©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

GRAVITATION

Example

1. Two particles of masses 1 kg and 2 kg are
placed at a separation of 50 cm find out
gravitational force between them
A. $5.3 x 10^{-10} N$
B. $4.9 \times 10^{-9} N$
C. $6.5 \times 10^{-8} N$
D. $6.9 \times x 10^{-7} N$

Answer:
2. If both the mass and radius of the earth, each decreases by 50%, the acceleration due to gravity would
A. remain same
B. decrease by 50\%
C. decrease by 100%
D. increase by 100%

Answer:

D Watch Video Solution
3. At what height from the surface of earth will
the value of g be reduced by 36% from the
value on the surface? Take radius of earth
$R=6400 \mathrm{~km}$.
A. 1800 km
B. 1600 km
C. 2000 km
D. 2200 km

Answer:

4. What would be the accelearation due to gravity at a depth of 200 km from ythe earth surface assuming that earth has uniform denisty [Take , $\mathrm{R}=6400 \mathrm{~km}$]
A. $4.37 m s^{-2}$
B. $6.737 \mathrm{~ms}^{-2}$
C. $5.709 \mathrm{~ms}^{-2}$
D. $4.751 \mathrm{~ms}^{-2}$

Answer:

D Watch Video Solution

5. Find wight of the body of mass 200 kg on
the earth at equator and at the latitude of 30° [Take $\mathrm{R}=6400 \mathrm{~km}$]
A. 1953 and 1955 N
B. 1960 and 1965 N
C. 1860 and 1800 N
D. None of these

Answer:

D Watch Video Solution

6. At what distance (in metre) from the centre of the Moon,the intensity of gravitational field will be zero? (Take, mass of Earth and Moon as
$5.98 \times 10^{24} \mathrm{~kg}$ and $7.35 \times 10^{23} \mathrm{~kg}$ respectively
and the distance between Moon and Earth is
$\left.3.85 \times 10^{8} \mathrm{~m}\right)$
A. zero
B. 3.90×10^{7}
C. 8×10^{8}
D. 3.46×10^{8}

Answer:

D Watch Video Solution

7. The radius of the earth is $6.37 \times 10^{6} \mathrm{~m}$ its mass $5.98 \times 10^{24} \quad \mathrm{~kg}$ determine the gravitational potential on the surface of the
earth

Given $G=6.67 \times 10^{-11} N-m^{2} / k h g^{2}$

> A. $6.2616 \times 10^{7} j \mathrm{~kg}^{-1}$
> B. $-62.616 \times 10^{-7} j \mathrm{~kg}^{-1}$
> C. $-6.2616 \times 10^{7} j \mathrm{~kg}^{-1}$
> D. $62.619 \times 10^{7} j \mathrm{~kg}^{-1}$

Answer:

D Watch Video Solution
8. A planet is revolving around the Sun in an elliptical orbit. Its closest distance from the Sun is r and farthest distance is R. If the orbital velocity of the planet closest to the

Sun is v, then what is the velocity at the farthest point?
A. $20 \mathrm{kms}^{-1}$
B. $15 \mathrm{kms}^{-1}$
C. $10 \mathrm{kms}^{-1}$
D. $16 \mathrm{kms}^{-1}$

Answer:

D Watch Video Solution

9. If the distacne between the earth and the
sun gets doubled then what would be the duration of the year
A. 2.828 years
B. 3.285 years
C. 1.234 years
D. 5.234 years

Answer:

D Watch Video Solution

10. Assuming the radius of the earth to be
$6.4 \times 10^{6} \mathrm{~m}$ calculate the time period T of a
satellite for equatorial orbit at $1.4 \times 10^{3} \mathrm{~km}$
above the surface of the earth and the speed of the satellite in this orbit?
A. 6831 and $7200 \mathrm{~ms}^{-1}$
B. 6850 s and $7151 \mathrm{~ms}^{-1}$
C. 68321 s and $7190 \mathrm{~ms}^{-1}$
D. 6850 and $7400 \mathrm{~ms}^{-1}$

Answer:

- Watch Video Solution

11. Binding energy of satellite is $4 \times 10^{8} \mathrm{~J}$. Its potential energy is

$$
\text { A. }-4 \times x 10^{8} j
$$

B. $8 \times 10^{8} j$
C. $8 \times 10^{8} j$
D. $4 \times 10^{8} \mathrm{~J}$

Answer:

D Watch Video Solution

12. A 400 kg satellite is in a circular orbite of
radius 2 R around the earth how much energy
is required to transfer it to circular orbit of radius 4R
A. $3.13 \times 10^{9} \mathrm{~J}$
B. $3.59 \times 10^{9} j$
C. $4.1 \times 10^{9} j$
D. $5.2 \times 10^{9} j$

Answer:

D Watch Video Solution
13. A person sitting in a chair in a satellite feels weightless because
A. the earth does not attract the objects inside a satellite
B. the normal force by the chair on the person balances the earth attraction
C. the normal force is zero
D. the person in satellite is not accelerated

Answer:

D Watch Video Solution

14. The escape velocity on the surface of the earth is $11.2 \mathrm{kms}^{-1}$. If mass and radius of a planet is 4 and 2 tims respectively than that of the earth, what is the escape velocity from the planet?
A. $15.5 \mathrm{kms}^{-1}$
B. $55.5 \mathrm{~km}^{-1}$
C. $11.2 \mathrm{kms}^{-1}$
D. $22.4 k m s^{-1}$

Exercise 1

1. Two speres of radii r and $2 r$ touching each
other the force of attraction betweeen them is
proportional
A. r^{6}
B. r^{4}
C. r^{2}

D. r^{-2}

Answer: D

D Watch Video Solution

2. A solid spere of uniform density and radius

R applies a gravitational force of attraction equal to F_{1} on a particle placed P distacne 2 R
from the centre O of the spere A spherical cavity of radius $R / 2$ is now made in the sphere as shown in the The spere with cavity
now applies gravitional force F_{2} on same particle placed at P the ratio F_{2} / F_{1} will be
A. $1 / 2$
B. $7 / 9$
C. $3^{`}$
D. 7

Answer: B

D View Text Solution
3. Two particles of equal mass ' m ' go around a circle of radius R under the action of their mutual gravitaitonal attraction. The speed of each particle with respect to their centre of a mass is -

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{G m}}{R} \\
& \text { B. } \frac{\sqrt{G m}}{4 R} \\
& \text { C. } \frac{\sqrt{G m}}{3 R} \\
& \text { D. } \frac{\sqrt{G m}}{2 R}
\end{aligned}
$$

Watch Video Solution

4. A plenet moving along an elliptical orbit is closest to the sun at a distance r_{1} and farthest away at a distance of r_{2}. If v_{1} and v_{2} are the linear velocities at these points respectively, then the ratio $\frac{v_{1}}{v_{2}}$ is
A. $\left(r_{2} / r_{1}\right)$
B. $\left(r_{2} / r_{1}\right)^{2}$
C. $\left(r_{1} / r_{2}\right)^{2}$
D. $\left(r_{1} / r_{2}\right)^{2}$

Answer: A

D Watch Video Solution

5. A acceleration of moon with respect to earth is $0.0027 \mathrm{~ms}^{-2}$ and the acceleration of an apple falling on earth's surface is about $10 \mathrm{~ms}^{-2}$. Assume that the radius of the moon
is one fourth of the earth's radius. If the moon
is stopped for an instant and then released, it will fall towards the earth. The initial
acceleration of the moon toward the earth will be
A. $0.0027 m s^{-2}$
B. $5.0 \mathrm{~ms}^{-2}$
C. $6.4 \mathrm{~ms}^{-2}$
D. $10 m s^{-2}$

Answer: C
(Watch Video Solution
6. The accelearation due to gravity on a planet
is $1.96 \mathrm{~ms}^{-2}$ if tit is safe to jump from a
height of 3 m on the earth the corresponding height on the planet will be
A. 3 m
B. 6 m
C. 9 m
D. 15 m

Answer: D
7. The mass of the moon is $\frac{1}{8}$ of the earth but the gravitational pull is $\frac{1}{6}$ earth it is due to the fact that .
A. moon is the satelite of the earth
B. the radius of the earth is $8 / 6$ of the moon radius
C. the radius of the earth is $\sqrt{8 / 6}$ of the moon radius
D. the radius of the moon is $6 / 8$ of the earth radius

Answer: C

D Watch Video Solution

8. Imagine a light planet revolving around a very massive star in a circular orbit of radius R with a period of revolution T. if the gravitational force of attraction between the planet and the star is proportational to
$R^{-5 / 2}$, then
(a) T^{2} is proportional to R^{2}
(b) T^{2} is proportional to $R^{7 / 2}$
(c) T^{2} is proportional to $R^{3 / 3}$
(d) T^{2} is proportional to $R^{3.75}$.
A. R^{3}
B. $R^{5 / 2}$
C. $R^{3 / 2}$
D. $R^{7 / 2}$

Answer: B
9. If a planet of given density were made larger, its force of attraction for an object on its surface would increase because of the greater distance from the object to the centre of the planet. Which effect predominates?
A. increase in mass
B. increase in radius
C. both effect the attraction equally
D. none of the above

D Watch Video Solution

10. If radius of earth is R then the height ' h ' at which value of ' g ' becomes one-fourth is
A. 2 R
B. 3 R
C. R
D. 4 R

Answer: C

D Watch Video Solution

11. The depth d, at which the value of acceleration due to gravity becomes $1 / n$ times
the value at the surface is ($R=$ radius of the earth)

$$
\begin{aligned}
& \text { A. } \frac{R}{n} \\
& \text { B. } R \frac{n-1}{n}
\end{aligned}
$$

C. $\frac{R}{n^{2}}$
D. $R \frac{n}{n+1}$

Answer: B

D Watch Video Solution

12. Two point masses each equal to 1 kg attract one another with a force of $9.8 \times 10^{-9} \mathrm{~kg}$-wt. the distance between the two point masses is approximately $\left(G=6.6 \times 10^{-11} \mathrm{MKS}\right.$ units $)$
A. 8.2 cm
B. 0.8 cm
C. 82 cm
D. 0.08 cm

Answer: A

D Watch Video Solution

13. A body has a weight 72 N . When it is taken
to a height $h=R=$ radius of earth, it would
weight
A. 72 N
B. 36 N
C. 18 N
D. zero

Answer: C

D Watch Video Solution

14. Mass M is split into two parts m and $(M-m)$, which are then separated by a certain distance. What is the ratio of (m / M)
which maximises the gravitational force between the parts ?
A. $1: 4$
B. $1: 2$
C. $4: 1$
D. 2:1

Answer: B
(Watch Video Solution
15. Two astronauts have deserted their spaceship in a region of space far from the gravitational attraction of any other body.

Each has a mass of 100 kg and they are 100 m
apart. They are initially at rest relative to one
another. How long will it be before the gravitational attraction brings them 1 cm closer together?
A. 2.52 days
B. 1.41 days
C. 0.70 day

D. 0.41 day

Answer: B

D Watch Video Solution

16. If there particles, each of mass M, are
placed at the three corners of an equilateral triangle of side, a the force exerted by this system on another particle of mass M placed
(i) at the midpoint of side and (ii) at the centre of the triangle are, respectively.
A. $(0,0)$
B. $\frac{4 G M^{2}}{3 a^{2}, 0}$
C. $0, \frac{4 G M^{2}}{3 a^{2}}$
D. $\frac{3 G M(2)}{a^{2}}, \frac{G M^{2}}{a^{2}}$

Answer: B

- Watch Video Solution

17. If the diameter of mars is 6760 km and mass
one tenth that of the earth the diameter of earth is 12742 km if acceleration due to gravity
on earth is $9.8 m x^{-2}$ the acceleartion due to gravity on eath is $9.8 m, s^{-2}$ the acceleartion due to gravity on mars is

$$
\text { A. } 34.8 m s^{-2}
$$

B. $2.48 m s^{-2}$
C. $3.48 m s^{-2}$
D. $28.4 m s^{-2}$

Answer: C

D Watch Video Solution

18. A body weighs W newton at the surface of
the earth. Its weight at a height equal to half the radius of the earth, will be

> A. $\frac{W}{2}$
> B. $\frac{2 W}{3}$
> C. $\frac{4 W}{9}$
> D. $\frac{8 W}{27}$

Answer: C

19. Two objects of massses m and 4 m are at rest at infinite separtion they move twoards each other under mutula gravitonal attraction then at a separation r which of the following is true?
A. the total energy of the system is not
zero
B. the force between them is not zero
C. the centre of mass of the system is at
rest

D. all the above are true

Answer: D

D Watch Video Solution

20. Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is:

$$
\text { A. } \frac{\sqrt{G M}}{R}
$$

$$
\begin{aligned}
& \text { B. } \sqrt{2 \sqrt{2} \frac{G N M}{R}} \\
& \text { C. } \frac{\sqrt{G M}}{R}(1+2 \sqrt{2}) \\
& \text { D. } \frac{1}{2} \frac{\sqrt{G M}}{R}(1+2 \sqrt{2})
\end{aligned}
$$

Answer: D

- Watch Video Solution

21. Two particles each of mass M and equidistant from each other move along a circle of radius R under the action of their
mutual gravitional attraction the speed of each particle is
A. $\frac{\sqrt{G M}}{2 R}$
B. $\frac{1}{2 R} \frac{\sqrt{1}}{G M}$
C. $\frac{1}{2} \sqrt{G \frac{M}{R}}$
D. $\frac{\sqrt{4 G M}}{R}$

Answer: C

D Watch Video Solution

22. A body weighs 72 N on the surface of the earth. What is the gravitational force on it due to earth at a height equal to half the radius of the earth from the surface
A. 20 N
B. 45 N
C. 40 N
D. 90 N

Answer: A
23. The change in the value of g at a height h above the surface of the earth is the same as at a depth d below the surface of earth. When both d and h are much smaller than the radius of earth, then which one of the following is correct?
A. $d=\frac{h}{2}$
B. $d=\frac{3 h}{2}$
C. $d=2 h$

$$
\text { D. } d=h
$$

Answer: C

D Watch Video Solution

24. The magnitude of gravitational field intensities at distance r_{1} and r_{2} from the centre of a uniform solid sphere of radius R and mass M are I_{1} and I_{2} respectively. Find the ratio of I_{1} / I_{2} if (a) $r_{1}>R$ and $r_{2}>R$ and
(b) $r_{1}<R$ and $r_{2}<R$ (c) $r_{1}>R$ and $r_{2}<R$.

$$
\begin{aligned}
& \text { A. } \frac{R^{2}}{r_{1} r_{2}} \\
& \text { B. } \frac{R^{3}}{r_{1} r_{2}^{2}} \\
& \text { C. } \frac{R^{3}}{r_{1}^{2} r_{2}} \\
& \text { D. } \frac{R^{4}}{r_{1}^{2} r_{2} r^{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

25. If two planets of radii R_{1} and R_{2} have densities d_{1} and d_{2}, then the ratio of their respective acceleration due to gravity is
A. $r_{1} d_{1}: r_{2} d_{2}$
B. $r_{1} d_{2}: r_{2} d_{1}$
C. $r_{1}^{2} d_{1}: r_{2}^{2} d_{2}$
D. $r_{1}: r_{2}$

Answer: A

D Watch Video Solution
26. The time period of the moon is $\mathrm{T}=27.3$ days
and radius of orbit is $R_{m}=3.84 \times 10^{8} \mathrm{~m}$ The
value of centripetal acceleartion due to earht 's gravity is
A. much smaller than the value of acceleration due to gravity g on the surface of the earth
B. is eual to the value of acceleration due
to gravity g on the surface of the earth
C. much larger than the value of acceeration due to gravity g on the surface of the earth D. either a or b

Answer: A

D Watch Video Solution

27. If one assume that the gravitational force due to the earth decreases in proportion to
the iverse squre of the distance from the
centre of the earth then which fo the followng
relation between $a_{m} r_{m} \mathrm{~g}$ and R_{E}

$$
\begin{aligned}
& \text { A. } \frac{g}{a_{m}}=\frac{R_{m}}{R_{E}} \\
& \text { B. } \frac{g}{a_{m}}=\left(\frac{R_{m}}{R_{E}}\right)^{2} \\
& \text { C. } \frac{g}{a_{m}}=\left(\frac{R_{E}}{R_{m}}\right)^{-2}
\end{aligned}
$$

D. both b and c

Answer: D

28. The force of attraction due to a hollow speheical shell of mass M radius R and and unifor density on a point mass m situdated inside it is
A. $\frac{G m N}{r^{2}}$
B. $\frac{G m M}{R^{2}}$
C. zero
D. data insufficient

Answer: C
29. The magnitude of force of attraction on a point mass m due to hollow sperical shell of mass M and radius R as funciton of its distance r form the centre is given is
A. $A \rightarrow \frac{G M m}{r^{2}}, B \rightarrow$ zero
B. $A \rightarrow$ zero, $B \rightarrow \frac{G M m}{r^{2}}$
C. $A \rightarrow \frac{G M m}{R^{2}}, B \rightarrow \frac{G M m}{r^{2}}$

D. none of the abvoe

Answer: C

D View Text Solution

30. If the radius of earth's orbit is made $1 / 4$,
the duration of an year will become
A. 8 times
B. 4 times
C. $1 / 8$ times

D. $1 / 4$ times

Answer: B

D Watch Video Solution

31. The period of revolution of planet A round
from the sun is 8 times that of B. The distance
of A from the sun is how many times greater then tht of B from the sun ?
A. 2
B. 4
C. 3
D. 5

Answer: C

D Watch Video Solution

32. Which of the following graphs between the

 square of the time period and cube of the distance of the planet from the sun is correctA.
B.
C.
D.

Answer: D

D Watch Video Solution

33. A comet of mass m moves in a highly elliptical orbit around the sun of mass M the maximum and minium distacne of the comet
from the centre of the sun are r_{1} and r_{2} respectively the magnitude of angular momentum of the comet with respect to the centre of sun is
A. $\left[\frac{G M_{1}}{r_{1}+r_{2}}\right]^{1 / 2}$
B. $\left[\frac{G M m r_{1}}{r_{1}+r_{2}}\right]^{1 / 2}$
C. $\left[\frac{r G M^{2} r_{1} r_{2}}{r_{1}+r_{2}}\right]^{1 / 2}$
D. $\left[\frac{2 G M m^{2} r_{1} r_{2}}{r_{1}+r_{2}}\right]^{1 / 2}$

Answer: D
34. Kepler's third law states that square of period revolution (T) of a planet around the sun is proportional to third power of average distance i between sun and planet i.e.
$T^{2}=K r^{3}$
here K is constant
if the mass of sun and planet are M and m respectively then as per Newton's law of gravitational the force of alteaction between them is $F=\frac{G M m}{r^{2}}$, here G is gravitational
constant. The relation between G and K is described as
A. $G K=4 \pi^{2}$
B. $G M K=4 \pi^{2}$
C. $K=G$
D. $K=\frac{1}{G}$

Answer: C
(Watch Video Solution

35. A staellite in a circular orbit of raidus R has

a period of 4 h another satellite with orbital
radius 3 R around the same planet will have a period (in h)
A. 16
B. 4
C. $4 \sqrt{27}$
D. $4 \sqrt{8}$

Answer: c
36. The time period of a satellite of earth is 5
hours. If the separation between the centre of earth and the satellite is increased to 4 times
the previous value, the new time period will become-
A. 10 h
B. 80 h
C. 40 h
D. 20 h

Answer: C

D Watch Video Solution

37. The ratio of mean distances of three planets from the sun are $0.5: 1: 1.5$, then the square of time periods are in the ratio of
A. $1: 4: 9$
B. 1:9:4
C. 1:8:27
D. 2:1:3

D Watch Video Solution

38. All planets move in elliptical orbits with the
sun situtated at one of the forci of the ellipse
the point at wihich the planet is closest to the
sun is
A. perihelion

B. aphelion

C. helion

D. none of above

Answer: B

D Watch Video Solution

39. Law of areas is valid for any
A. force
B. cental force
C. attractive force
D. radial force

Answer: A

D Watch Video Solution

40. For motion of planets in ellipticla orbits around the sun the central force is
A. the force on the plantet along the vector
joining the sun and the planet
B. the force on the sun along the vector
joining the sun and the other focus of
the ellipse
C. the force on the planet along the line joining focus of the ellipse
D. none of the above

Answer: A

D Watch Video Solution
41. The law of areas can be interpreted as
A. $\frac{\triangle A}{\triangle t}=$ constant
B. $\frac{\triangle A}{\triangle t}=\frac{L}{2}$
C. $\frac{\triangle A}{\triangle t}=\frac{1}{2}(r \times p)$
D. none of these

Answer: A

- Watch Video Solution

42. Kepler 's law of periods as applied to motion of satellite around the earth is givne by

$$
T^{2}=K\left(R_{E}+h\right)^{3}
$$

Th value of constant is $10^{-13} s^{2} m^{3}$ and the
Moon is at a distance of $3.84 \times 10^{5} \mathrm{~km}$ from
the earth with reference to te above relation
and data math the items in column I with
terms in column II and choose the correct option from the code gives below
$A \quad B \quad C$
A.
$1 \quad 2 \quad 3$
$A \quad B \quad C$
B.
$2 \quad 3 \quad 1$
$A \quad B \quad C$
C.
$\begin{array}{lll}3 & 2 & 1\end{array}$
$A B C$
D.

132

Answer: B

D View Text Solution

43. Which of the following statement is correct about satellites?
A. a satellite cannot move in a stable orbit in a plane passing throught the earth
centre
B. Geostationary satellites are launched in the quatorial plane
C. we can use juset oine geostationary
satellite for global communication
around the globe
D. the speed of satellite increases with the
increase in the radius of its orbit

Answer: A

D Watch Video Solution

44. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth.
A. the acceleration of S is always directed towards the centre of the earth
B. the angular momentum of S about the
centre of the earth changes in direction
but its magnitude remains constant
C. the total mechanical energy of s varies
periodically with time

D. the linear momentum of s remains

 constant in magnitudeAnswer: B

D Watch Video Solution

45. A satellite is placed in a circular orbit around the earth at such a height that it always remains sationary with respect to the earth surface in such case it s heights form the earth surface is
A. 32000 km
B. 36000 km
C. 6400 km
D. 4800 km

Answer: D

D Watch Video Solution

46. The earth (mass $=6 \times 10^{24} \mathrm{~kg}$) revolves
round the sun with an angular velocity of
$2 \times 10^{-7} \mathrm{rad} / \mathrm{s}$ in a circular orbit of radius
$1.5 \times 10^{8} \mathrm{~km}$. The gravitational force exerted by the sun on the earth, in newtons, is
A. zero
B. 18×10^{25}
C. 27×10^{39}
D. 36×10^{21}

Answer: C
(Watch Video Solution
47. The orbital velocity of an artifical satellite in a cirular orbit above the earth's surface at a distance equal to radiu of earth is v . For a satellite orbiting at an altitude half of earth's radius, orbital velocity is
A. $\frac{3}{2} V$
B. $\sqrt{\frac{3}{2}} V$
C. $\sqrt{\frac{2}{3}} V$
D. $\frac{2}{3} V$

Answer: A
48. If total enrgy of satellite is E what is its potential enrgy
A. 2 E
B. $-2 E$
C. E
D. $-E$

Answer: C
49. A relay satellite transmits the television programme from one part of the world to another part continuously because its period
A. period of revolution is greater than the period of ratation of the earth about its axis
B. period of revolution is less than the period of ratation of the earth about its
axis
C. period of revolution is equal to the period of ratation of the earth about its

axis

D. mass is less than the mass of earth

Answer: C
(Watch Video Solution
50. By what percent the energy of the satellite
has to be increased to shift it from an orbit of
radius r to $\frac{3 r}{2}$.
A. 0.15
B. 0.203
C. 0.667
D. 0.3333

Answer: D

- Watch Video Solution

51. A satellite moves around the earth in a circular orbit with speed v. If m is the mass of the satellite, its total energy is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m v^{2} \\
& \text { B. } \frac{1}{4} m v^{2} \\
& \text { C. }-\frac{1}{4} m v^{2} \\
& \text { D. }-\frac{1}{2} m v^{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution
52. The field which artifical satellite are useful stelites are useful for practical purpose is
A. telecommunication
B. geophysics
C. meterology
D. all of these

Answer: D
(Watch Video Solution
53. A lauching vehicle carrying an artificial satellite of mass m is set for launch on the surface of the earth of mass M and radius R.

If the satellite intended to move in a circular orbit of radius $7 R$, the minimum energy required to be spent by the launching vehicle on the satellite is

$$
\begin{aligned}
& \text { A. } \frac{G M m}{R} \\
& \text { B. }-\frac{13 G M m}{14 R} \\
& \text { c. } \frac{G M m}{7 R} \\
& \text { D. } \frac{G M m}{14 R}
\end{aligned}
$$

Answer: B

D Watch Video Solution

54. A body is orbiting around earth at a mean radius which is two times as greater as the parking orbit of a satellite, the period of body is
A. 4 days
B. 16 days
C. $2 \sqrt{2}$ days

D. 64 days

Answer: C

D Watch Video Solution

55. The time period of an earth satellite in circular orbit is independent of
A. the mass of the satellite
B. radius of the orbit
C. none of these
D. both of these

Answer: A

D Watch Video Solution

56. The radius of the orbit of a satellite is r and
its kinetic energy is k if the radius of the orbit is doubled then the new kinetic energy k is
A. 2 k
B. $\frac{k}{2}$

C. 4 k

D. data insufficient

Answer: B

D Watch Video Solution

57. The pitentil energy of a satellite is given as
$P E=\lambda(K E)$
where PE = potential energy of the satellite
$\mathrm{KE}=$ kinetic energy of the satellite
The vlaue of constant λ is
A. -2
B. 2
C. $-1 / 2$
D. $+1 / 2$

Answer: A

D Watch Video Solution

58. A 400 kg satellite is in a circular orbit of radius $2 R_{E}$ about the earth where $R_{E}=$ radius of the earth with reference to the
above situation match the term in column I
with items in column II and choose the correct option from the codes given below

$$
\text { A. } \begin{array}{lll}
A & B & C \\
2 & 3 & 1 \\
A & B & C \\
\text { B. } & 2 & 3 \\
1 & 2 & 3 \\
A & B & C \\
3 & 2 & 1 \\
A & B & C \\
\text { D. } & \\
2 & 1 & 3
\end{array}
$$

Answer: A

59. The time period of a geostationary satellite

at a height 36000 km is 24 h a spy satellite orbits vergy close to earth surface ($R=6400 \mathrm{~km}$) what will be its time period ?
A. 4 h
B. 1h
C. 2 h
D. 1.5 h
60. A simple pendulum has a time period T_{1} on the earth 's surface and T_{2} when taken to height $2 R$ above the earth 's surface when R is $2 R$ above earth 'ssurface where R is the radius of earht The value of $\left(T_{1} / T_{2}\right)$
A. $1 / 9$
B. $1 / 3$
C. $\sqrt{3}$
D. 9

Answer: B

- Watch Video Solution

61. The mass of a planet is six times that of the
earth. The radius of the planet is twice that of
the earth. It's the escape velocity from the earth is v, then the escape velocity from the planet is:
A. $\sqrt{3} v_{e}$
B. $\sqrt{2} v_{e}$
C. v_{e}

$$
\text { D. } \sqrt{5} v_{e}
$$

Answer: A

D Watch Video Solution

62. For a body to escape from earth, angle from horizontal at which it should be fired is
A. 45°
B. $>45^{\circ}$
C. $<45^{\circ}$
D. any angle

Answer: D

D Watch Video Solution

63. The escape velocity form the earth is 11
$k m s^{-1}$ the esacpe velocity from a planet
having twice the radius and the same mean denisty as the earth would be
A. $5.5 \mathrm{kms}^{-1}$
B. $11 \mathrm{kms}(-1)$
C. $15.5 \mathrm{kms}^{-1}$
D. $22 \mathrm{~km} \mathrm{~s}^{-1}$

Answer: D

D Watch Video Solution

64. The ratio of the radii of the planets P_{1} and
P_{2} is a the ratio of their acceleraton due to
gravity is b the ratio of the escape velocity

form them will be

A. $a b$
B. $\sqrt{a b}$
C. $\sqrt{a / b}$
D. $\sqrt{b / a}$

Answer: B
(Watch Video Solution
65. The mass of the moon is $7 / 81$ th of earth
's mass and its radius is $1 / 4$ th that of the earth if the escape velocity from the earth
surface is $11.2 \mathrm{kms}^{-1}$ its value for the moon will be
A. $0.15 \mathrm{kms}^{-1}$
B. $5 k m s^{-1}$
C. $2.5 k m s^{-1}$
D. $0.5 \mathrm{kms}^{-1}$

Answer: C
66. The escape velocity of a body from the earth is V_{e} if the radius of earth contracts to
$1 / 4$ th of its value keeping the mass of the earth constant the escape velocity will be
A. doubled
B. halved
C. tripled
D. unaltered

Answer: A

D Watch Video Solution

67. What is the escape velocity for body on the
surface of planet on which the accelearation
due to gravity is $(3.1)^{2} m s^{2}$ and whose radius is 8100 km ?
A. $2790 k m s^{-1}$
B. $27.9 \mathrm{kms}^{-1}$
C. $27.9 \sqrt{5} k m s^{-1}$

D. $2.79 \sqrt{5} k m s^{-1}$

Answer: C

D Watch Video Solution

68. What is a period of revolution of the earth
satellite ? Ignore the height of satellite above
the surface of the earth.

Given,
(i) the value of gravitational acceleration,
$g=10 m s^{-2}$
(ii) radius of the earth, $R_{g}=6400 \mathrm{~km}$ (take, $\pi=3.14)$
A. 85 min
B. 156 min
C. 83.73 min
D. 90 min

Answer: C
(Watch Video Solution
69. Two spherical planets P and Q have the same uniform density ρ, masses M_{p} and M_{Q}
and surface areas A and 4 A respectively. A spherical planet R also has uniform density ρ and its mass is $\left(M_{P}+M_{Q}\right)$. The escape velocities from the plantes P, Q and R are $V_{P} V_{Q}$ and V_{R} respectively. Then
A. $V_{Q}>V_{R}>V_{P}$
B. $V_{R}>V_{R}>V_{P}$
C. $V_{R} / V_{P}=3$
D. $V_{P} / V_{Q}=\frac{1}{2}$

Answer: B

D Watch Video Solution

Exercise 2

1. If the radius of the Earth shrinks by 2%, mass remaing same, then how would the have of acceleration due to gravity change?
A. decrease by 2%
B. increased by 2\%
C. incresed by 4%
D. decrease by 4\%

Answer: C

D Watch Video Solution

2. At what height, the weight of the body is same as that at same depth from the earth's
surface (take, earth's radius $=R$)
A. $\frac{R}{2}$
B. $\sqrt{5} R-R$
C. $\frac{\sqrt{5} R-r}{2}$
D. $\frac{\sqrt{3} R-R}{2}$

Answer: C

- Watch Video Solution

3. If the radius of the earth were to shrink by
1% its mass remaining the same, the
acceleration due to gravity on the earth's surface would
A. decrease by 2%
B. remain by 2%
C. increase by 2%
D. become zero

Answer: C

- Watch Video Solution

4. Tow spherical planet A and B have same mass but of acceleartion due to gravity at the surface of A to its value at surface of B is
A. $1: 4$
B. $1: 2$
C. $4: 1$
D. $8: 1$

Answer: C

D Watch Video Solution
5. 320 Km above the surface of earth the value of acceleartion due to gravity is nearly 90% of ts value on the sruface fo the earth its value will be 95% of the value on the eath surface
A. nearly 160 km below the earth surface
B. nearly 80 km below the earth 's surface
C. nearly 640 km below the eath 's surface
D. nearly 320 km below the earth 's surface

Answer: D

6. The acceleration due to gravity at a height $(1 / 20)^{\text {th }}$ the radius of the earth above earth s surface is $9 m / s^{2}$ Find out its approximate value at a point at an equal distance below the surface of the earth .
A. 8.5
B. 9.5
C. 9.8
D. 11.5

Answer: B

D Watch Video Solution

7. A solid sphere of mass M and radius R has a spherical cavity of radius $R / 2$ such that the centre of cavity is at a distance $R / 2$ from the centre of the sphere. A point mass m is placed inside the cavity at a distance $\mathrm{R} / 4$ from the centre of sphere. The gravitational force on mass m is

$$
\begin{aligned}
& \text { A. } \frac{11 G M m}{R^{2}} \\
& \text { B. } \frac{14 G M m}{R^{2}} \\
& \text { C. } \frac{G M m}{2 R^{2}} \\
& \text { D. } \frac{G M m}{R^{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

8. Three indentical bodes of mass M are locatd at the verticles of an equailateral triangle of side L they revolve undr the effect of mutual
gravitational force in a circular orbit
circumscibing the traingle while preserving
the equilateral triangle their orbital velocity is

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{G M}}{L} \\
& \text { B. } \sqrt{3 G M} /(2 L) \\
& \text { C. } \frac{\sqrt{3 G M}}{L} \\
& \text { D. } \frac{\sqrt{2 G M}}{3 L}
\end{aligned}
$$

Answer: A

- Watch Video Solution

9. From a solid spere of mass M and radius R a sperhical poriton of radius $\frac{R}{2}$ is removed as show in the taking gravitational potential $\mathrm{V}=0$ at $r=\infty$ the potential at the centre of the cavity thus formed (G= gravitonal constant)

$$
\begin{aligned}
& \text { A. } \frac{-G M}{2 r} \\
& \text { B. } \frac{-G M}{R} \\
& \text { C. } \frac{-2 G M}{3 R} \\
& \text { D. }-\frac{2 G M}{R}
\end{aligned}
$$

Answer: B

D View Text Solution

10. The ratio of radii of earth to another planet
is $2 / 3$ and the ratio of their mean densities is
$4 / 5$ if an astronaut can jump to a maximum height of 1.5 m on the earth with the same effort the maximum height he can jump on that planet is
A. 1 m
B. 0.75 m
C. 0.5 m
D. 1.25 m

Answer: B

- Watch Video Solution

11. The height at which the acceleration due to
gravity becomes $g / 9$ in terms of R the radius
of the earth is
A. 2 R
B. $\frac{R}{\sqrt{r}}(3)$
C. $\frac{R}{2}$
D. $\sqrt{2} R$

Answer: A

D Watch Video Solution
12. The effect of rotation of the eath on the
value of acceleration deu to gravity g is
A. maximum at the equator and minimum at the poles
B. minimum at the equator and maximum at the poles
C. maximum at both poles
D. minimum at both poles

Answer: A

D Watch Video Solution

13. A rocket is launched vertical from the surface of the earth of radius R with an initial speed v. If atmospheric resistance is neglected, then maximum height attained by the rocket is

$$
\begin{aligned}
& \text { A. } h=\frac{R}{\frac{2 g R}{V^{2}}-1} \\
& \text { B. } h=\frac{R}{\frac{2 g R}{V^{2}}+1} \\
& \text { C. } h=\frac{(R)^{2}}{\frac{2 g R}{V^{2}}-1} \\
& \text { D. } h=\frac{(R)^{2}}{\frac{2 g R}{V^{2}}+1}
\end{aligned}
$$

Answer: A

- Watch Video Solution

14. Suppose the gravitational force varies
inversely as then nth power of distance then
the time period of a planet in circular orbit of radius r around the sun will be propotinal to
A. $r^{\frac{1}{2}(n+1)}$
B. $r^{\frac{1}{2}(n-1)}$
C. $\frac{2 R}{3}$

D. R

Answer: A

- Watch Video Solution

15. A body is projected vertically upwards from
the surface of the earth with a velocity equal
to half of escape velocity of the earth. If R is
radius of the earth, maximum height attained
by the body from the surface of the earth is

$$
\text { A. } \frac{R}{6}
$$

B. $\frac{R}{3}$
C. $\frac{2 R}{3}$
D. R

Answer: B

D Watch Video Solution

16. Pertaining to two planets, the ratio of escape velocities from respective surfaces is
$1: 2$, the ratio of the time period of the same simple pendulum at their respective surfaces
is 2:1 (in same order). Then the ratio of their average densities is
A. $1: 1$
B. 1:2
C. 1: 4
D. $8: 1$

Answer: C

D Watch Video Solution

17. Four equal masses (each of mass M) are placed at the corners of a squares side a the escape velocity of a body from the centre O of the square is

$$
\begin{aligned}
& \text { A. } 4 \frac{\sqrt{2 G M}}{a} \\
& \text { B. } \frac{\sqrt{8 \sqrt{2 G M}}}{a} \\
& \text { C. } \frac{4 G M}{a} \\
& \text { D. } \frac{\sqrt{4 \sqrt{2 G M}}}{a}
\end{aligned}
$$

Answer: B
18. A point $P(R \sqrt{3}, 0,0)$ lies on the axis of ring of mass M and radius R the ring is located in YZ plane with its centre at origin O A small particle of mass m starts from P and reaches O under gravitatinal attracton only its speed at

O will be
A. $\sqrt{G \frac{M}{R}}$
B. $\frac{\sqrt{G m}}{R}$
C. $\frac{\sqrt{G m}}{2 R}$
D. $\frac{\sqrt{G m}}{\sqrt{2} R}$

Answer: A

D Watch Video Solution

19. The ratio of energy required to raise a satellite to a height h above the earth surface to that required to put it into the orbit is
A. $h: 2 R$
B. $2 h: R$
C. $R: h$

$$
\text { D. } h: R
$$

Answer: B

- Watch Video Solution

20. A small body of superdense material, whose mass is twice the mass of the earth but
whose size is very small compared to the size
of the earth, starts form rest at a height
$H \ll R$ above the earth's surface, and
reaches the earth's surface in time t. then t is equal to

$$
\begin{aligned}
& \text { A. } t=\frac{\sqrt{h}}{g} \\
& \text { B. } t=\frac{\sqrt{2 h}}{g} \\
& \text { C. } t=\frac{\sqrt{2 h}}{3 g} \\
& \text { D. } t=\frac{\sqrt{4 h}}{3 g}
\end{aligned}
$$

Answer: C
(Watch Video Solution
21. The magnitude of the gravitational field at distance r_{1} and r_{2} from the centre of a uniform sphere of radius R and mass M are F_{1} and F_{2} respectively. Then:

$$
\begin{aligned}
& \text { A. } \frac{f_{1}}{f_{2}}=\frac{r_{1}}{r_{2}} \text { if } r_{1}<R \text { and } r_{2}<R \\
& \text { B. } \frac{f_{1}}{f_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}} \text { if } r_{1}>R \text { and } r_{2}>R \\
& \text { C. } \frac{f_{1}}{f_{2}}=\frac{r_{1}}{r_{2}^{2}} \text { if } r_{1}<R \text { and } r_{2}<R \\
& \text { D. } \frac{F_{1}}{F_{2}}=\frac{r_{2}}{r_{1}} \text { if } \quad(1)<R \text { and } r_{2}<R
\end{aligned}
$$

Answer: A

22. A satellite is revolving round the earth with orbital speed v_{0} if it is imagined to stop
suddenly the speed with which it will strike the
surface of the earth would be $\left(v_{e}\right.$ - escape speed of a body from earth s surface)

$$
\begin{aligned}
& \text { A. } \frac{V_{e}}{v_{0}} \\
& \text { B. } 2 V_{0} \\
& \text { C. } \sqrt{v_{e}^{2}-v_{0}^{2}} \\
& \text { D. } \sqrt{v_{e}^{2}-2 v_{0}^{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

23. Four particles each of mass M move along
a circle of radius R under the action of their mutula gravitational attraction the speed of each paritcles is

$$
\begin{aligned}
& \text { A. } \frac{G m}{R} \\
& \text { B. } \sqrt{2 \sqrt{2} \frac{G M}{R}} \\
& \text { C. } \frac{\sqrt{G M}}{R}(2 \sqrt{2}+1)
\end{aligned}
$$

D. $\frac{\sqrt{G M}}{R} \frac{2 \sqrt{2}+1}{4}$

Answer: D

D Watch Video Solution

24. Suppose a verticle tunnel is alng the diametrer of earth assumed to be a sphere of
uniform mass density p if a body of mass m is
thrown in this tunnel its acceleration at a
distance y from the centre is given by
A. $\frac{\pi}{3} G p y m$
B. $\frac{3}{4} \pi p y$
C. $\frac{4}{3} \pi p y$
D. $\frac{4}{3} \pi g p y$

Answer: D

D View Text Solution

25. F is the gravitational force between two point masses m_{1} and m_{2}, separated by a
distance d. A point mass $2 m_{1}$ is then brought near m_{1}. What is the total force on m_{2} ?
A. 2 F
B. 3 F
C. F
D. $\frac{F}{2}$

Answer: B

- Watch Video Solution

26. A planet of mass m moves around the Sun
of mass Min an elliptical orbit. The maximum
and minimum distance of the planet from the
Sun are r_{1} and r_{2}, respectively. Find the relation between the time period of the planet in terms of r_{1} and r_{2}.

$$
\begin{aligned}
& \text { A. }\left(r_{1}+r_{2}\right) \\
& \text { B. }\left(r_{1}+r_{2}\right)^{1 / 2} \\
& \text { C. } \left.r_{1}-r_{2}\right)^{3 / 2} \\
& \text { D. }\left(r_{1}+r_{2}\right)^{3 / 2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

27. An artifical satellite of mass ' m ' is moving in
a circular orbit aroundthe earth. The height of
the satellite above the surface of the earth is
R. Suppose that it stops suddenly in its orbit and falls freely under gravity. With what speed
it will strike the surface of the earth?
A. $\sqrt{g R}$
B. $2 \sqrt{g R}$
C. $3 \sqrt{g R}$
D. $5 \sqrt{g R}$

Answer: A

D Watch Video Solution

28. An artificial satellite is moving in a circular orbit around the earth with a speed equal to
half the magnitude of esacpe velocity from the
earth the height of the satellite satellite above
the earth surface will be
A. 6000 km
B. 5800 km
C. 7500 km
D. 6400 km

Answer: D
(Watch Video Solution
29. The period of a planet around sun is 27
times that of earth the ratio of radius of planet orbit to the radius of eath ' orbit is
A. 4
B. 9
C. 64
D. 27

Answer: B

D Watch Video Solution
30. The satellite of mass m revolving in a circular orbit of radius r around the earth has kinetic energy E. then, its angular momentum will be

> A. $\frac{\sqrt{E}}{m r^{2}}$
> B. $\frac{E}{2 m r^{2}}$
C. $\sqrt{2 E m r^{2}}$
D. $\sqrt{2 E m r}$

Answer: C

31. Which of the following most closely depicts
the correct variation of the gravitational potential $\mathrm{V}(\mathrm{r})$ due to a large planet of radius R and unifrom mass denisty ?
A.
B.
c.
D.

Answer: C

D View Text Solution

32. There are two particles of masses m_{1} and m_{2} separted by a distance ' r '
with reference to the above situtation match
the item in column II with terms in column II
and choose the options from the codes given
below
A. $(A, B, C),(1,23)$
$A B C$
B.
$2 \quad 3 \quad 1$
c $A \quad C$
C. $\begin{array}{lll}2 & 1 & 3\end{array}$
$A \quad B \quad C$
D. $\begin{array}{lll} & & 1\end{array}$

Answer: B

D View Text Solution

33. If the big sphere and the small are of masses M, m respectively and d is the separation between their centres then the
grvitational force is F if the mass of the big shpere is doubled the restoring torque at equilibrium is
A. doubled
B. halved
C. quadrupled
D. none of the above

Answer: A

D Watch Video Solution
34. If the distance between the sun and the earth is increased by three times, then attraction between two will
A. remain by 63%
B. decrease by 63%
C. increase by 63%
D. decrease by 89%

Answer: D

35. Dependence of intensity of gravitational
field (E) of earth with distance (r) from centre of earth is correctly represented by
A.
B.
C.
D.

Answer: B
36. A body of mass m taken form the earth's surface to the height is equal to twice the radius (R) of the earth. The change in potential energy of body will be
A. $m g 2 R$
B. $\frac{2}{3} \mathrm{mgR}$
C. 3 mgR
D. $\frac{1}{3} \mathrm{mgR}$

Answer: B

Mht Cet Corner

1. The value of gravitational accelerationg at a
height h above the earth's surface is One forth
the value of gravitational acceleration at
surface , then ($R=$ radius of earth)
A. $h=R$
B. $h=\frac{R}{2}$
C. $h=\frac{R}{3}$
D. $h=\frac{R}{4}$

Answer: A

D Watch Video Solution

2. Two particles of masses ' m ' and ' 9 m ' are separated by a distance 'r'. At a point on the
line joining them the gravitational field is zero.
The gravitational potential at that point is ($G=$

Universal constant of gravitation)
A. $-\frac{4 G m}{r}$

> B. $-\frac{8 G m}{r}$
> C. $-\frac{16 G m}{r}$
> D. $\frac{32 G m}{r}$

Answer: C

- Watch Video Solution

3. Let g_{h} and g_{d} the acceleration due to gravity at height h above the earth s surface and at depth d below the earth surface respecitively
if $g_{n}=g_{d}$ then the releation between h and d is
A. $d=h$
B. $d=\frac{h}{2}$
C. $d=\frac{h}{4}$
D. $d=2 h$

Answer: D
(Watch Video Solution
4. A body of mass m is raised to a height 10 R from the surface of the earth, where R is the radius of the earth. Find the increase in potential energy. ($\mathrm{G}=$ universal constant of gravitational, $M=$ mass of the earth and $g=$ acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{G m m}{11 R} \\
& \text { B. } \frac{G M m}{10 R} \\
& \text { C. } \frac{m g R}{11 G} \\
& \text { D. } \frac{10 G M m}{11 R}
\end{aligned}
$$

Answer: D

D Watch Video Solution

5. Calculate angular velocity of the earth so
that acceleration due to gravity at 60°
latitude becomes zero (radius of the earth = 6400 km , gravitational acceleration at poles $=$ $\left.10 \mathrm{~m} / \mathrm{s}^{2}, \cos 60^{\circ}=0.5\right)$
A. $7.8 \times 120^{-2} r a d s^{-1}$
B. $0.5 \times 10^{-3} r a d s^{-1}$
C. $1 \times 10^{-3} r a d s^{-1}$
D. $2.5 \times 10^{-3} \mathrm{rads} \mathrm{s}^{-1}$

Answer: D

D Watch Video Solution

6. The masses of two planets are in the ratio
$1: 2$. Their radii are in the ratio $1: 2$. The acceleration due to gravity on the planets are in the ratio
A. $1: 2$
B. 2:1
C. $3: 5$
D. $5: 3$

Answer: B

D Watch Video Solution

7. The mass of the earth is 81 times that of the moon and the radius of the earth is 3.5 times
that of the moon. The ratio of the escape
velocity on the surface of earth to that on the

surface of moon will be

A. 0.2
B. 2.57
C. 4.81
D. 0.39

Answer: C

D Watch Video Solution

8. Which of the following is the evidence to
show that there must be force acting on earth nd directed towards Sun?
A. deviation of the falling bodies toward east
B. revolution of the earth around the sun
C. phenomenon of day and night
D. apparent motion of sun round the earth

Answer: B
9. If the density of a small planet is the same as that of earth while the radius of the planet is 0.2 times that of the earth the gravitational on the surface of that planet is :
A. 0.2 g
B. 0.4 g
C. 0.2 g
D. 4 g

Answer: A

D Watch Video Solution

10. If the density of the earth is doubled
keeping its radius constant then acceleration due to gravity will be $\left(g=9.8 m / s^{2}\right)$
A. $9.8 m s^{-2}$
B. $19.6 m s^{-2}$
C. $4.9 m s^{-2}$
D. $39.2 m s^{-2}$

Answer: B

D Watch Video Solution

11. In a satellite if the time of revolution is T,
then kinetic energy is proportional to
A. $\frac{1}{T}$
B. $\frac{1}{T^{2}}$
C. $\frac{1}{T^{3}}$
D. $T^{-2 / 3}$

Answer: D

- Watch Video Solution

12. If g is the acceleration due to gravity on the
earth's surface, the gain in the potential energy of an object of mass m raised from surface of the earth to a height equal to radius R of the earth is - [$M=$ mass of earth]
A. 2 mgR
B. mgR
C. $\frac{1}{2} \mathrm{mgR}$
D. $\frac{1}{4} \mathrm{mgR}$

Answer: C

D Watch Video Solution

13. The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on planet B. A man jumps to a height of $2 m$ on the surface of A. What is the height of jump by the same person on the planet B ?
A. 6 m
B. $2 / 3 \mathrm{~m}$
C. $2 / 9 \mathrm{~m}$
D. 18 m

Answer: D

D Watch Video Solution

14. Kepler second law sates that the straight line joining the planet to the sun sweeps out
equal areas in equal times this statement is equivalent to saying that
A. total acceleration is zero
B. tangential acceration is zero
C. longitudinal acceraleration is zero
D. radial acceleration is zero

Answer: B

D Watch Video Solution

15. A body is projected upwards with a velocity of $4 \times 11.2 \mathrm{~km} \mathrm{~s}^{-1}$ from the surface of earth.What will be the velocity of the body when it escapes from the gravitational pull of earth ?

> A. $11.2 k m s^{-1}$
> B. $2 \times 11.2 k m s^{-1}$
> C. $3 \times 11.2 k m s^{-1}$
> D. $\sqrt{15} \times 11.2 k m s^{-1}$

Answer: D
16. The ratio of acceleration due to gravity at a
height 3 R above earth 's surface to the acceleration due to gravity on the surface of the earth is (where $\mathrm{R}=$ radius of earth)

> A. $\frac{1}{9}$
> B. $\frac{1}{4}$
> C. $\frac{1}{16}$
> D. $\frac{1}{3}$

Answer: C

D Watch Video Solution

17. Find the binding energy of a satellite of mass m in orbit of radius r, $(\mathrm{R}=$ radius of earth, $\mathrm{g}=$ acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{m g R^{2}}{r} \\
& \text { B. } \frac{m g R^{2}}{2 r} \\
& \text { C. }-\frac{m g R^{2}}{r} \\
& \text { D. }-\frac{m g R^{2}}{2 r}
\end{aligned}
$$

Answer: B

D Watch Video Solution

18. A planet has twice the radius but the mean
density is $\frac{1}{4}$ th as compared to earth. What is
the ratio of escape velocity from earth to that from the planet
A. $3: 1$
B. $1: 2$
C. $1: 1$

D. $2: 1$

Answer: C

D Watch Video Solution

19. If the Earth losses its gravity, then for a body
A. weight becomes zero but not the mass
B. mass becomes zero but not weight
C. neither mass nor weight is zero
D. both mass and weight are zero

Answer: A

D Watch Video Solution

20. The distance between centre of the earth
and moon is 384000 km . If the mass of the earth is
$6 \times 10^{24} k g$
and
$G=6.66 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$. The speed of
the moon is nearly

$$
\text { A. } 1 k m s^{-1}
$$

B. $4 k m s^{-1}$
C. $8 k m s^{-1}$
D. $11.2 \mathrm{kms}^{-1}$

Answer: A

- Watch Video Solution

