©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

FRICTION IN SOLID AND LIQUIDS

Examples

1. Suppose a block of mass 1 kg is placed over a
rough surface and a horizontal force F is
applied on the block as shown in figure. What are the values of force of friction $f f$ the force F is gradually increased . Give, that $\mu_{s}=0.5, \mu_{k}=0.4$ and $g=10 m s^{-2}$
A. $3 \mathrm{~N}, 4 \mathrm{~N}$
B. $5 \mathrm{~N}, 4 \mathrm{~N}$
C. $2 \mathrm{~N}, 3 \mathrm{~N}$
D. $4 \mathrm{~N}, 2 \mathrm{~N}$

Answer: B
2. A block of wood of 1 kg resting on an inclined plane a angle 30°, just starts moving down. If the coefficient of friction is 0.2 , then find its velocity (in $m s^{-1}$) after 5 s (take, $g=10 m s^{-2}$)
A. $16.45 m s^{-1}$
B. $15.35 m s^{-1}$
C. $16.35 m s^{-1}$
D. $15.45 m s^{-1}$

Answer: C

D Watch Video Solution

3. Find the pressure exerted below a column of water, open to the atmosphere, at depth
(i) 10 m " " (ii) 30 m
(Given,
density
of
water
$\left.=1 \times 10^{3} \mathrm{kgm}^{-3}, g=10 \mathrm{~ms}^{-2}\right)$
A. $2.013 \times 10^{5} \mathrm{pa}, 4 \mathrm{~atm}$
B. $3.013 \times 10^{4} \mathrm{pa}, 3 \mathrm{~atm}$
C. 2.013×10^{4} pa, 2 atm

D. $2.013 \times 10^{2} \mathrm{pa}, 4 \mathrm{~atm}$

Answer: A

D Watch Video Solution

4. Figure shows a hydraulic press with the larger piston of diameter 35 cm at a height of
1.5 m relative to the smaller piston of diameter 10 cm . The mass of the smaller piston is 20 kg .

What is the force exerted on the load by the
larger piston?
The density of oil in the press is $750 \mathrm{kgm}^{-3}$
(take , $g=9.8 m s^{-2}$)
A. $2.3 \times 10^{2} N$
B. $1.3 \times 10^{-3} N$
C. $1.3 \times 10^{3} N$
D. $1.3 \times 10^{-2} N$

Answer: C
5. Water is flowing in a pipe of diameter 6 cm with an average velocity $7.5 \mathrm{~cm}^{-1} . s^{-1}$ and its density is $10^{3} \mathrm{kgm}^{-3}$. What is the nature of flow? Given coefficient of viscosity of water is $10^{-3} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$.
A. Streamline
B. Turbulent
C. Both a and b
D. None of these

Answer: B

- Watch Video Solution

6. Calculate the rate of flow of glycerine of density $1.25 \times 10^{3} \mathrm{kgm}^{-3}$ through the conical section of a pipe, if the radii of its ends are 0.1 m and 0.04 m and the pressure drop across its length is $10 \mathrm{Nm}^{-2}$.
A. $6.43 \times 10^{-3} m^{3} s^{-1}$
B. $6.43 \times 10^{-4} m^{3} s^{-1}$
C. $6.43 \times 10^{-4} m^{2} s^{-1}$
D. $6.43 \times 10^{3} m^{3} s^{-1}$

Answer: B

D Watch Video Solution

7. The flow of blood in a large artery of an anesthetised dog is diverted through a
venturimeter. The wider part of the meter has
a cross-sectional area equal to that of the artery, $A=16 \mathrm{~mm}^{2}$. The narrower part has an
area $a=9 \mathrm{~mm}^{2}$. The pressure drop in the artery is 24 Pa . What is the speed of the blood in the artery?
A. $0.135 m s^{-1}$
B. $0.095 \mathrm{~ms}^{-1}$
C. $0.0125 \mathrm{~ms}^{-1}$
D. $0.1125 \mathrm{~ms}^{-1}$

Answer: B

- Watch Video Solution

8. If the water emerge from an orifice in a tank in which the gauge pressure is $4 \times 10^{5} \mathrm{Nm}^{-2}$ before the flow starts, then what will be the velocity of the water emerging out ? Take density of water is $1000 \mathrm{kgm}^{-3}$
A. $28.28 m s^{-1}$
B. $27.28 m s^{-1}$
C. $29.28 m s^{-1}$
D. $29.18 m s^{-1}$

Watch Video Solution

9. A plate of area $2 m^{2}$ is made to move horizontally with a speed of $2 m / s$ by applying a horizontal tangential force over the free surface of a liquid. If the depth of the liquid is 1 m and the liquid in contact with the bed is stationary. Coefficient of viscosity of liquid is 0.01 poise. Find the tangential force needed to move the plate.

$$
\text { A. } 4 \times 10^{-3} N
$$

B. $14 \times 10^{2} N$

C. $4 \times 10^{-2} N$
D. 4 N

Answer: A

D Watch Video Solution

10. Water is conveyed through a horizontal
tube 8 cm in diameter and 4 kilometer in
length at the rate of 20 litre/s Assuming only viscous resistance, calculate the pressure
required to maintain the flow. Coefficient of viscosity of water is 0.001 pa s
A. 45 cm
B. 50 cm
C. 59.68 cm
D. 49.68 cm

Answer: C
(Watch Video Solution
11. With what terminal velocity will an air bubble 0.8 mm in diameter rise in a liquid of viscosity $0.15 N-s / m^{2}$ and specific gravity 0.9 ? Density of air is $1.293 \mathrm{~kg} / \mathrm{m}^{3}$.
A. $-0.21 \mathrm{cms}^{-1}$
B. $+0.21 \mathrm{cms}^{-1}$
C. $-0.41 \mathrm{cms}^{-1}$
D. $+0.41 \mathrm{cms}^{-1}$

Answer: A

Exercise 1

1. Maximum value of frictional force is called
A. Limiting frictional force
B. Static frictional force
C. Kinetic frictional force
D. Rolling frictional force

Answer: A

D Watch Video Solution

2. A mass placed on an inclined place is just in equilibrium. If μ is coefficient of friction of the
surface, then maximum inclination of the plane with the horizontal is

> A. $\tan ^{-1} \mu$
> B. $\tan ^{-1}(\mu / 2)$
> C. $\sin ^{-1} \mu$
> D. $\cos ^{-1} \mu$

Answer: A

D Watch Video Solution

3. A 30 kg block rests on a rough horizontal surface A force of $200 N$ is applied on the block

The block acquires a speed of $4 m / s$ starting from rest in $2 s$ What is the value of coefficient of friction? .
A. $\frac{10}{3}$
B. $\frac{\sqrt{3}}{10}$
C. 0.47
D. 0.184

Answer: C

D Watch Video Solution

4. A block of weight of 5 N is pushed against a vertical wall by a force 12 N . The coefficient of friction between the wall and block is 0.6 . The magnitude of the force exerted by the wall on
the block is
A. 12 N
B. 5 N
C. 7.2 N
D. 13 N

Answer: D

D View Text Solution
5. The coefficient of friction between the tyres
and road is 0.4 . The minimum distance
covered before attaining a speed of $8 \mathrm{~ms}^{-1}$ starting from rest is nearly (take, $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
A. 8 m
B. 4 m
C. 10m
D. 16 m

Answer: A

6. A block of mass 2 kg rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.7 . The frictional force on the block is
A. 9.8 N
B. $0.7 \times 9.8 \times \sqrt{3} N$
C. $9.8 \times \sqrt{3} N$
D. $0.7 \times 9.8 N$

Answer: A

D Watch Video Solution

7. A block of mass m is placed on the top of another block of mass M as shown in the figure . The coefficient of friction between them is μ

R

The maximum acceleration with which the block M may move so that m also moves along with it is
A. μg
B. $\mu \frac{M}{m} g$
C. $\mu \frac{m}{M} g$
D. $\frac{g}{\mu}$
μ

Answer: A

D View Text Solution

8. Thd dimensional formula of pressure is

A. $\left[M^{\circ} L^{\circ} T^{\circ}\right]$
B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M^{\circ} L^{1} T^{-2}\right]$
D. $\left[M^{\circ} L^{1} T^{\circ}\right]$

Answer: B

D Watch Video Solution

9. The two thigh bones each of cross-sectional area $15 \mathrm{~cm}^{2}$ support the upper part of a person of mass 70 kg . The pressure sustained by these thigh bones is
A. $2.5 \times 10^{5} \mathrm{Nm}^{2}$
B. $1.33 \times 10^{5} \mathrm{Nm}^{2}$
C. $4.66 \times 10^{5} \mathrm{Nm}^{2} \mathrm{~s}$
D. $2.33 \times 10^{5} \mathrm{Nm}^{2}$

Answer: D

D Watch Video Solution

10. At a depth of 1000 m in an ocean (a) what is the absolute pressure? (b) what is the gauge pressure? (c) Find the force acting on
the window of area $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ of a submarine at this depth, the interior of which is maintained at sea-level atmospheric pressure. The density of sea water is $1.03 \times 10^{3} \mathrm{kgm}^{-3}, g=10 \mathrm{~ms}^{-2}$. Atmospheric pressure $=1.01 \times 10^{5} \mathrm{~Pa}$.
A. 40 atm
B. 52 atm
C. 32 atm
D. 62 atm
11. Four vessels A, B, C, and D have different shape and hold different amount of water. Which of the following is correct?

$$
\text { A. } P_{E}>P_{F}>P_{G}>P_{H}
$$

B. $P_{E}<P_{F}<P_{G}<P H$
C. $P_{E}=P_{F}=P_{G}=P_{H}$
D. $P_{E}=P_{F}>P_{G}=P_{H}$

D View Text Solution

12. Two liquids of densities 2ρ and ρ having
their volumes in the ratio $3: 2$ are mixed together. Density of the mixture will be
A. $\frac{2 \rho}{3}$
B. $\frac{\rho}{2}$
C. $\frac{8 \rho}{5}$
D. $\frac{4 \rho}{5}$

Answer: C

D Watch Video Solution

13. An object of uniform density is allowed to
float in water kept in a beaker. The object has
triangular cross - section as shown in the figure. If the water pressure measured at the
three point A, B and C below the object are
P_{A}, P_{B} and P_{C} respectively. Then
A. $P_{A}>P_{B}>P_{C}$
B. $P_{A}>P_{B}<P_{C}$
C. $p_{A}=P_{B}=P_{C}$
D. $P_{A}=P_{B}<P_{C}$

Answer: C

D View Text Solution

14. A piston of cross-section area 100 cm 2 is
used in a hydraulic press to exert a force of
10^{7} dynes on the water. The cross-sectional
area of the other piston which supports an object having a mass 2000 kg . Is
A. $9.8 \times 10^{2} \mathrm{~cm}^{2}$
B. $9.8 \times 10^{3} \mathrm{~cm}^{2}$
C. $1.96 \times 10^{3} \mathrm{~cm}^{2}$
D. $1.96 \times 10^{4} \mathrm{~cm}^{2}$

Answer: D

- Watch Video Solution

15. In the given figure, the velocity V_{3} will be
A. $2 m s^{-1}$
B. $4 m s^{-1}$
C. $1 m s^{-1}$
D. $3 m s^{-1}$

Answer: C

- View Text Solution

16. An ideal fluid flows through a pipe of circular cross-section made of two sections
with diameters 2.5 cm and 3.75 cm . The ratio of
the velocities in the two pipes is
A. 9:4
B. 3:2
C. $\sqrt{3}: \sqrt{2}$
D. $\sqrt{2}: \sqrt{3}$

Answer: A

17. Bernoulli's equation is a consequence of conservation of
A. Conservation of mass
B. Conservation of energy
C. Conservation of linear momentum
D. Conservation of angular momentum

Answer: B

D Watch Video Solution
18. A horizontal pipeline carries water in a streamline flow. At a point along the pipe, where the cross- sectional area is $10 \mathrm{~cm}^{2}$, the water velocity is $1 m s^{-1}$ and the pressure is

2000 Pa. The pressure of water at another point where the cross-sectional area is $5 \mathrm{~cm}^{2}$, is........Pa. (Density of water $=10^{3} \mathrm{~kg} . \mathrm{m}^{-3}$)
A. 4000 Pa
B. 2000 Pa
C. 1000 Pa

D. 500 pa

Answer: D

D Watch Video Solution

19. If the velocity head of a stream of water is
equal to 10 cm , then its speed of flow is
approximately
A. $1.0 m s^{-1}$
B. $1.4 m s^{-1}$

C. $140 m s^{-1}$

D. $10 m s^{-1}$

Answer: B

- Watch Video Solution

20. Water falls from a tap with
$A_{0}=4 m^{2}, A=1 m^{2}$ and $\mathrm{h}=2 \mathrm{~m}$, the velocity v
is
A. $2.5 m s^{-1}$
B. $6.5 m s^{-1}$
C. $4.5 m s^{-1}$
D. $1.5 m s^{-1}$

Answer: B

D View Text Solution

21. The velocity of the wind over the surface of
the wing of an aeroplane is $80 m s^{-1}$ and under the wing $60 \mathrm{~ms}^{-1}$. If the area of the
wing is $4 m^{2}$, the dynamic lift experienced by
the wing is [density of air $=1.3 \mathrm{~kg} . \mathrm{m}^{-3}$]
A. 800 N
B. 1000 N
C. 4000 N
D. 3200 N

Answer: C
(Watch Video Solution
22. Water from a tap emerges vertically downwards an intial speed of $1 \mathrm{~m} / \mathrm{s}$. The crosssectional area of the tap is $10^{-4} \mathrm{~m}^{2}$. Assume that the pressure is contant throughout the stream of water and that the flow is steady.

The cross-sectional area of the steam. 0.15 m below the tap is
A. $5.0 \times 10^{-4} \mathrm{~m}^{2}$
B. $1.0 \times 10^{-5} \mathrm{~m}^{2}$
C. $5.0 \times 10^{-5} \mathrm{~m}^{2}$

$$
\text { D. } 2.0 \times 10^{-5} \mathrm{~m}^{2}
$$

Answer: C

D Watch Video Solution

23. The pressure of water in a pipe when tap is
closed is $5.5 \times 10^{5} \mathrm{Nm}^{-2}$. When tap gets open, pressure reduces to $5 \times 10^{5} \mathrm{Nm}^{-2}$. The
velocity with which water comes out on opening the tap is

$$
\text { A. } 10 m s^{-1}
$$

B. $5 m s^{-1}$
C. $20 m s^{-1}$
D. $15 m s^{-1}$

Answer: A

D Watch Video Solution

24. Water flows along horizontal pipe whose cross-section is not constant. The pressureis 1 cam of Hg , where the veloecity is $35 \mathrm{~cm} / \mathrm{s}$. At a
point where the velocity is $65 \mathrm{~cm} / \mathrm{s}$ then pressure will be
A. 0.89 cm of Hg
B. 0.62 cm of Hg
C. 0.5 cm of Hg
D. 1 cm of Hg

Answer: A
(Watch Video Solution
25. The velocity of efflux of a liquid through an
orifice in the bottom of a tank does not depend upon
A. Density of liquid
B. height of the liquid column above orifice
C. Acceleration due to gravity
D. None of these

Answer: A

- Watch Video Solution

26. A tank is filled to a height H . The range of water coming out of a hole which is a depth $H / 4$ from the surface of water level is

$$
\begin{aligned}
& \text { A. } \frac{2 H}{\sqrt{3}} \\
& \text { B. } \frac{\sqrt{3} H}{2} \\
& \text { C. } \sqrt{3} H \\
& \text { D. } \frac{3 H}{4}
\end{aligned}
$$

Answer: B
27. A container has a small hole at its bottom.

Area of cross-section of the hole is A_{1} and that of the container is A_{2}. Liquid is poured in the container at a constant rate $Q m^{3} s^{-1}$. The maximum level of liquid in the container will be

$$
\begin{aligned}
& \text { A. } \frac{Q^{2}}{2 g A_{1} A_{2}} \\
& \text { B. } \frac{Q^{2}}{2 g A_{1}^{2}} \\
& \text { C. } \frac{Q}{2 g A_{1} A_{2}} \\
& \text { D. } \frac{Q^{2}}{2 g A_{2}^{2}}
\end{aligned}
$$

- Watch Video Solution

28. The lift of an air plane is based on
A. Torricelli's theorem
B. Bernoulli's theorem
C. Law of gravitation
D. Continuity equation

- Watch Video Solution

29. Air is blow through a pipe $A B$ at a rate of $15 \mathrm{Lmin}^{-1}$. The cross sectional area of the broad protion of the pipe $A B$ is $2 \mathrm{~cm}^{2}$ and that of the narrow protion is $0.5 \mathrm{~cm}^{2}$. The differnce in water level h is (density of air $=1.32 \mathrm{kgm}^{-3}$)
A. 16 mm
B. 15 mm
C. 10 mm

D. 3.2 mm

Answer: B

D View Text Solution

30. A large tank is filled with water (density
$=10^{3} \mathrm{kgm}^{-3}$). A small hole is made at a depth 10 m below water surface. The range of water issuing out of the hole is R on ground .

What extra pressure must be applied on the
water surface so that the range become $2 R$
(take 1atm $=10^{5} \mathrm{~Pa}$ and $g=m s^{-2}$)
A. 1 atm
B. 2 atm
C. 4 atm
D. 3 atm

Answer: D

D View Text Solution
31. The water level on a tank is 5 m high. There is a hole of $1 \mathrm{~cm}^{2}$ cross-section at the bottom of the tank. Find the initial rate with which water will leak through the hole. $\left(g=10 m s^{-2}\right.$)
A. $10^{-3} m^{3} s^{-1}$
B. $10^{-4} m^{3} s^{-1}$
C. $10 m^{3} s^{-1}$
D. $10^{-2} m^{3} s^{-1}$

Answer: A

- Watch Video Solution

32. A water tank placed on the floor has two
small holes, pinched in the vertical wall, one above the other. The holes are 3.3 cm and
4.7 cm above the floor. If the jets of water issuing out from the holes hit the floor at the same point on the floor, then the height of water in the tank is
A. 10 cm
B. 5 cm
C. 20 cm
D. 4.8 cm

Answer: A

D Watch Video Solution

33. There are two holes O_{1} and O_{2} in a tank of height H. the water emerging from
O_{1} and O_{2} strikes the ground at the same points, as shown in figure, then
A. $H=h_{1}+h_{2}$
B. $H=h_{2}-h_{1}$
C. $H=\sqrt{h_{1} h_{2}}$
D. None of these

Answer: A

D View Text Solution
34. A tank is filled to a height H . The range of water coming out of a hole which is a depth
$H / 4$ from the surface of water level is
A. $\frac{2 H}{\sqrt{3}}$
B. $\frac{\sqrt{3} H}{2}$
C. $\sqrt{3} H$
D. $\frac{3 H}{4}$

Answer: C

D Watch Video Solution
35. There is a hole at the bottom of a large open vessel. If water is filled upto a height h, it
flows out in time t. if water is filled to a height 4h, it will flow out in time
A. $\frac{t}{4}$
B. 2 t
C. 4 t
D. $\frac{t}{2}$

Answer: B
(Watch Video Solution
36. Units of coefficient of viscosity are
A. $N m s^{-1}$
B. $N m^{2} s^{-1}$
C. $N m^{-2} s$
D. 'None of these

Answer: C
37. As the temperature of water increases, its viscosity
A. Remains unchanged
B. Decreases
C. Increases
D. Increases or decreases depending on the
external pressure

Answer: B

38. The rate of flow of liquid in a tube of radius
r, length I, whose ends are maintained at a pressure difference P is $V=\frac{\pi Q P r^{4}}{\eta l}$ where η is coefficient of the viscosity and Q is
A. 8
B. $\frac{1}{8}$
C. 16
D. $\frac{1}{16}$

- Watch Video Solution

39. Two capillary tubes of the same length but different radii r 1 and r 2 are fitted in parallel to the bottom of a vessel. The pressure head is P.

What should be the radius of a single tube that can replace the two tubes so that the rate of flow is same as before

$$
\text { A. } r_{1}+r_{2}
$$

$$
\text { B. } \frac{r_{1} r_{2}}{r_{1}+r_{2}}
$$

$$
\text { C. } \frac{r_{1}+r_{2}}{2}
$$

D. None of these

Answer: D

D Watch Video Solution

40. A raindrop of radius 0.3 mm has a terminal
velocity in air $1 m s^{-1}$. The viscosity of air is
18×10^{-3} poise. The viscous force on it is
A. 101.37×10^{4} dyne
B. 101.73×10^{-2} dyne
C. 16.95×10^{-5} dyne

D. 16.95×10^{-4} dyne

Answer: B

D Watch Video Solution

41. A spherical ball of radius $3 \times 10^{-4} \mathrm{~m}$ and density $10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ falls freely under gravity through a distance h before entering a tank of water. If after entering the water the velocity
of the ball does not change, find h the viscosity of water is $9.8 \times 10^{-6} N-s / m^{2}$
A. $1.65 \times 10^{3} m$
B. $2.65 \times 10^{2} m$
C. $3.65 \times 19^{4} m$
D. $1.45 \times 10^{2} m$

Answer: A

- Watch Video Solution

42. Two rain drops of same radius r falling with terminal velocity v merge and from a bigger drop of radius R. The terminal velocity of the bigger drop is

> A. $v \frac{R}{r}$
> B. $v \frac{R^{2}}{r^{2}}$
C. v
D. 2 v

Answer: B
43. From amongst the following curves, which one shows the variation of the velocity v with t for a small sized spherical body falling vertically in long column of viscous liquid
A.
B.
c.
D.

Answer: D

D View Text Solution

44. The terminal speed attained by an aluminium sphere of radius 1 mm falling through water at $20^{\circ} \mathrm{C}$ will be close to
A. $9.2 m s^{-1}$
B. $6.9 m s^{-1}$
C. $4.6 m s^{-1}$
D. $2.3 m s^{-1}$

Answer: C

D Watch Video Solution

45. Suppose a block of mass 1 kg is placed over
a rough surface and a horizontal force F is
applied on the block as shown in figure. Now,
let us see what are the values of force of friction f and acceleration of the block a if the force F is gradually increased. Given that

$$
\mu_{s}=0.5, \mu_{k}=0.4 \text { and } g=10 \mathrm{~m} / \mathrm{s}^{2}
$$

A. 16
B. 8
C. 4
D. 2

Answer: C

D Watch Video Solution

46. If the terminal speed of a sphere of gold
(density $=19.5 \mathrm{~kg} / \mathrm{m}^{3}$) is $0.2 \mathrm{~m} / \mathrm{s}$ in a viscous liquid (density $=1.5 \mathrm{~kg} / \mathrm{m}^{3}$), find the terminal speed of a sphere of silver (density $=10.5 \mathrm{~kg} / \mathrm{m}^{3}$) of the same size in the same liquid
A. $0.4 m s^{-1}$
B. $0.133 m s^{-1}$
C. $0.1 m s^{-1}$
D. $0.2 m s^{-1}$

Answer: C

D Watch Video Solution

47. Two equal drops of water are falling through air with a steady velocity v. If the drops coalesced, what will be the new velocity?
A. $(2)^{1 / 3} v$
B. $(2)^{3 / 2} v$
C. $(2)^{2 / 3} v$
D. $(2)^{1 / 4} v$

Answer: C

D Watch Video Solution

48. A solid sphere falls with a terminal velocity
V in CO_{2} gas. If its is allowed to fall in vacuum
A. Terminal velocity of sphere $=v$
B. Terminal velocity of sphere It v
C. Terminal velocity of sphere gt v
D. Sphere never attains terminal velocity

Answer: D

D Watch Video Solution

49. Uniform speed of 2 cm diameter ball is
$20 \mathrm{~cm} / \mathrm{s}$ in a viscous liquid. Then, the speed of

1 cm diameter ball in the same liquid is
A. $80 \mathrm{cms}^{-1}$
B. $40 \mathrm{cms}^{-1}$
C. $10 \mathrm{cms}^{-1}$
D. $5 \mathrm{cms}^{-1}$

Answer: D

- Watch Video Solution

Exercise 2 Miscellaneous Problems

1. In a streamline flow
A. The speed of a particle always remains
same
B. The velocity of a particle always remains
same
C. The kinetic energies of all particles
arriving at a given point are the same
D. The potential energies of all the
particles arriving at a given point are the

Answer: C

D Watch Video Solution

2. A viscous fluid is flowing through a
cylindrical tube. The velocity distribution of
the fluid is best represented by the diagram
A.
B.
c.
D. None of these

Answer: C

- Watch Video Solution

3. Which of the following diagrams does not represent a streamline flow?
A.
B.
c.
D.

Answer: D

D View Text Solution

4. A hole is made at the bottom of the tank
filled with water (density $=1000 \mathrm{kgm}^{-3}$). If the total pressure at the bottom of the tank is three atmospheres (1 atmosphere
$=10^{5} \mathrm{Nm}^{-2}$), then the velocity of efflux is nearest to
A. $\sqrt{400} m s^{-1}$
B. $\sqrt{200} m s^{-1}$
C. $\sqrt{600} m s^{-1}$
D. $\sqrt{500} m s^{-1}$

Answer: A

- Watch Video Solution

5. A cylinder of mass M and density d_{1} hanging
from a string, is lowered into a vessel of crosssectional area A, containing a liquid of density $d_{2}\left(d_{2}<d_{1}\right)$ until it is fully immersed. The increase in pressure at the bottom of the vessel is

> A. $\frac{M d_{2} g}{d_{1} A}$
> B. $\frac{M g}{A}$
> C. $\frac{M d_{1} g}{d_{2} A}$
D. zero

Answer: A

- Watch Video Solution

6. A uniformly tapering vessel is filled with a
liquid of density $900 \mathrm{kgm}^{-3}$. The force that acts on the base of the vessel due to the liquid
(excluding atmospheric force) is (

$$
\left.g=10 m s^{-2}\right)
$$

A. 3.6 N
B. 7.2 N
C. 9.0 N
D. 12.6 N

Answer: B

D View Text Solution

7. A tank if filled with water upto height H .

When a hole is made at a distance h below the
level of water. What will be the horizontal range of water jet?

> A. $2 \sqrt{h(H-h)}$
> B. $4 \sqrt{h(H+h)}$
> C. $4 \sqrt{h(H-h)}$
> D. $2 \sqrt{h(H+h)}$

Answer: A

D Watch Video Solution

8. A non - viscous liquid is flowing through a frictionless duct, cross section varying as shown in figure

Which of the following graph represents the variation of pressure p along the axis of tube?
A.
B.
C.
D.

Answer: B

D View Text Solution
9. A block is gently placed on a conveyor belt moving horizontal with constant speed After
$t=4 s$ the velocity of the block becomes equal
to velocity of the belt if the coefficient of friction between the block and the belt is $\mu=0.2$, then the velocity of the conveyor belt is.
A. $8 m s^{-1}$
B. $4 m s^{-1}$
C. $6 m s^{-1}$
D. $18 m s^{-1}$

Answer: A

- Watch Video Solution

10. The breaking strength of the cable used to
pull a body is 40 N . A body of mass 8 kg is resting on a table of coefficient of friction $\mu=0.20$. The maximum acceleration which can be produced by the cable is (take , $g=10 \mathrm{~ms}^{-2}$)
A. $6 m s^{-2}$

$$
\text { B. } 3 m s^{-2}
$$

C. $8 m s^{-2}$
D. $9 m s^{-2}$

Answer: B

D Watch Video Solution
11. In the shown arrangement mass of $A=1 \mathrm{~kg}$, mass of $B=2 \mathrm{~kg}$. Coefficient of friction between
A and $B=0.2 \mathrm{~kg}$

There is no friction between B and groud. The frictional force exerted by A on B equal
A. 2 N
B. 3 N
C. 4 N
D. 5 N

Answer: A

D View Text Solution
12. A body of mass 10 kg is placed on rough
surface pulled by a force F making an angle of 30° above the horizontal. If the angle of friction is also 30°, then the minimum magnitude of force F required to move the body is equal to (take, $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
A. 100 N
B. $50 \sqrt{2} N$
C. $100 \sqrt{2} N$
D. 50 N

Answer: D

D Watch Video Solution

13. The U - tube in figure contains two different
liquids in static equilibrium, water is the right arm and oil of unknown density ρ_{x} in the left.

If $\mathrm{I}=135 \mathrm{~mm}$ and $\mathrm{d}=15 \mathrm{~mm}$. Density of the oil is
A. $1000 \mathrm{kgm}^{3}$
B. $920 \mathrm{kgm}^{3}$
C. $895 \mathrm{kgm}^{3}$
D. $900 \mathrm{kgm}^{3}$

Answer: D

D View Text Solution

14. In a vehicle lifter the enclosed gas exerts a
force F on a small piston having a diameter of

8 cm . This pressure is transmitted to a second piston of diameter 24 cm . If the mass of the vehicle to be lifted is 1400 kg then value of F is

A. 1200 N

B. 1800 N
C. 1600 N
D. 700 N

Answer: C

D Watch Video Solution

15. In the figure shown velocity of liquid which comes out is v , time of liquid to fall to ground is t and range on ground is R. If the vessel is
taken to a mountain, match the following, (consider all cases which might possible)
A. $A \rightarrow p, B \rightarrow q, C \rightarrow r$
B. $A \rightarrow r, B \rightarrow p, C \rightarrow q$
C. $A \rightarrow q, B \rightarrow p, C \rightarrow r$
D. $A \rightarrow r, B \rightarrow q, C \rightarrow p$

Answer: C

D View Text Solution
16. A small metal sphere of radius a is falling with a velocity v through a vertical column of a viscous liquid. If the coefficient of viscosity of the liquid is η, then the sphere encounters an opposing force of
A. $6 \pi \eta a^{2} v$
B. $\frac{6 \eta v}{\pi a}$
C. $6 \pi \eta a v$
D. $\frac{\pi \eta v}{6 a^{3}}$

Answer: C

17. A flow of liquid is streamline, if the

Reynolds' number is
A. Less than 1000
B. Greater than 1000
C. Between 2000 to 3000

D. Between 4000 to 5000

Answer: A

18. Water from a tap emerges vertically downwards with initial velocity $4 m s^{-1}$. The cross-sectional area of the tap is A. The flow is steady and pressure is constant throughout the stream of water. The distance h vertically below the tap, where the cross-sectional area of the stream becomes $\left(\frac{2}{3}\right) A$ is $\left(g=10 m / s^{2}\right)$
A. 2 m
B. 1 m
C. 0.5 m
D. 4 m

Answer: D

D Watch Video Solution

19. Water flows in a streamline manner
through a capillary tube of radius a. The pressure difference being P and the rate of
flow is Q. If the radius is reduced to $a / 2$ and
the pressure difference is increased to 2 P , then
find the rate of flow.
A. 4 Q
B. Q
C. $\frac{Q}{4}$
D. $\frac{Q}{8}$

Answer: D

D Watch Video Solution
20. Figure shows how the stream of water emerging from a faucet necks dons as it falls.

The area changes from A_{0} to A through a fall of h. At what rate does the water flow from the tap?

A. $A_{0} \sqrt{\frac{2 g h A^{2}}{A_{0}^{2}-A^{2}}}$
B. $2 A_{0} \sqrt{\frac{g h A^{2}}{A_{0}^{2}-A^{2}}}$
C. $A_{0} \sqrt{\frac{g h}{2}}$
D. $2 A \sqrt{\frac{g h A_{0}^{2}}{A_{0}^{2}-A^{2}}}$

Answer: A

D Watch Video Solution

21. A bent tube is lowered into the stream as
shown in the figure below. The velocity of the
stream relative to the tube equal to v. The
closed upper end of the tube located at the
height h_{0}. To what height h will the water jet spurt?

$$
\begin{aligned}
& \text { A. } \frac{v^{2}}{2 g} \\
& \text { B. } \frac{v^{2}}{2 g}+h_{0} \\
& \text { C. } \frac{v^{2}}{2 g}-h_{0} \\
& \text { D. } \frac{v^{2}}{4 g}-h_{0}
\end{aligned}
$$

Answer: C
22. A body of mass m is placed on a rough
surface with coefficient of friction μ inclined at
θ. If the mass is in equilibrium , then
A. $\theta=\tan ^{-1} \mu$
B. $\theta=\tan ^{-1}\left(\frac{1}{\mu}\right)$
C. $\theta=\frac{\tan ^{-1} m}{\mu}$
D. $\theta=\frac{\tan ^{-1} \mu}{m}$

Watch Video Solution

23. The upper half of an inclined plane of inclination θ is perfectly smooth while lower half is rough. A block starting from rest at the top of the plane will again comes to rest at
the bottom, if the coefficient of friction between the block and lower hald of the plane is given by

$$
\begin{aligned}
& \text { A. } \mu=\frac{1}{\tan \theta} \\
& \text { B. } \mu=\frac{2}{\tan \theta}
\end{aligned}
$$

C. $\mu=2 \tan \theta$

$$
\text { D. } \mu=\tan \theta
$$

Answer: C

D Watch Video Solution

24. A body of wight 50 N placed on a horizontal
surface is just moved by a force of 28.2 N . The
frictional force and normal reaction are
A. $2 \mathrm{~N}, 3 \mathrm{~N}$
B. $5 \mathrm{~N}, 6 \mathrm{~N}$
C. $10 \mathrm{~N}, 15 \mathrm{~N}$
D. $20 \mathrm{~N}, 30 \mathrm{~N}$

Answer: D

- View Text Solution

