©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

ELECTRONS AND PROTONS

Example

1. If the electronic charge
$e=1.6 \times 10^{-19} C$ and the specific charge
e / m off electron is $1.76 \times 10^{11} C(k g)^{-1}$ then
calculate the mass m of the electron.

$$
\begin{aligned}
& \text { A. } 3.2 \times 10^{-31} \mathrm{~kg} \\
& \text { B. } 5.1 \times 10^{-31} \mathrm{~kg} \\
& \text { C. } 9.1 \times 10^{-31} \mathrm{~kg} \\
& \text { D. } 8.2 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

Answer: C

D Watch Video Solution

2. A charged oil drop fall with a terminal
velocity V in the absence of elcectric field. An
electric field E keep keep the oil drop
stationary in it . When the drop acquire a
charge ' q ' it moves up with same velocity. Find
the initial charge on the drop.
A. $q / 2$
B. q
C. $3 q / 2$
D. $2 q$

Answer: C

D Watch Video Solution

3. The photoelectric work - function of potassium is 2.3 eV . If light
having a wavelength of $2800 \AA$ falls on potassium, find
(a) the kinetic energy in electron volts of the most energetic electrons ejected.
(b) the stopping potential in volts.
A. 2.1 eV
B. 2.3 eV
C. 4.2 eV
D. 4.5 eV

Answer: A

- Watch Video Solution

4. Photoelectric threshold of silver is
$\lambda=3800 A$. Ultraviolet light of $\lambda=2600 A$ is
incident of a silver surface. Calculate:
a. the value of work function in joule and in eV.
b. maximum kinetic energy of the emitted photoelectrons.
c. the maximum velocity of the photoelectrons.
(Mass of the electrons $=9.11 \times 10^{-31}$).

$$
\begin{aligned}
& \text { A. } 5.23 \times 10^{-19} \mathrm{~J} \\
& \text { B. } 6.5 \times 10^{-18} \mathrm{~J} \\
& \text { C. } 6.5 \times 10^{-19} \mathrm{~J} \\
& \text { D. } 5.5 \times 10^{-10} \mathrm{~J}
\end{aligned}
$$

Answer: A
5. Light of wavelength $5000 \AA$ falls on a sensitive plate with photoelectric work function of 1.9 eV . The kinetic energy of the photoelectron emitted will be
A. 0.58 eV
B. 1.24 eV
C. 2.48 eV
D. 1.18 eV

- Watch Video Solution

6. A radio transmitter operates at a frequency
of 880 kHz and a power of 10 kW . The number
of photons emitted per second are
A. 10^{27}
B. 10^{28}
C. 10^{32}
D. 10^{30}

Answer: C

D Watch Video Solution

7. Wavelength of a 1 keV photon is
$1.24 \times 10^{-9} \mathrm{~m}$. What is the frequency of 1 MeV photon?
A. $2.4 \times 10^{15} \mathrm{~Hz}$
B. $2.4 \times 10^{20} \mathrm{~Hz}$
C. $1.24 \times 10^{15} \mathrm{~Hz}$
D. $1.24 \times 10^{20} \mathrm{~Hz}$

Answer: B

- Watch Video Solution

8. A lamp is placed at a distance of 16 cm , from
a photocell and the current observed is 1 mA .

If the distance from the lamp is reduced to 8 cm , the photocurrent now will be
A. 4 mA
B. 0.25 mA
C. 1 mA
D. 0.125 mA

Answer: A

D Watch Video Solution

Exercise 1

1. Cathode rays are
A. streams of positive ions
B. streams of negatively charged particles

C. streams of nuclei

D. streams of neutrons

Answer: B

D Watch Video Solution

2. Glow in discharge tube is due to

A. X-rays
B. positive rays
C. cathode rays

D. collision of gas ions

Answer: C

D Watch Video Solution

3. Cathode rays are streams of fast moving regatively charged particles. Their speed range is (consider $c \approx 3 \times 10^{8} \mathrm{~ms}^{-1}$)
A. 0.1 c to 0.2 c
B. C
C. greater than c
D. around $10^{-5} \mathrm{c}$ to $10^{-3} \mathrm{C}$

Answer: A

D Watch Video Solution

4. Value of e/m (specific charge) of the cathode ray particles
A. depends on potential difference of
cathode and anode
B. depends on nature of gas in the discharge tube
C. is independet of material of cathod eor gas in tube
D. depends on nature of metal used for cathode

Answer: C
5. When electric field is applied between
cathode annd anode, at pressure of about
0.001 mm of mercury in a discharge tube, following is observed.
A. There is no discharge in the tube
B. A zig-zag thin red spark runs from
cathode to anode
C. whole of tube is filled with bright light
D. a fluorescent glow appeared on the glass opposite to cathode

Answer: D

- Watch Video Solution

6. The colour of the positive column ina gas
discharge tube depends on
A. natruue of gas in the discharge tube
B. potential difference between cathode and anode
C. natrue of material of cathode

D. nature of glass of the discharge tube

Answer: D

D Watch Video Solution

7. In Millikan's oil drop experiment, a charged oil drop of mass $3.2 \times 10^{-14} \mathrm{~kg}$ is held stationary between two parallel plates 6 mm apart by applying a potential difference of 1200 V between them. How many excess
electrons does the oil drop carry? Take

$$
g=10 m s^{-2}
$$

A. 7
B. 8
C. 9
D. 10

Answer: D
(Watch Video Solution
8. The specific charge of a proton is $9.6 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$.

The specific charge of an alpha particle will be

$$
\text { A. } 9.6 \times 10^{7} \mathrm{C} \quad \mathrm{~kg}^{-1}
$$

B. $19.2 \times 10^{7} \mathrm{C} \quad \mathrm{kg}^{-1}$
C. $4.8 \times 10^{7} \quad$ C $\quad k^{-1}$
D. $2.4 \times 10^{7} \quad \mathrm{C}^{-1}$.

Answer: C

D Watch Video Solution

9. Positive rays are very identical to

A. α-rays
B. β-rays
C. γ-rays
D. none of these

Answer: A
10. Few metals when irradiated with ultraviolet
light emits
A. positively charged particles
B. gamma rays
C. negatively charged particles
D. neutral particles.

Answer: C
(Watch Video Solution
11. Non-dependence of e/m oof the cathode
ray particles on nature of the gas and metal of cathode suggested
A. wave nature of particles
B. photoemission of electrons
C. universality of the cathode ray particles
D. presence of positive charge in atom

Answer: C

12. The velocity of electrons emitted from the electron gun can be increased by
A. increasing the filament current
B. decreasing the filament current
C. decreasing the potential difference
between the anode and filament
D. increasing the potential difference
between the anode and filament

Answer: D

13. A beam of cathode rays is subjected to crossed electric (E) and magnetic fields (B).

The fields are adjusted such that the beam is not deflected. The specific charge of the cathode rays is given by
A. $\frac{B^{2}}{2 V E^{2}}$
B. $\frac{2 V B^{2}}{E^{2}}$
C. $\frac{2 V E^{2}}{B^{2}}$
D. $\frac{E^{2}}{2 V B^{2}}$

Answer: D

- Watch Video Solution

14. In the phenomenon of electric discharge
through gases at low pressure, the coloured glow in the tube appears as a result of
A. excitation of electrons in the atoms
B. collision between the atoms of the gas
C. collisions between the charged particles

D. the cathode and the atoms of the gas

Answer: C

D Watch Video Solution

15. Canal rays are

A. electrons
B. neutrons
C. positive ions
D. electromagnetic waves

Answer: C

D Watch Video Solution

16. Cathode rays enter a magnetic field making
oblique angle with the lines of magnetic induction. What will be the nature of the path
followed?
A. Parabola
B. Helix
C. Circle

D. Straight line

Answer: B

D Watch Video Solution

17. Millikan's oil drop experiment established
that
A. electric chage depends on velocity
B. specific
charge
of
electron
is
$1.76 \times 10^{11} \mathrm{C} \quad \mathrm{kg}^{-1}$
C. electron has wave nature

D. electric charge is quantised

Answer: D

D Watch Video Solution

18. The photoelectric threshould wavelength
for a metal surface is $6600 \AA$. The work
function for this is
A. 0.87 eV
B. 1.87 eV
C. 18.7 eV
D. 0.18 eV

Answer: B

D Watch Video Solution

19. Ligth of wavelength $4000 \AA$ is incident on a metal plate whose work function is $2 e V$. What is maximum kinetic enegy of emitted photoelectron?
A. 0.5 eV
B. 1.1 eV
C. 1.5 eV
D. 2.0 eV

Answer: B

D Watch Video Solution
20. The frequency of incident light falling on a photosensitive metal plate is doubled, the K.E of the emitted photo-electrons is
A. double the earlier value
B. unchanged
C. more than doubled
D. less than doubled

Answer: C

D Watch Video Solution

21. If the work function for a certain metal is
3.2×10^{-19} joule and it is illuminated with
light of frequency $8 \times 10^{14} \mathrm{~Hz}$. The maximum
kinetic energy of the photo-electrons would be

$$
\left(h=6.63 \times 10^{-34} J s\right)
$$

A. $2.1 \times 10^{-19} J$
B. $3.2 \times 10^{-19} J$
C. $5.3 \times 10^{-19} J$
D. $8.5 \times 10^{-19} J$

Answer: A

D Watch Video Solution
22. Ultraviolet light of wavelength 300 nn and intensity $1.0 \mathrm{Wm}^{-2}$ falls on the surface of a photosensitive material. If one per cent of the incident photons produce photoelectrons, then the number of photoelectrons emitted per second from an area of $1.0 \mathrm{~cm}^{2}$ of the surface is nearly

$$
\begin{aligned}
& \text { A. } 9.61 \times 10^{14} s^{-1} \\
& \text { B. } 4.12 \times 10^{13} s^{-1} \\
& \text { C. } 1.51 \times 10^{12} s^{-1}
\end{aligned}
$$

$$
\text { D. } 2.13 \times 10^{11} s^{-1}
$$

Answer: C

D Watch Video Solution

23. Light of wavelength $4000 \AA$ is incident on a sodium surface for which the threshold wavelength of photoelectrons is $5420 \AA$. The work function of sodium is
A. 0.57 eV

B. 1.14 eV

C. 2.29 eV
D. 4.58 eV

Answer: C

D Watch Video Solution

24. Photoelectric emission occurs only when
the incident light has more than a certain
A. wavelength
B. intensity
C. frequency
D. power

Answer: C

D Watch Video Solution

25. A photosensitive metallic surface has work
funtion $h v_{0}$. If photons of energy $2 h v_{0}$ fall on
this surface the electrons come out with a
maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the
photon energy is increases to $5 h v_{0}$ then maximum velocity of photo electron will be

$$
\text { A. } 12 \times 10^{6} m s^{-1}
$$

B. $6 \times 10^{6} \mathrm{~ms}^{-1}$
C. $3 \times 10^{6} m s^{-1}$
D. $24 \times 10^{6} \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution
26. Radiation two photons having energies
twice and five times the work function of a
metal are incident successively on the metal
surface. The ratio of the maximum velocity of
photoelectrons emitted in the two cases will be
A. $1: 1$
B. 1:2
C. $1: 3$
D. 1: 4

Answer: B

D Watch Video Solution

27. The work function for metals A, B and C
are respectively $1.92 \mathrm{eV}, 2.0 \mathrm{eV}$ and 5 eV .

According to Einstein's equation, the metals
which will emit photoelectrons for a radiation
of wavelength $4100 \AA$ are
A. A only
B. A and B
C. Both (a) and (b)
D. Neither (a) nor (b)

Answer: B

D Watch Video Solution

28. Silver has a work function of 4.7 eV . When
ultraviolet light of wavelength 100 nm is incident upon it, a potential of 7.7 V is required to stop the photo electrons from reaching the collector plate. How much
potential will be required to stop the photoelectrons when light of wavelength 200nm is incident upon silver?
A. 15.4 V
B. 2.35 V
C. 3.85 V
D. 1.5 V

Answer: D

D Watch Video Solution
29. The maximum kinetic energy of emitted photoelectrons depends on the...........and nature of............but is independent of. \qquad
A. potential
B. frequency
C. incident angle
D. pressure

Answer: B

30. A photosensitive metallic surface has work
funtion $h v_{0}$. If photons of energy $2 h v_{0}$ fall on
this surface the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increases to $5 h v_{0}$ then maximum velocity of photo electron will be
A. $2 \times 10^{7} m s^{-1}$
B. $8 \times 10^{6} m s^{-1}$
C. $2 \times 10^{6} \mathrm{~ms}^{-1}$
D. $8 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

31. A metal surface of work function 1.07 eV is
irradiated with light of wavelength 332 nm .

The retarding potential required to stop the escape of photo - electrons is
A. 1.07 eV
B. 2.68 eV
C. 3.7 eV

D. 4.81 eV

Answer: B

D Watch Video Solution

32. represents a graph of most energetic photoelectrons $K_{\max }$ (in eV) and frequency v for a metal used as cathode in photoelectrons experiment. The threshold frequency of light for the photoelectric emission from the metal

A. $4 \times 10^{14} H z$
B. $3.5 \times 10^{14} \mathrm{~Hz}$
C. $2.0 \times 10^{14} \mathrm{~Hz}$
D. $2.7 \times 10^{-19} \mathrm{~Hz}$

Answer: D

D Watch Video Solution

33. Find the difference of kinetic energies of photoelectrons emitted from a surface by light of wavelength $2500 \AA$ and $5000 \AA$. $h=6.62 \times 10^{-34} J s$.
A. 1.61 eV
B. 2.47 eV
C. 3.96 eV

$$
\text { D. } 3.96 \times 10^{-19} \mathrm{eV}
$$

Answer: B

D Watch Video Solution

34. When ultraviolet light of wavelength 100 nm is incident upon silver plate, a potential of
7.7 V is required to stop the photoelectrons
from reaching the collector plate. How much potential will be required to stop the
photoelectons when light of wavelength 200 $n m$ is incident upon silver?
A. 1.5 V
B. 3.85 V
C. 2.35 V
D. 15.4 V

Answer: A
(Watch Video Solution
35. Light of wavelength λ strikes a photoelectric surface and electrons are ejected with kinetic energy K . If K is to be increased to exactly twice its original value, the wavelength must be changed to λ^{\prime} such that
A. λ^{\prime} is less than $\frac{\lambda}{2}$
B. λ^{\prime} is greater than $\frac{\lambda}{2}$
C. λ^{\prime} is greater than $\frac{\lambda}{2}$ but less than λ
D. λ^{\prime} is exactly equal to $\frac{\lambda}{2}$.

- Watch Video Solution

36. The energy of a photon corresponding to
the visible light of maximum wavelenth is approximately
A. 1 eV
B. 1.6 eV
C. 3.2 eV
D. 7 eV

Answer: B

- Watch Video Solution

37. When a centimeter thick surface is
illuminated with light of wavelength λ, the stopping potential is V . When the same surface is illuminated by light of wavelength 2λ, the stopping potential is $\frac{V}{3}$. Threshold wavelength for the metallic surface is
A. $4 \lambda / 3$
B. 4λ
C. 6λ
D. $\lambda / 3$

Answer: B

D Watch Video Solution

38. The work function for Al, K and is 4.28 eV ,
2.30 eV and 5.65 eV respectively. Their respective threshold frequencies would be
A. $P t>A l>K$
B. $A l>P t>K$
C. $K>A l>P t$
D. $K+h v$

Answer: A

D Watch Video Solution

39. When photons of energy $h v$ fall on an aluminium plate (of work function E_{0}), photoelectrons of maximum kinetic energy K
are ejected. If the frequency of the radiation is
doubled, the maximum kinetic energy of the ejected photoelectrons will be
A. $K+E_{0}$
B. $2 K$
C. K
D. $K+h v$

Answer: D

D Watch Video Solution
40. A photocell with a constannt potential differnce of V voolt across it, is illuminated by
a point source from a distance of 25 cm . when
the source is moved to a distance of 1 m , the electrons emitted by the photocell
A. carry $1 / 4$ th their previous energy
B. are $1 / 16$ th as numerous as before
C. are $1 / 4$ th as numerous as before
D. cary $1 / 4$ th theirr previous momentum

Answer: B
41. In a photoemissive cell, with exciting wavelength λ, the faster electron has speed v .

If the exciting wavelength is changed to $3 \lambda / 4$, the speed of the fastest electron will be
A. $\frac{3 K}{4}$
B. $\frac{4 K}{3}$
C. less than $\frac{4 K}{3}$
D. greater than $\frac{4 K}{3}$

Answer: D

D Watch Video Solution

42. In a photoemissive cell, with exciting wavelength λ, the faster electron has speed v.

If the exciting wavelength is changed to $3 \lambda / 4$, the speed of the fastest electron will be
A. $v\left(\frac{3}{4}\right)^{\frac{1}{2}}$
B. $v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
C. less than $v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
D. greater than $v\left(\frac{4}{3}\right)^{\frac{1}{2}}$.

Answer: B

- Watch Video Solution

43. The threshold frequency of the metal of
the cathode in a photoelectric cell is
$1 \times 10^{15} \mathrm{~Hz}$. When a certain beamm of light is incident on the cathode, it is found that a stopping potential 4.144 V is required to
reduce the current to zero. The frequency of the incident radiation is

A. $2.5 \times 10^{15} \mathrm{~Hz}$
B. $2 \times 10^{15} \mathrm{~Hz}$
C. $4.144 \times 10^{15} \mathrm{~Hz}$
D. $3 \times 10^{16} \mathrm{~Hz}$

Answer: B

- Watch Video Solution

44. Calculate the energy of a photon with momentum $3.3 \times 10^{-13} \mathrm{~kg}-\mathrm{ms}^{-1}$. (given, planck's constant to be $6.6 \times 10^{-34} J-s$)
A. $7.3 \times 10^{4} \mathrm{~J}$
B. $9.9 \times 10^{-5} J$
C. $1.3 \times 10^{5} \mathrm{~J}$
D. $8.1 \times 10^{3} \mathrm{~J}$

Answer: B

- Watch Video Solution

45. The energy that should be added to an electron, to reduce its de-Broglie wavelengths
from $10^{-10} \mathrm{~m}$ to $0.5 \times 10^{-10} \mathrm{~m}$ wil be
A. four times the initial energy
B. thrice the initial energy
C. equal to the initial energy
D. twice the initial energy

Answer: B

D Watch Video Solution
46. A parallel beam of light is incident normally on a plane surface absorbing 40% of the light and reflecting the rest. If the incident beamm carries 60 W of power, the force exerted by it on the surface is

$$
\begin{aligned}
& \text { А. } 3.2 \times 10^{-8} N \\
& \text { B. } 3.2 \times 10^{-7} N \\
& \text { C. } 5.12 \times 10^{-7} N \\
& \text { D. } 5.12 \times 10^{-8} N
\end{aligned}
$$

47. A particle of mass $1 m g$ has the same wavelength as an electron moving with a velocity of $3 \times 10^{6} \mathrm{~ms}^{-1}$. The velocity of the particle is

$$
\begin{aligned}
& \text { A. } 3 \times 10^{-31} \mathrm{~ms}^{-1} \\
& \text { B. } 2.7 \times 10^{-21} \mathrm{~ms}^{-1} \\
& \text { C. } 2.7 \times 10^{-18} \mathrm{~ms}^{-1} \\
& \text { D. } 9 \times 10^{-2} \mathrm{~ms}^{-1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

48. Monochromatic light of frequency
$6.0 \times 10^{14} \mathrm{~Hz}$ is produced by a laser. The power emitted is $2 \times 10^{-3} \mathrm{w}$. The number of photons emitted, on the average, by the sources per second is

$$
\text { A. } 5 \times 10^{16}
$$

B. 5×10^{16}
C. 5×10^{17}
D. 5×10^{14}

Answer: A

D Watch Video Solution

49. Maxwell's equations of electromagnetism and hertz experiments on generation and detection of electromagnetic waves established the
A. particle nature of light
B. wave nature of particle
C. wave natue of light
D. matter wave hypothesis

Answer: C

D Watch Video Solution

50. If 5% of the energy supplied to a bulb is irradiated as visible light, how many quanta are emitted per second by a 100 W lamp?
(Assume, wavelength of visible light as
$\left.5.6 \times 10^{-5} \mathrm{~cm}\right)$
A. 1.4×10^{19}
B. 3×10^{3}
C. 1.4×10^{-19}
D. 3×10^{4}

Answer: A

D Watch Video Solution

1. A tiny spherical oil drop carrying a net charge q is balanced in still air with a vertical uniform electric field of strength $\frac{81 \pi}{7} \times 10^{5} \mathrm{Vm}^{-1}$. When the field is switched off, the drop is observed to fall with terminal velocity $2 \times 10^{-3} m s^{-1}$. Given $g=9.8 m s^{-2}$, viscoisty of the air $=1.8 \times 10^{-5} \mathrm{Nsm}^{-2}$ and the denisty of oil $=900 \mathrm{kgm}^{-3}$, the magnitude of q is

$$
\text { A. } 1.6 \times 10^{-19} C
$$

B. $3.2 \times 10^{-19} C$
C. $4.8 \times 10^{-19} C$
D. $8.0 \times 10^{-19} C$

Answer: D

D Watch Video Solution

2. When a cathode ray tube is operated at 2912 V , the velocity of electrons is $3.2 \times 10^{7} \mathrm{~ms}^{-1}$.

Find the velocity of cathode ray if the tube is operated at 5824 V .
A. $2.4 \times 10^{7} m s^{-1}$
B. $5.2 \times 10^{7} m s^{-1}$
C. $4.525 \times 10^{7} m s^{-1}$
D. $2.4 \times 10^{6} \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

3. In a cathode ray oscillograph, the focusing of beam on the screen is achieved by
A. convex lenses
B. magnetic field
C. electric potential
D. all of these

Answer: C

D Watch Video Solution

4. if e / m of electron is $1.76 \times 10^{11} C(\mathrm{~kg})^{-1}$ andn stopping potential is 0.71 V , then the maximum velocity of the photoelectron is
A. $150 \mathrm{~km} \mathrm{~s}^{-1}$
B. $200 \mathrm{kms}^{-1}$
C. $500 \mathrm{~km} \mathrm{~s}^{-1}$
D. $250 \mathrm{~km} \mathrm{~s}^{-1}$

Answer: C

D Watch Video Solution
5. The voltage applied to an electron microscope to produce electrons of wavelength $0.50 \AA$ is
A. 602 V
B. 50 V
C. 138 V
D. 812 V

Answer: A

D Watch Video Solution
6. A radiotransmitter operates at a frequency

1000 kHz and a powerr of 66 kW . Find the number of photons emitted per second
A. 10^{27}
B. 10^{28}
C. 10^{29}
D. 10^{30}

Answer: C

D Watch Video Solution

7. When a surface 1 cm thick is illuminated with

light of wavelength λ, the stopping potential
is V_{0}, but when the same surface is illuminated
by light of wavelength 3λ, the stopping potential is $\frac{V_{0}}{6}$. Find the threshold wavelength for metallic surface.
A. 4λ
B. 5λ
C. 3λ
D. 2λ

Answer: B

D Watch Video Solution
8. In a photoelectric effect measurement, the stoppingg potential for a given metal is found to be V_{0} volt, when radiation of wavelength λ_{0} is used. If radiation of wavelength $2 \lambda_{0}$ is used with the same metal, then the stopping potential (in V) will be
A. $\frac{V_{0}}{2}$
B. $2 V_{0}$
C. $V_{0}+\frac{h c}{2 e \lambda_{0}}$
D. $V_{0}-\frac{h c}{2 e \lambda_{0}}$

Answer: D

D Watch Video Solution

9. The work function of a substance is 4.0 eV .

The longest wavelength of light that can cause photoelectron emission from this substance is approximately:
A. 540 nm
B. 400 nm
C. 310 nm

D. 220 nm

Answer: C

D Watch Video Solution

10. The act of photoelectric effect taking place
with a certain photosensitive metal depends
upon
(i) frequency annd
(ii) intensity of the incident radiation.
A. both (i) and (ii) are correct
B. only (i) is correct
C. only (ii) is correct
D. neigher (i) nor (ii) is correct.

Answer: B

D Watch Video Solution

11. A point source of light is used in a photoelectric effect. If the source is removed
farther from the emitted metal, the stopping potential
A. will increases
B. will decreases
C. will remain constant
D. will either increase or decrease

Answer: C

D Watch Video Solution
12. If the frequency of light in a photoelectric experiment is doubled the stopping potential
A. be doubled
B. halved
C. become more than double
D. become less than double

Answer: C

D Watch Video Solution

13. The cathode of a photoelectric cell is changed such that the work function changes
from $\left(W_{1} \rightarrow W_{2}\left(W_{2}>W_{1}\right)\right.$. If the current
before and after change are I_{1} and I_{2}, all other conditions remaining unchanged, then
(assuming $h v>W_{2}$)

$$
\begin{aligned}
& \text { A. } l_{1}=l_{2} \\
& \text { B. } l_{1}<l_{2} \\
& \text { C. } l_{1}>l_{2} \\
& \text { D. } \frac{W_{1}}{W_{2}}=\frac{l_{1}}{l_{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution
14. In a photoelectric experiment, the potential difference V that must be maintained between
the illuminated surface and the collector so as
just to prevennt any electron from reaching
the collector is determined for different
frequencies f of the incident illumination. the graph obtained is shown in the figure. the maximum kinetic energy of the electrons
emitted at frequency f_{1} is

A. $h f_{2}$
B. $\frac{V_{1}}{\left(f_{1}-f_{0}\right)}$
C. $h\left(f_{1}-f_{0}\right)$

D. $e V_{1}\left(f_{1}-f_{0}\right)$

Answer: C

D Watch Video Solution

15. what should be the velocity of an electron so that its momentum becomes equal to that of a photon of wavelength $5200 \AA$

$$
\text { A. } 700 m s^{-1}
$$

$$
\text { B. } 1000 \mathrm{~ms}^{-1}
$$

C. $1400 m s^{-1}$

D. $2800 \mathrm{~ms}^{-1}$

Answer: C

- Watch Video Solution

16. From the figure describing photoelectric effect we may infer correctly that

芸
 Frequency

$\mathrm{A} . \mathrm{Na}$ and Al bothh have the same threshold frequency
B. maximum kinetic energy for both the
metals depend linearly on the frequency
C. the stopping potential are different for

Na annd Al for the samme change in
frequency
D. Al is a better photo sensitive material
than Na

Answer: B

- Watch Video Solution

17. Cathode rays enter a magnetic field makin oblique angle withh the lines off magnetic induction. What will be the nature of the path followed?
A. Parabola
B. Helix
C. Circle
D. straight line

Answer: B

D Watch Video Solution

18. The work function for aluminium is 4.125 eV .

The cut-off wavelength for photoelectric effect
A. 420 nm
B. 350 nm
C. 300 nm
D. 200 nm

Answer: C

D Watch Video Solution

19. According to Einstein's photoelectric equation, the plot of the maximum kinetic energy of the emitted photoelectrons from a
metal versus frequency of the incident radiation gives a straight line whose slope
A. depends on the intensity of the incident radiation
B. depends on the nature of the metal and
also on the intensity of incident
radiation
C. is same for all metals and independent
of the intensity of the incident radiation
D. depends on the nature of the metal

Answer: C

- Watch Video Solution

20. Photon and electron are given same energy $\left(10^{-20} J\right)$. Wavelength associated with photon and electron are $\lambda_{p h}$ and $\lambda_{e l}$ then correct statement will be
A. $\lambda_{p}>\lambda_{e}$
B. $\lambda_{p}<\lambda_{e}$
C. $\lambda_{p}=\lambda_{e}$
D. $\frac{\lambda_{e}}{\lambda_{p}}=c$

Answer: A

D Watch Video Solution

21. Match column I (fundamental experiment)

with column II (its conclusion) and select the

correct optionn from the choices given below:

Column I

A. Franck-Hertz experiment
B. Photoelectric experiment

Column II

1. Particle nature of light
2. Discrete energy levels of atom
C. Davisson-Germer experiment
3. Wave nature of electron
4. Structure of atom
A. $A-1, B-4, C-3$
B. $A-2, B-4, C-3$
C. $A-2, B-1, C-3$
D. $A-2, B-1, C-4$

Answer: C

D Watch Video Solution
22. When a certain metallic surface is
illuminated with monochromatic light of wavelength λ, the stopping potential for
photo electric current is $6 v_{0}$. When the same surface si illuminated with light of wavelength
2λ, the stopping potential is $2 v_{0}$. The threshold wavelength of this surface for photoelectric effect is -
A. 6λ
B. 4λ
C. $\frac{\lambda}{4}$
D. $\frac{\lambda}{6}$

Answer: B
23. Which of the following figure represents the variation of particle momentum and the associated de-Broglie wavelength ?
A.

B.

Answer: B

D Watch Video Solution

24. Threshold wavelength for lithium metal is

6250 Å. For photo emission, the wavelength of
the incidennt light must be
A. exactly equal to $6250 \AA$
B. more than $6250 \AA$
C. equal to or more than $6250 \AA$
D. equal to or less than $6250 \AA$

Answer: D
25. In a photoelectric experiment the relation between applied potential difference between cathode and anode V and the photoelectric current cathode and anode V and the photoelectric current I and was found to be
shown in graph below. If planck's constant
$h=6.6 \times 10^{-34} \mathrm{Js}$, the frequency of incident radiation would e nearly (in s^{-1})

A. 0.436×10^{18}
B. 0.436×10^{17}
C. 0.775×10^{15}
D. 0.775×10^{16}

Answer: C

D Watch Video Solution

26. Photoelectric effect experiments are performed using three different metal plates
$\phi_{p}=2.0 \mathrm{eV}, \phi_{e}=2.5 \mathrm{eV}$ and $\phi_{r}=3.0 \mathrm{eV}$
respectively A light beam containing
wavelength of $550 \mathrm{~nm}, 450 \mathrm{~nm}$ and 350 nm with equal intensities illuminates each of the plates. The correct $I-V$ graph for the experiment is [Take hc $=1240 \mathrm{eV} \mathrm{nm}$]

C.

D. none of these

Answer: D

D Watch Video Solution

27. Light of two different frequencies whose photons have energies 1 eV and 2.5 eV respectively illuminate a metallic surface whose work function is 0.5 eV successively.

Ratio of maximum kinetic energy of emitted electrons will be:
A. $1: 2$
B. 1:5
C. 1:1
D. 1:4

Answer: A

D Watch Video Solution

28. Light of intensity $10^{-5} W m^{-2}$ falls on a sodium photocell of surface area $2 \mathrm{~cm}^{2}$.

Assuming that the top 5 layers of sodium
absorb the incident energy, estimate the time
required for photoelectric emission in the wave picture of radiation. The work function of the metal is given to be about 2 eV . What is the implication of your answer? effective atomic area $=10^{-20} m^{2}$.
A. $10 \frac{1}{2} s$
B. $\frac{1}{2} s$
C. $\frac{1}{2} h$
D. $\frac{1}{2} y r$

- Watch Video Solution

29. Work function for caesium metal is 2.14 eV .

Let a beam of light of frequency $6 \times 10^{14} \mathrm{~Hz}$ incident over the metal surface.

Now, match the following columns and choose the correct option from code given.

Column I
Column II
A. Maximum KE of emitted photoelectrons (in eV) 1. 332.3
B. Minimum KE of emitted photoelectrons (in eV) 2. 345
C. Stopping potential of material (in mV) is $\quad 3.0 .345$
D. Maximum speed of the emitted photoelectrons 4. 0
(in kms^{-1})
A. $A-4, B-3, C-2, D-1$
B. $A-3, B-4, C-2, D-1$
C. $A-3, B-1, C-4, D-2$
D. $A-2, B-1, C-4, D-3$

Answer: B

D Watch Video Solution

Mht Cet Corner

1. Light of wavelength A which is less than
threshold wavelength is incident on a
photosensitive material. If incident wavelength
is decreased so that emitted photoelectrons
are moving with same velocity, then stopping
potential will
A. increase
B. decrease
C. be zero
D. become exactly half

Answer: A

2. When light of wavelength λ is incident on photosensitive surface, the stopping potential is V. When light of wavelength 3λ is incident on same surface, the stopping potential is $\frac{V}{6}$

Thereshould wave length for the surface is
A. 2λ
B. 3λ
C. 4λ
D. 5λ

Answer: D

D Watch Video Solution

3. The de-Broglie wavelength λ

A. is proportional to mass
B. is proportional to impulse
C. is inversely proportional to impulse
D. does not depend on impulse

- Watch Video Solution

4. For photoelectric emission from certain metal the cut - off frequency is v. If radiation of frequency $2 v$ incident on the metal plate, the maximum possible velocity of the emitted electron will be (m is the electron mass).
A. $\sqrt{\frac{h v}{(2 m)}}$
B. $\sqrt{\frac{h v}{m}}$
C. $\sqrt{\frac{2 h v}{m}}$
D. $2 \sqrt{\frac{h v}{m}}$

Answer: C

D Watch Video Solution

5. The wavelength λ_{e} of ann electron and λ_{p} of
a photon of same energy E are related by
A. $\lambda_{p} \propto \lambda_{e}^{2}$
B. $\lambda_{p} \propto \lambda_{e}$
C. $\lambda_{p} \propto \sqrt{\lambda_{e}}$
D. $\lambda_{p} \propto \frac{1}{\sqrt{\lambda_{e}}}$

Answer: A

D Watch Video Solution

6. The ratio of moment of an electron and an
α-particle which are accelerated from rest by a
potential difference of 100 V is
A. 1
B. $\sqrt{\frac{2 m_{e}}{m_{\alpha}}}$
C. $\sqrt{\frac{m_{e}}{m_{\alpha}}}$

$$
\text { D. } \sqrt{\frac{m_{e}}{2 m_{\alpha}}}
$$

Answer: D

D Watch Video Solution

7. When the kinetic energy of an electron is
increased, the wavelength of the associated
wave will
A. increase
B. decrease
C. wavelength does not depends upon kinetic energy
D. none of these

Answer: B

- Watch Video Solution

8. The dimensions of Planck's constant is the same as the product of
A. force and time
B. force, displacement and time
C. force and distance
D. time and displacement

Answer: B

D Watch Video Solution
9. In photoelectric effect if the intensity of light is doubled then maximum kinetic energy of photoelectrons will become
A. double the earlier value
B. halff
C. four times
D. no change

Answer: D

D Watch Video Solution

10. Which of the following is not the property of the photons?
A. Momentum
B. Energy
C. charge
D. velocity

Answer: C

D Watch Video Solution

11. The momentum of a photon of energy
$1 M e V$ "in" $k g m / s$ will be
A. 0.33×10^{6}
B. 7×10^{-24}
C. 10^{-22}
D. 5×10^{-22}

Answer: D

D Watch Video Solution

12. As the intensity of incident light increases
A. photocurrent increases
B. photocurrennt decreases
C. kinetic energy of emitted photoelectrons
increases
D. kinetic energy of emitted photoelectrons
decreases

Answer: A

- Watch Video Solution

13. A photoelectric cell is illuminated by a point source of light $1 m$ away. When the source is shifted to $2 m$ then
A. each emitted electron carries half the initial energy
B. numer of electrons emitted is a quarter of the initial number
C. each emitted electron carries one quarter of the initial energy

D. number of electrons emitted is half the

initial number

Answer: B

D Watch Video Solution

14. A red bulb and violet bulb of equal power emits n_{R} and n_{v} number of photons in a given time, then

$$
\text { A. } n_{R}=n_{V}
$$

$$
\begin{aligned}
& \text { B. } n_{R}>n_{V} \\
& \text { C. } n_{R}<n_{V} \\
& \text { D. } n_{R} \geq n_{V}
\end{aligned}
$$

Answer: B

D Watch Video Solution

15. An electron is accelerated from rest to potential V. the final velocity of electron is

$$
\text { A. } \sqrt{\frac{e V}{2 M}}
$$

B. $\sqrt{\frac{4 e V}{m}}$
C. $\sqrt{\frac{e V}{m}}$
D. $\sqrt{\frac{2 e V}{m}}$

Answer: D

D Watch Video Solution

16. The dual nature of light is exhibited by
A. diffraction and photoelectric effect
B. photoelectric effect

C. refractionn and interference

D. diffraction and reflection

Answer: A

- Watch Video Solution

17. Energy of photon whose frequency is
$10^{12} M H z$, will be
A. $4.14 \times 10^{3} \mathrm{keV}$
B. $4.14 \times 10^{2} \mathrm{eV}$

C. $4.14 \times 10^{3} \mathrm{MeV}$

D. $4.14 \times 10^{3} \mathrm{eV}$

Answer: D

- Watch Video Solution

18. Number of electrons emitted by a surface
exposed to light is directly proportional to
A. wavelength of light
B. frequency of light

C. intensity of incident light

D. velocity of light

Answer: C

D Watch Video Solution

19. The $\frac{e}{m}$ value of electron is
A. $9.76 \times 10^{11} C(k g)^{-1}$
B. $6.6 \times 10^{27} C(k g)^{-1}$
C. $3.52 \times 10^{11} C(k g)^{-1}$
D. $1.76 \times 10^{11} \mathrm{C}(\mathrm{kg})^{-1}$

Answer: D

- Watch Video Solution

