C

## D Watch Video Solution

54. Four resistence of $10 \Omega, 60 \Omega, 100 \Omega$ and $200 \Omega$, respectively taken in order are used to form a Wheatstone's bridge. A 15 V battery is
connected to the ends of a $200 \Omega$ resistance,
the current through it will be

$$
\begin{aligned}
& \text { A. } 7.5 \times 10^{-5} A \\
& \text { B. } 7.5 \times 10^{-4} A \\
& \text { C. } 7.5 \times 10^{-3} A \\
& \text { D. } 7.5 \times 10^{-2} A
\end{aligned}
$$

Answer: D

D Watch Video Solution
55. To get a maximum current through a resistance of $2.5 \Omega$ one can use $m$ rows of cells each row having n cells . The internal resistance of each cell is $0.5 \Omega$. What are the values of $m$ and $n$, if the total number of cells are 20 ?
A. $m=2, n=10$
B. $m=4, n=5$
C. $m=5, n=4$
D. $n=2, m=10$

Answer: A

## - Watch Video Solution

56. Figure shows a circuit with known resistances $R_{1}$ and $R_{2}$. Neglect the internal resistance of the sources of current and resistance of the connecting wire . The magnitude of electromotive force $E$, such that the current through the resistance R is zero
will be

A. $E \frac{R_{1}}{R_{2}}$
B. $E \frac{R_{2}}{R_{1}}$
C. $E\left(R_{1}+R_{2}\right) R_{2}$
D. $E \frac{R_{1}}{R_{1}+R_{2}}$

## - View Text Solution

57. The potential difference across the terminals of a battery is 50 V when 11 A current is drawn and 60 V , when 1 A current is drawn. The emf the battery is
A. 62 V
B. 63 V
C. 61 V
D. 64 V

Answer: C

## - Watch Video Solution

58. In the circuit shown, the currents $i_{1}$ and $i_{2}$
are

A. $i_{1}=1.5 A, i_{2}=0.5 A$

$$
\text { B. } i_{1}=0.5 A, i_{2}=1.5 A
$$

C. $i_{1}=1 A, i_{2}=3 A$
D. $i_{1} 3 A, i_{2}=1 A$

Answer: B

## D Watch Video Solution

59. A battery of emf 10 V and internal resistance $3 \Omega$ is connected to a resistor. The current in the circuit is 0.5 A . The terminal
voltage of the battery when the circuit is closed is
A. 10 V
B. OV
C. 1.5 V
D. 8.5 V

Answer: D
( Watch Video Solution
60. In the following circuit reading of voltmeter V is

A. 12 V
B. 8 V
C. 20 V
D. 16 V

Answer: A
61. In the electric circuit shown each cell has an emf of 2 V and internal resistance of $1 \Omega$.

The external resistance is $2 \Omega$. The value of the current is (in A)

A. 2
B. 1.25
C. 0.4
D. 1.2

## Answer: D

## - Watch Video Solution

62. Five conductors are meeting a point $x$ as
shown in the figures. What is the value of
current in fifth conductor ?

A. 3 A away from $x$
B. 1 A away from $x$
C. 4 A away from $x$
D. 1 A towards x

Answer: B

## D Watch Video Solution

63. Two resistors of resistances $2 \Omega$ and $6 \Omega$ are
connected in parallel. This combination is then
connected to a battery of emf 2 V and internal
resistance $0.5 \Omega$. What is the current flowing
through the battery?
A. 4 A
B. $\frac{4}{3} A$

## C. $\frac{4}{17} A$

D. 1A

## Answer: D

## - Watch Video Solution

64. Four identical cells of emf $\varepsilon$ and internal resistance $r$ are to be connected in series.

Suppose, if one of the cell is connected wrongly, then the equivalent emf and effective internal resistance of the combination is
A. 2 E and 4 r
B. 4 E and 4 r
C. 2 E and 2 r
D. $4 E$ and $2 r$

Answer: A

- Watch Video Solution

65. Two cells having an internal resistance of
$0.2 \Omega$ and $0.4 \Omega$ are connected in parallel, the
voltage across the battery is 1.5 V . If the emf of one cell is 1.2 V , then the emf of second cell is
A. 2.7 V
B. 2.1 V
C. 3V
D. 4.2 V

Answer: A
( Watch Video Solution
66. Two cells of emf $E_{1}$ and $E_{2}$ are joined in opposition (such that $E_{1}>E_{2}$ ). If $r_{1}$ be the internal resistances and $R$ be the external resistance, then the terminal potential difference is


$$
\begin{aligned}
& \text { A. } \frac{E_{1}-E_{2}}{r_{1}+r_{2}} \times R \\
& \text { B. } \frac{E_{1}+E_{2}}{r_{1}+r_{2}} \times R
\end{aligned}
$$

> C. $\frac{E_{1}-E_{2}}{r_{1}+r_{2}+R} \times R$
> D. $\frac{E_{1}+E_{2}}{r_{1}+r_{2}+R} \times R$

## Answer: C

## D Watch Video Solution

67. A circuit consists of three bateries of emf
$E_{1}=1 V, E_{2}=2 V \quad$ and $\quad E_{3}=3 V \quad$ and
internal resistance $1 \Omega, 2 \Omega$ and $1 \Omega$ respectively
which are connected in parallel as shown in
figure. The potential difference between
points $P$ and $Q$ is

A. 1.0 V
B. 2.0 V
C. 2.2 V
D. 3.0 V

Answer: B
68. Two identical cells whether connected in
parallel or in series gives the same current, when connected to an external resistance
$1.5 \Omega$. Find the value of internal resistance of each cell.
A. $1 \Omega$
B. $0.5 \Omega$
C. Zero
D. $1.5 \Omega$

Answer: D
69. The current pasing through the ideal ammeter in the circuit given below is

A. 1.25 A
B. $1 A$
C. 0.75 A
D. 0.5 A

## Answer: D

## - Watch Video Solution

70. In a typical wheatstone network the resistance in cyclic order are $A=$ $10 \Omega, B=5 O$, ega, $C=4 \Omega$ and $D=4 \Omega$ for
the bridge to be balanced.

A. $10 \Omega$ should be connected in parallel with

A
B. $10 \Omega$ should be connected in series with $A$
C. $5 \Omega$ should be connected in series with $B$

# D. $5 \Omega$ should be connected in parallel with 

## B

## Answer: A

## D Watch Video Solution

71. In a potentiometer experiment for measuring the emf of cell, the null point is at 480 cm when we have a $400 \Omega$ resistor in series with the cell and galvanometer. If the series
resistances is reduced to half, the null point will be at
A. 120 cm
B. 240 cm
C. 480 cm
D. 600 cm

Answer: C

D Watch Video Solution
72. In a Wheatstone's network,
$P=2 \Omega, Q=2 \Omega, R=2 \Omega$ and $S=3 \Omega$. The
resistance with which $S$ is to be shunted in order that the bridge may be balanced is
A. $4 \Omega$
B. $1 \Omega$
C. $6 \Omega$
D. $2 \Omega$

## Answer: C

73. In a potentiometer experiment the balancing with a cell is at length 240 cm . On shunting the cell with a resistance of $2 \Omega$, the balancing length becomes 120 cm .The internal resistance of the cell is
А. $4 \Omega$
B. $2 \Omega$
C. $1 \Omega$
D. $0.5 \Omega$

## Answer: B

## D Watch Video Solution

74. For measurement of potential difference, potentiometer is perferred in comparison to
voltmeter because
A. potentiometer is more sensitive than
voltmeter
B. the resistance of potentiometer is less
than voltmeter
C. potentiometer is cheaper than voltmeter
D. potentiometer does not take current

## from the circuit

## Answer: D

## D Watch Video Solution

75. Five resistance are connected as shown in
the figure . The equivalent resistance between
$P$ and $Q$ will be

A. $\frac{10}{3} \Omega$
B. $\frac{20}{3} \Omega$
C. $\frac{16}{2} \Omega$
D. None of these

Answer: A

## - Watch Video Solution

## Exercise 2

1. Find the true statement.
A. Ohm's law is applicable to all conductors
of electricity
B. In an electrolyte solution, the electric
current is mainly due to the movement of electrons
C. The resistance of an incandescent lamp
is lasser when the lamp is switched on

D. The resistance of carbon decreases with

the increase of temperature

## Answer: D

2. The amount of charge $Q$ passed in time $t$ through a cross-section of a wire is
$Q=5 t^{2}+3 t+1$. The value of current at time $\mathrm{t}=5 \mathrm{~s}$ is
A. 9A
B. 49 A
C. 53 A
D. None of these

Answer: C
3. If the free electron density be $n$ and relaxation time be $\tau$, the electrical conductivity of a conductor may be expressed as

$$
\begin{aligned}
& \text { A. } \frac{\mathrm{ne} \tau}{m_{e}} \\
& \text { B. } \frac{\mathrm{ne}^{2} \tau}{m^{e}} \\
& \text { C. } \frac{\mathrm{ne}^{2}}{\tau m_{e}} \\
& \text { D. } \frac{m_{e} e^{2} \tau}{n}
\end{aligned}
$$

Answer: B
4. In the given circuit the equivalent resistance between the points $A$ and $B$ in ohm is

A. 9
B. 11.6
C. 14.5

## D. 21.2

## Answer: B

## D Watch Video Solution

5. A 10 m long wire ofresistance $20 \Omega$ is connected in series with battery of EMF $3 V$ and negligible internal resistance and a resistance of $10 \Omega$. The potential gradient along the wire is :
A. $3 \mathrm{~V} / \mathrm{m}$
B. $0.2 \mathrm{~V} / \mathrm{m}$
C. $0.1 \mathrm{~V} / \mathrm{m}$
D. $0.3 \mathrm{~V} / \mathrm{m}$

## Answer: C

## D Watch Video Solution

6. A straight conductor of uniform crosssection carries a current $I$. Let $s=$ specific charge of an electron. The momentum of all
the free electrons per unit length of the conductor, due to their drift velocity only, is
A. i.s
B. $\sqrt{i} /(s)$
C. i/s
D. $\left(\frac{i}{s}\right)^{2}$

Answer: C

D Watch Video Solution
7. The resistance of a wire $\mathrm{R} \Omega$. The wire is stretched to double its length keeping volume constant. Now, the resistance of the wire will become
A. $4 R \Omega$
B. $2 R \Omega$
C. $\frac{R}{2} \Omega$
D. $\frac{R}{4} \Omega$

Answer: A
8. Two bars of equal resistivity $\rho$ and radius ' $r$ ' and ' $2 r$ ' are kept in contact as show. An electric current is passed through the bars. Which one of the following is correct ?

A. Heat produced in bar $B C$ is 4 time the heat produced in bar $A B$
B. Electric field in both halves is equal
C. Current densit across $A B$ is double that of across BA
D. Potential difference across $A B$ is 4 time
that of across BC

Answer: A

D Watch Video Solution


Six equal resistances are connected between points $P, Q$ and $R$ as shown in the figure. Then
the net resistance will be maximum between
A. P and Q
B. Q and R

## C. $P$ and $R$

D. any two points

Answer: A
(D) Watch Video Solution
10.


A 100 W bulb $B_{1}$ and two 60 W bulbs $B_{2}$ and
$B_{3}$, are connected to a 250 V source, as shown in the figure now $W_{1}, W_{2}$ and $W_{3}$ are the output powers of the bulbs $B_{1}, B_{2}$ and $B_{3}$ respectively then
A. $W_{1}>W_{2}=W_{3}$
B. $W_{1}>W_{2}>W_{3}$
C. $W_{1}<W_{2}=W_{3}$
D. $W_{1}<W_{2}<W_{3}$

## Answer: D

## D Watch Video Solution

11. In a region $10^{19} \propto$-particles and $10^{19}$ protons move to the left, while $10^{19}$ electrons moves to the right per second. The current is
A. 3.2 A towards left
B. 3.2 A towards right
C. 6.4 A towards left
D. 6.4 A towards right

## Answer: C

## D Watch Video Solution

12. The V-I graph for a good conductor makes angle $40^{\circ}$ with V-axis. Here, V denotes voltage
and I denotes current. The resistance of the

## conductor will be

A. $\sin 40^{\circ}$
B. $\cos 40^{\circ}$
C. $\tan 40^{\circ}$
D. $\cot 40^{\circ}$

Answer: D
( Watch Video Solution
13. If an increase in length of copper wire is
0.5\% due to stretching, the percentage increase in its resistance will be
A. 0.001
B. 0.002
C. 0.01
D. 0.02

Answer: D

D View Text Solution
14. In a neon discharge tube $2.9 \times 10^{18} N e^{+}$ ions move to the right each second while $1.2 \times 10^{18}$ eletrons move to the left per second. Electron charge is $1.6 \times 10^{-9} C$. The current in the discharge tube
A. 0.27 A towards right
B. 0.66 A towards right
C. 0.66 A towards left
D. zero
15. If the resistivity of an alloy is and that of constituent metal is $p$, then
A. $\rho^{\prime}>\rho$
B. $\rho^{\prime}<\rho$
C. $\rho^{\prime}=\rho$
D. there is no simple relation between $\rho$
and $\rho^{\prime}$

## D Watch Video Solution

16. In a network as shown in the figure the potential difference across the resistance $2 R$ is
(the cell has an emf of $E$ and has no internal
resistance):

A. 2 E
B. $\frac{2 E}{7}$
C. $\frac{E}{7}$
D. E

Answer: B

## - Watch Video Solution

17. A wire of lenth $L$ is drawn such that its diameter is reduced to half of its original diamter. If the initial resistance of the wire were $10 \Omega$, its new resistance would be
A. $160 \Omega$
B. $120 \Omega$
C. $140 \Omega$
D. $100 \Omega$

Answer: A

## D Watch Video Solution

18. In a potentiometer, the null point is
received at 7th wire. If now we have to change
the null point at 9th wire, what should we do?
A. Attach resistance in series with battery
B. Increase resistance in main circuit
C. Decrease resistance in main circuit
D. Decrease applied emf

Answer: B

## - Watch Video Solution

19. In the given circuit, it is observed that the current $I$ is independent of the value of the resistance $R_{6}$. Then the resistance values must satisfy

A. $R_{1} R_{2} R_{5}=R_{3} R_{4} R_{6}$
B. $\frac{1}{R_{5}}+\frac{1}{R_{6}}=\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}$
C. $R_{1} R_{4}=R_{2} R_{3}$
D. $R_{1} R_{3}=R_{2} R_{4}=R_{5} R_{6}$

Answer: C

- Watch Video Solution

20. The size of a carbon block, having specific resistance.

$$
3.5 \times 10^{-3} \Omega-\mathrm{cm}
$$

$2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$. The resistance of the
block between two square end faces and two opposite rectangular faces are respectively

> A. $17.5 \times 10^{-4}$ and $1.75 \times 10^{-4} \Omega$
> B. $1.75 \times 10^{-4}$ and $175 \times 10^{-4} \Omega$
> C. $175 \times 10^{-4}$ and $1.75 \times 10^{-4} \Omega$
> D. $1.75 \times 10^{-4}$ and $17.5 \times 10^{-4} \Omega$

Answer: C

## D Watch Video Solution

21. Calculate the average drift speed of conduction electrons in a copper wire of crosssectional area $1.0 \times 10^{-7} \mathrm{~m}^{2}$, carrying a current of 1.5 A. Assume that each copper atom contributes roughly one conduction electron. The density of copper is $9.0 \times 10^{3} \mathrm{kgm}^{-3}$ and its atomic mass is 63.5 .

Take Avogadro's number $=6.0 \times 10^{23}$.

$$
\begin{aligned}
& \text { A. } 1.1 \times 10^{-2} m s^{-1} \\
& \text { B. } 1.1 \times 10^{-3} m s^{-1} \\
& \text { C. } 2.2 \times 10^{-2} m s^{-1}
\end{aligned}
$$

$$
\text { D. } 2.2 \times 10^{-3} \mathrm{~ms}^{-1}
$$

## Answer: B

## D Watch Video Solution

22. The current through a wire depends on
time as, $i=(10+4 t)$ Here , $i$ is ampere and $t$ in seconds. Find the charge crossed through
section in time interval between $t=0$ to $t=10 s$.
A. 50 C
B. 300C

## C. 400 C

D. 4C

Answer: B

## D Watch Video Solution

23. In cosmic rays 0.15 protons $\mathrm{cm}^{-2} s^{-1}$ are entering the Earth's atmosphere. If the radius of the Earth is 6400 km , the current received
by the Earth in the form of cosmic rays is nearly.
A. 0.12 A
B. 1.2 A
C. $12 A$
D. $120 A$

Answer: A
( Watch Video Solution
24. Consider a thin square sheet of side $L$ and thickness t , made of a material of resistivity $\rho$.

The resistance between two opposite faces, shown by the shaded areas in the figure is

A. directly proportional to L
B. directly proportional to $t$
C. independent of $L$
D. independent of $t$

## Answer: C

## D Watch Video Solution

25. 160W-60V lamp is connected at 60 V DC supply. The number of electrons passing through the lamp in 1 min is
(The charge of electron, $e=1.6 \times 10^{-19} C$ )
A. $10^{19}$
B. $10^{21}$
C. $1.6 \times 10^{19}$
D. $1.4 \times 10^{20}$

Answer: B

D Watch Video Solution
26. Two batteries $A$ and $B$ whose emf is $2 V$ are connected in series with external resistance
$R=1 \Omega$. Internal resistance of battery A is
$1.9 \Omega$ and that of $B$ is $0.9 \Omega$.

A. 2 V
B. 3.8 V
C. zero
D. None of these

Answer: C

- Watch Video Solution


## Mht Cet Corner

1. In potentiometer experiment, null point isobtained at a particular point for a cell on potentiometer wire xcm long. If the lengthof the potentiometer wire is increasedwithout changing the cell, the balancing length will (Driving source is not changed)
A. increase

B. decrease

## C. not change

D. become zero

## Answer: A

## D Watch Video Solution

2. In balanced meter bridge, the resistance of bridge wire is $0.1 \Omega c m$. Unknown resistance $X$ is connected in left gap and $6 \Omega$ in right gap, null point divides the wire in the ratio 2:3.

Find the current drawn the battery of 5 V having negligible resistance
A. 1A
B. 1.5 A
C. 2A
D. 5 A

Answer: A
( Watch Video Solution
3. The resistances in left and right gap of a meter brigdge are $20 \omega$ and $30 \omega$ respecitively when the resistance in the left gap is reduced to half its value then balance point shifts by
A. 15 cm to right
B. 15 cm to the left
C. 20 cm to the right
D. 20 cm to the left

Answer: B
4. A potentiometer wire of length 10 m is connected in series with a battery the emf of a cell balances against 250 cm length of wire if length of potentiometer wire is increased by 1 $m$ then new balancing length of wire will be
A. 2.00 m
B. 2.25 m
C. 2.50 m
D. 2.75 m

## Answer: D

## D Watch Video Solution

5. A range of galvanometer is V , when $50 \Omega$ resistance is connected in series. Its range gets doubled when $500 \Omega$ resistance is connected in series. Galvanometer resistance is
A. $100 \Omega$
B. $200 \Omega$

## C. $300 \Omega$

D. $400 \Omega$

## Answer: D

## D Watch Video Solution

6. In a Wheatstone's bridge, three resistances
$P, Q$ and $R$ connected in the three arms and the
fourth arm is formed by two resistances
$S_{1}$ and $S_{2}$ connected in parallel. The condition for the bridge to be balanced will be

> A. $\frac{R\left(s_{1}+s_{2}\right)}{s_{1} s_{2}}$
> B. $\frac{s_{1} s_{2}}{R\left(s_{1}+s_{2}\right)}$
> C. $\frac{R s_{1} s_{2}}{\left(s_{1}+s_{2}\right)}$
> D. $\frac{\left(s_{1}+s_{2}\right)}{R s_{1} s_{2}}$

Answer: A

## D Watch Video Solution

7. A wire of resistance $4 \Omega$ is stretched to twice its original length. The resistance of stretched wire would be
A. $2 \Omega$
B. $4 \Omega$
C. $8 \Omega$
D. $16 \Omega$

## Answer: D

## D Watch Video Solution

8. The internal resistance of a 2.1 V cell which gives a current $0.2 A$ through a resistance of
A. $0.2 \Omega$
B. $0.5 \Omega$
C. $0.8 \Omega$
D. $1.0 \Omega$

Answer: B

## D Watch Video Solution

9. The resistances of the four arms $P, Q, R$ and S in a Wheatstone's bridge are $10 \Omega, 30 \Omega, 30 \Omega$ and $90 \Omega$, respectively. The emfs and internal
resistances of the cell are 7 V and $5 \Omega$ respectively. If the galvanometer resistance is
$50 \Omega$, the current drawn from the cell will be
A. $1.0 A$
B. 0.2 A
C. 0.1A
D. 2.0 A

Answer: B

D Watch Video Solution
10. What is the maximum power output than
can be obtained from a cell of emf $E$ and internal resistance $r$ ?
A. $2 \frac{E^{2}}{r}$
B. $\frac{E^{2}}{2} r$
C. $\frac{E^{2}}{4} r$
D. None of these

Answer: C
11. A voltmeter of range 3 V and resistance $200 \Omega$ cannot be converted to an ammeter of range
A. 10 mA
B. 100 mA
C. 1A
D. 10 A

Answer: A

D Watch Video Solution
12. For measurement of potential difference, potentiometer is perferred in comparison to voltmeter because
A. potentiometer is more sensitive than
voltmeter
B. the resistance of potentiometer is less
than voltmeter
C. potentiometer is cheaper than voltmeter
D. potentiometer does not take current
from the circuit

## Answer: D

## - Watch Video Solution

13. When a resistance of $100 \Omega$ is connected in
series with a galvanometeer of resistance $R$, its
range is V . To double its range, a resistance of
$1000 \Omega$ is connected in series. Find R.
А. $700 \Omega$
B. $800 \Omega$
C. $900 \Omega$

## D. $100 \Omega$

## Answer: C

## D Watch Video Solution

14. A 2 V battery, a $990 \Omega$ resistor and a potentiometer of 2 m length, all are connected in series of the resistance of potentiometer wire is $10 \Omega$, then the potential gradient of the potentiometer wire is

$$
\text { A. } 0.05 \mathrm{Vm}^{-1}
$$

B. $0.5 \mathrm{Vm}^{-1}$
C. $0.01 \mathrm{Vm}^{-1}$
D. $0.1 \mathrm{Vm}^{-1}$

## Answer: C

## D Watch Video Solution

15. The resistance of an ammeter is $13 \Omega$ and its scale is graduated for a current upto $100 A$.

After an additional shunt has been connected
measure currents upto $750 A$ by this meter.

The value of shunt resistance is
A. $20 \Omega$
B. $2 \Omega$
C. $0.2 \Omega$
D. $2 k \Omega$

Answer: B
( Watch Video Solution
16. A galvanometer of resistance $50 \Omega$ is connected to a b attery of 3 V alongwith a resistance of $2950 \Omega$ in series. A full scale deflection of 30 division is obtained in the galvanometer in order to reduce this deflection to 20 division. The resistance in sereis. should be:-
A. $5050 \Omega$
B. $550 \Omega$
C. $6050 \Omega$

## D. $4450 \Omega$

## Answer: D

## D Watch Video Solution

17. Potentiometer measures the potential difference more accurately than a voltmeter, because
A. it has a wire resistance
B. it has a wire of low resistance
C. it does not draw current from external circuit
D. it draws a heavy current from external circuit

Answer: A

- Watch Video Solution

18. The cell has an emf of 2 V and the internal resistance of this cell is $0.1 \Omega$, it is connected to
resistance of $3.9 \Omega$, the voltage across the cell will be
A. 1.95 V
B. 1.5 V
C. 2 V
D. 1.8 V

Answer: A
( Watch Video Solution
19. Is it possible that any battery has some constant valur of emf, but the potential difference between the plates is zero?
A. Not possible
B. Yes, if another identical is joined in
series
C. Yes, if another identical battery is joined
in opposition
D. Yes, possible, if another similar battery is
joined in parallel

## Answer: C

## - Watch Video Solution

20. To get maximum current through a resistance of $2.5 \Omega$, one can use $m$ rows of cells, each row having n cells. The internal resistance of each cell is $0.5 \Omega$ what are the values of $n$ and $m$, if the total number of cells is 45 .
A. $m=3, n=15$
B. $m=5, n=9$
C. $m=9, n=5$
D. $m=15, n=3$

## Answer: A

## D Watch Video Solution

21. A potential difference is applied across the ends of a metallic wire. If the potential difference is doubled, the drift velocity will
A. be doubled
B. be halved
C. be quadrupled
D. remain unchanged

Answer: A

D Watch Video Solution
22. A current of 0.01 mA passes through the potentiometer wire of a resistivity of $10^{9} \Omega \mathrm{~cm}$
and area of cross-section $10^{-1} \mathrm{~cm}^{-2}$. The potential gradient is
A. $10^{9} \frac{\mathrm{~V}}{\mathrm{~m}}$
B. $10^{11} \frac{\mathrm{~V}}{\mathrm{~m}}$
C. $10^{10} \frac{\mathrm{~V}}{\mathrm{~m}}$
D. $10^{8} \frac{\mathrm{~V}}{\mathrm{~m}}$

## Answer: D

( Watch Video Solution
23. A thick wire is stretched so that its length become two times. Assuming that there is no change in its density, then what is the ratio of change in resistance of wire to in initial resistance of wire
A. $2: 1$
B. $4: 1$
C. 3:1
D. 1:4

Answer: C
24. The length of the resistance wire is increased by $10 \%$. What is the corresponding change in the resistance of wire?
A. 0.1
B. 0.25
C. 0.21
D. 0.09
25. If three resistors of resistance $2 \Omega, 4 \Omega$ and
$5 \Omega$ are connected in parallel then the total resistance of the combination will be
A. $\frac{20}{19} \Omega$
B. $\frac{19}{20} \Omega$
C. $\frac{10}{20} \Omega$
D. $\frac{29}{10} \Omega$
26. What is the magnitude of the current $I$ in the circuit given?
(in the circuit, each side of triangle $A B C$ has resistance equal to $30 \Omega$ )

A. $\frac{1}{2} A$
B. $\frac{1}{20} A$
C. $\frac{1}{25} A$
D. $\frac{1}{10} A$

## Answer: D

## D Watch Video Solution

27. Two wires of same material have length $L$ and 2 L and cross- sectional areas 4 A and A respectively. The ratio of their specific resistance would be
A. $1: 2$
B. $8: 1$
C. $1: 8$
D. 1:1

## Answer: D

## D Watch Video Solution

28. The resistance of a 5 cm long wire is $10 \Omega$.

It is uniformly stretched so that its length
А. $160 \Omega$
B. $80 \Omega$
C. $40 \Omega$
D. $20 \Omega$

Answer: A

## D Watch Video Solution

29. The effective resistance of two resistors in parallel is $\frac{12}{7} \Omega$. If one of the resistors is

## resistance of the other resistor is

A. $4 \Omega$
B. $3 \Omega$
C. $\frac{12}{7} \Omega$
D. $\frac{7}{12} \Omega$

Answer: B
( Watch Video Solution
30. A series combination of two resistors $1 \Omega$ each is connected to a 12 V battery of internal resistance $0.4 \Omega$. The current flowing through it will be
A. 3.5 A
B. 5 A
C. 6A
D. 10A

Answer: B
31. Electromotive force is the force, which is able to maintain a constant
A. potentential difference
B. power
C. resistance
D. current

Answer: A
32. A battery of e mf 10 V and internal resistance $3 \Omega$ is connected to a resistor as
shown in the figure. If the current in the circuit
is 0.5 A . then the resistance of the resistor will
be

A. $19 \Omega$
B. $17 \Omega$
C. $10 \Omega$
D. $12 \Omega$

Answer: B

D Watch Video Solution

