©゙doubtnut

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR

 PAPERS AND PRACTICE PAPERS
INTERFERENCE AND DIFFRACTION OF

LIGHT

Example

1. Light waves from two coherent sources
having intensities I and 21 cross each other at
a point with a phase difference of 60°. The intensity at the point will be
A. $4.414 I$
B. $5.455 I$
C. $4 I$
D. $6.441 I$

Answer: A
2. Light waves form two coherent source having intensity ration 81:1 produce interference. Then, the ratio of maxima and minima in the interference pattern will be

$$
\begin{aligned}
& \text { A. } \frac{18}{23} \\
& \text { B. } \frac{16}{25} \\
& \text { C. } \frac{25}{16} \\
& \text { D. } \frac{23}{18}
\end{aligned}
$$

Answer: C

D Watch Video Solution

3. In a Young's double-slit experiment, the slits are separated by 0.28 mm and screen is placed
1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm . Determine the wavelength of light used in the experiment .

$$
\text { A. } 6 \times 10^{-7} m
$$

B. $7 \times 10^{-7} m$
C. $10^{-7} m$
D. $6 \times 10^{-5} m$

Answer: A

D Watch Video Solution

4. Two slits are made one millimeter apart and
the screen is placed one metre away. When
blue-green light of wavelength 500 nm is used, the fringe separation is
A. 0.1 nm
B. 0.125 nm
C. 0.5 mm
D. 0.1 mm

Answer: C

- Watch Video Solution

5. In Young's double slit experiment interference fringes 1° apart are produced on
the screen, the slit separation is $(\lambda=589 \mathrm{~nm})$
A. 0.546 mm
B. 0.0337 mm
C. 0.246 mm
D. 0.0927 mm

Answer: B

D Watch Video Solution
6. In a single slit diffraction experiment first minima for $\lambda_{1}=660 \mathrm{~nm}$ coincides with first
maxima for wavelength λ_{2}. Calculate the value of λ_{2}.
A. 240 nm
B. 345 nm
C. 440 nm
D. 330 nm

Answer: C
(Watch Video Solution
7. A single slit of width a is illuminated by violet light of wavelength 400 nm and the width of the diffraction pattern is measured as
y. When half of the slit width is covered and
illuminated by yellow light of wavelength 600 nm , the width of the diffraction pattern is
A. 0
B. $\frac{y}{3}$
C. $3 y$
D. 4 y

Answer: C

- Watch Video Solution

8. Calculate the resolving power of a microscope with cone angle of light falling on
the objective equal to 60°. Take
$\lambda=600 \mathrm{~nm}, \mu$ for air $=1$.
A. $1.67 \times 10^{6} m^{-1}$
B. $1.03 \times 10^{5} m^{-1}$
C. $0.67 \times 10^{5} \mathrm{~m}^{-1}$

$$
\text { D. } 8.96 \times 10^{6} m^{-1}
$$

Answer: A

D Watch Video Solution

9. A telescope is used to resolve two stars separated by $4.6 \times 10^{-6} \mathrm{rad}$. If the wavelength of light used is $5460 \AA$, what should be the aperture of the objective of the telescope?
A. 0.0448 m
B. 0.1448 m
C. 1.1448
D. 0.011 m

Answer: B

D Watch Video Solution

Exercise 1 Topical Problems

1. A is an essential condition for coherent sources. Here, A refers to
A. constant phase difference
B. equal amplitude
C. Both (a) and (b) are correct
D. Both (a) and (b) are incorrect

Answer: A

D Watch Video Solution
2. The maximum intensity of fringes in Young's experiment is I. If one of the slit is closed, then
the intensity at that place becomes I_{o}. Which of the following relation is true?

$$
\begin{aligned}
& \text { A. } I=I_{0} \\
& \text { B. } I=2 I_{0} \\
& \text { C. } I=4 I_{0} \\
& \text { D. } I=0
\end{aligned}
$$

Answer: C

D Watch Video Solution

3. The maximum intensity in the case of n identical waves each of intensity $2 \frac{W}{m^{2}}$ is $32 \frac{W}{m^{2}}$ the value of n is
A. 4
B. 16
C. 32
D. 64

Answer: B
4. S_{1} and S_{2} are two coherent sources. The intensity of both sources are same. If the intensity at the point of maxima is $4 \mathrm{Wm}^{-2}$, the intensity of each source is
A. $1 W m^{-2}$
B. $2 W m^{-2}$
C. $3 W m^{-2}$
D. $4 W m^{-2}$

Answer: A
5. Three waves of equal frequency having amplitudes $10 \mu m, 4 \mu m, 7 \mu m$ arrive at a given point with successive phase difference of $\pi / 2$, the amplitude of the resulting wave in μm is given by
A. 4
B. 5
C. 6
D. 7

Answer: B

D Watch Video Solution

6. A parallel beam of light of intensity I is incident on a glass plate. 25% of light is reflected in any reflection by upper surface and 50% of light is reflected by any reflection
from lower surface. Rest is refracted The ratio
of maximum to minimum intensity in
interference region of reflected rays is

A. $\left(\frac{\frac{1}{2}+\sqrt{\frac{3}{8}}}{\frac{1}{2}-\sqrt{\frac{3}{8}}}\right)^{2}$
B. $\left(\frac{\frac{1}{4}+\sqrt{\frac{3}{8}}}{\frac{1}{2}-\sqrt{\frac{3}{8}}}\right)^{2}$
C. $\frac{5}{8}$
D. $\frac{8}{5}$

Answer: A

D Watch Video Solution

7. Two periodic waves of intensities I_{1} and I_{2}
pass through a region at the same time in the
same direction. The sum of the maximum and minimum intensities is:
A. $I_{1}+I_{2}$
B. $\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$
C. $\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$

D. $2\left(I_{1}+I_{2}\right)$

Answer: D

D Watch Video Solution

8. Interference was observed in interference
chamber when air was present, now the chamber is evacuated and if the same light is used, a careful observer will see
A. interference in which width of the fringe

will be slightly increased

B. Interference with bright bond
C. Interference with dark bond
D. All of the above

Answer: A

- Watch Video Solution

9. Two coherent monochromatic light beams
of intensities 1 and 41 are superposed. The
maximum and minimum possible intensities in
the resulting beam are
A. 51 and 31
B. 91 and 31
C. 41 and I
D. 91 and I

Answer: D

10. Two coherent monochormatic light source are located at two vertices of an equilateral trangle. If the intensity due to each of the source independently is $1 W m^{-2}$ at the third vertex. The resultant intensity due to both the sources at that point (i.e at the third vertex) is
(in $W m^{-2}$)
A. zero
B. $\sqrt{2}$
C. 2
D. 4

Answer: D

D Watch Video Solution

11. Two coherent waves are represented by
$y_{1}=a_{1} \cos _{\omega} \quad \mathrm{t} \quad$ and $\quad y_{2}=a_{2} \sin _{\omega} \mathrm{t} . \quad$ The resultant intensity due to interference will be
A. $\left(a_{1}+a_{2}\right)$
B. $\left(a_{1}-a_{2}\right)$
C. $\left(a_{1}^{2}+a_{2}^{2}\right)$
D. $\left(a_{1}^{2}-a_{2}^{2}\right)$

Answer: C

- Watch Video Solution

12. Two sources are called coherent if they produce waves
A. having a constant phase difference
B. of equal wavelength
C. of equal speed
D. having same shape of wavefront

Answer: A

D Watch Video Solution

13. The ratio of the intensities of two waves is
$16: 9$. The ratio of their amplitudes is
A. $4: 3$
B. 3: 4
C. 1:2
D. 2:1

Answer: A

- Watch Video Solution

14. Match the following columns and choose
the correct options from the codes given
below.
$\begin{array}{llll}A & B & C & D\end{array}$
A.

$\begin{array}{llll}4 & 1 & 3 & 2\end{array}$

$A \quad B \quad C \quad D$
B.
$\begin{array}{llll}4 & 3 & 1 & 2\end{array}$
C. $\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}3 & 4 & 1 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
D. $\begin{array}{llll}3 & 4 & 2 & 1\end{array}$

Answer: C

D View Text Solution

15. The Young's double slit experiment is performed with blue and with green light of wavelengths 4360 A and 5460 A respectively. If
X is the distance of 4 th maximum from the

central one, then :

A. $X_{\text {(blue) }}=X_{\text {(green) }}$
B. $X_{\text {(blue) }}>X_{\text {(green) }}$
C. $X_{\text {(blue) }}<X_{\text {(green) }}$
D. $X_{\text {(blue) }} / X_{(\text {green })}=5400 / 4360$

Answer: C

D Watch Video Solution

16. In Young's experiment, the wavelength of red light is $7.8 \times 10^{-5} \mathrm{~cm}$ and that of blue light is $5.2 \times 10^{-5} \mathrm{~cm}$. The value of n for which $(n+1)$ th blue light band coincides with nth red band is
A. 4
B. 2
C. 3
D. 1

Answer: B

- Watch Video Solution

17. In Young's double-slit experiment, the separation between the slits is halved and the distance between the slits and the screen in doubled. The fringe width is
A. unchanged
B. halved
C. doubled
D. quadrupled

Answer: D

D Watch Video Solution

18. In the setup shown in figure, the two slits,
S_{1} and S_{2} are not equidistant from the slit S.

The central fringe at O is, then
A. always bright
B. always dark

C. either dark or bright depending on the

 position ofD. neither dark nor bright

Answer: C

D View Text Solution

19. The separation between successive fringes in a double slit arrangement is x. If the whole arrangement is dipped under water, what will
be the new fringe separation ? [The wavelength of light being used is $5000 \AA$]
A. 1.5 x
B. x
C. 0.75 x
D. 2 x

Answer: C
(Watch Video Solution
20. In a Young's double-slit experiment, let S_{1}
and S_{2} be the two slits, and C be the centre of
the screen. If $\angle S_{1} C S_{2}=\theta$ and λ is
wavelength, the fringe width will be
A. $\frac{\lambda}{\theta}$
B. $\lambda \theta$
C. $\frac{2 \lambda}{\theta}$
D. $\frac{\lambda}{2 \theta}$

Answer: A
21. In the Young's double slit experiment, a mica slip of thickness t and refractive index μ is introduced in the ray from first source S_{1}. By how much distance fringes pattern will be displaced ? ($\mathrm{d}=$ distance between the slits and
D is the distance between slits and screen)
A. $\frac{d}{D}(\mu-1) t$
B. $\frac{D}{d}(\mu-1) t$
C. $\frac{d}{(\mu-1) D}$

$$
\text { D. } \frac{D}{d}(\mu-1)
$$

Answer: B

D Watch Video Solution

22. In double slit experiment, the angular width of the fringes is 0.20° for the sodium light $(\lambda=5890 \AA)$. In order to increase the angular width of the fringes by 10%, the necessary change in the wavelength is A. zero
B. increased by 6479 Å
C. decreased by $589 \AA$
D. increased by 589 Å

Answer: D

D Watch Video Solution

23. A beam of light consisting of two wavelength 650 nm and 520 nm is used to
illuminate the slit of a Young's double slit experiment. Then the order of the bright
firnge of the longer wavelength that coincide with a bright fringe of the shorter wavelength
at the least distance from the central maximum is
A. 1
B. 2
C. 3
D. 4

Answer: D

24. In Young's double slit experiment, the 8th maximum with wavelength λ_{1} is at a distance
d_{1} from the central maximum and the 6th maximum with a wavelength λ_{2} is at a distance d_{2}. Then $\left(d_{1} / d_{2}\right)$ is equal to
A. $\frac{4}{3}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)$
B. $\frac{4}{3}\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$
C. $\frac{3}{4}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)$
D. $\frac{3}{4}\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$

Answer: B

D Watch Video Solution

25. In a Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are observed one metre away. If is produces the second dark fringe at a distance of 1 mm from the central fringe, the wavelength of monochromatic light used would be
A. $60 \times 10^{-4} \mathrm{~cm}$
B. $10 \times 10^{-4} \mathrm{~cm}$
C. $10 \times 10^{-5} \mathrm{~cm}$
D. $6 \times 10^{-5} \mathrm{~cm}$

Answer: D

D Watch Video Solution

26. The wavelength of the light used in Young's double slit experiment is λ. The intensity at a point on the screen is I, where
the path difference is $\frac{\lambda}{6}$. If I_{0} denotes the maximum intensity, then the ratio of I and I_{0} is
A. 0.866
B. 0.5
C. 0.707
D. 0.75

Answer: D

D Watch Video Solution
27. In a double slit interference experiment,
the fringe width obtained with a light of wavelength $5900 \AA$ was 1.2 mm for parallel narrow slits placed 2 mm apart. In this arrangement. If the slit separation is increased by one-and-half times the previous value, then the fringe width is
A. 0.9 mm
B. 0.8 mm
C. 1.8 mm

D. 1.6 mm

Answer: B

D Watch Video Solution

28. In an interference pattern the position of
zeroth order maxima is 4.8 mm from a certain
point P on the screen. The fringe width is 0.2
mm . The position of second maxima from
point P is
A. 5.1 mm
B. 5 mm
C. 40 mm
D. 5.2 mm

Answer: A

- Watch Video Solution

29. The ratio of intensity at the centre of a bright fringe to the intensity at a point distant one-fourth of the distance between two successive bright fringes will be
A. 4
B. 3
C. 2
D. 1

Answer: C

D Watch Video Solution

30. In a Young's double slit experiment, the slit separation is 1 mm and the screen is 1 m from
the slit. For a monochromatic light of
wavelength 500 nm , the distance of 3 rd

minima from the central maxima is

A. 0.50 mm
B. 1.25 mm
C. 1.50 mm
D. 1.75 mm

Answer: B
(Watch Video Solution
31. In double slit experiment, the distance between two slits is 0.6 mm and these are illuminated with light of wavelength $4800 \AA$.

The angular width of dark fringe on the screen at a distance 120 cm from slits will be

> A. $8 \times 10^{-4} \mathrm{rad}$
> B. $6 \times 10^{-4} \mathrm{rad}$
> C. $4 \times 10^{-4} \mathrm{rad}$
> D. $16 \times 10^{-4} \mathrm{rad}$

Answer: A

- Watch Video Solution

32. In Young's double slit experiment, the aperture screen distance is $2 m$. The fringe width is 1 mm . Light of 600 nm is used. If a thin plate of glass $(\mu=1.5)$ of thickness 0.06 mm is placed over one of the slits, then there will be a lateral displacement of the fringes by
A. zero
B. 6 cm
C. 10 cm

D. 15 cm

Answer: B

D Watch Video Solution

33. In a Young's double slit experiment, the fringe width is found to be 0.4 mm . If the whole apparatus is immersed in water of refractive index $4 / 3$ without disturbing the geometrical arrangement, the new fringe width will be
A. 0.30 mm
B. 0.40 mm
C. 0.53 mm
D. $450 \mu \mathrm{~m}$

Answer: A

D Watch Video Solution

34. In young's double slit experiment, if wavelength of light changes from λ_{1} to λ_{2} and
distance of seventh maxima changes from d_{1}

to d_{2}. Then

A. $\frac{\lambda_{1}}{\lambda_{2}}$
B. $\frac{\lambda_{2}}{\lambda_{1}}$
C. $\frac{\lambda_{1}^{2}}{\lambda_{2}^{2}}$
D. $\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}}$

Answer: A
35. in a two-slit experiment with
monochromatic light, fringes are obtained on
a screen placed at some distance from the
slits. If the screen is moved by $5 \times 10^{-2} \mathrm{~m}$ towards the slits, the change in fringe width is
3×10^{-5}. If the distance between the slits is
$10^{-3} \mathrm{~m}$, calculate the wavelength of the light used.
A. $4500 \AA$
B. $3000 \AA$
C. $5000 \AA$

D. $6000 \AA$

Answer: D

D Watch Video Solution

36. In Young's double slit experiment, the intensity on the screen at a point where path difference is λ is K . What will be the intensity at the point where path difference is $\lambda / 4$?
A. $K / 4$
B. $K / 2$

C. K

D. Zero

Answer: B

- Watch Video Solution

37. In Young's double-slit experiment, the separation between the slits is halved and the
distance between the slits and the screen in doubled. The fringe width is
A. becomes half
B. remains the same
C. becomes six times
D. becomes four times

Answer: C

D Watch Video Solution

38. In the Young's experiment, one of the slit is covered with a transparent sheet of thickness
$3.6 \times 10^{-3} \mathrm{~cm}$ due to which position of
central fringe shifts to a position originally occupied by 30th bright fringe. The refractive index of the sheet, if $\lambda=6000 \AA$ is
A. 1.5
B. 1.2
C. 1.3
D. 1.7

Answer: A

D Watch Video Solution
39. A double slit experiment is performed with
light of wavelength 500 nm . A thin film of thickness $2 \mu m$ and refractive index 1.5 is introduced in the path of the upper beam. The location of the central maximum will
A. remain unshifted
B. shift downward by nearly two fringes
C. shift upward by nearly two fringes
D. shift downward by ten fringes

- Watch Video Solution

40. In a Young's double slit experiment, the source is white light. One of the holes is covered by a red filter and another by a blue filter. In this case
A. there should be no interference fringe
B. there should be no interference pattern
for red mixing with one for blue
C. there should be alternate interference
patterns of red and blue
D. None of the above

Answer: A

D Watch Video Solution

41. A small aperture is illuminated with a parallel beam of $\lambda=628 \mathrm{~nm}$. The emergent beam has an anglur divergence of 2°. The size of the aperture is
A. 180 m
B. $18 \mu \mathrm{~m}$
C. 1.8 m
D. 0.18 m

Answer: B

D Watch Video Solution
42. In a single slit diffraction of light of wavelength λ by a slit of width e , the size of
the central maximum on a screen at a distance
b is
A. $1 b \lambda+e$
B. $\frac{2 b \lambda}{e}$
C. $\frac{2 b \lambda}{e}+e$
D. $\frac{2 b \lambda}{e}-e$

Answer: C
(Watch Video Solution
43. The angular width of the central maximum of the diffraction patternn in a single slit (of width a) experiment, with λ as the wavelenth of light, is

$$
\begin{aligned}
& \text { A. } \frac{3 \lambda}{2 a} \\
& \text { B. } \frac{\lambda}{2 a} \\
& \text { C. } \frac{2 \lambda}{a} \\
& \text { D. } \frac{\lambda}{a}
\end{aligned}
$$

Answer: C

44. A single slit Fraunhofer diffraction pattern is formed with white light. For what wavelength of light the third secondary maximum in the diffraction pattern coincides
with the secondary maximum in the pattern
for red light of wavelength $6500 \AA$?
A. $4400 \AA$
B. $4100 \AA$
C. $4642.8 \AA$

D. $9100 \AA$

Answer: C

D Watch Video Solution

45. In a diffraction pattern due to single slit of
width ' a ', the first minimum is observed at an
angle 30° when light of wavelength $5000 \AA$ is
inclined on the slit. The first secondary
maximum is observed at an angle of:

$$
\text { A. } \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)
$$

B. $\sin ^{-1}\left(\frac{1}{4}\right)$
C. $\sin ^{-1}\left(\frac{3}{4}\right)$
D. $\sin ^{-1} \frac{\sqrt{3}}{2}$

Answer: C

D Watch Video Solution

46. A beam of light of wavelength 600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance
between the first dark fringes on either side of
the central bright fringe is
A. 1.2 cm
B. 1.2 mm
C. 2.0 cm
D. 2.0 mm

Answer: D
(Watch Video Solution
47. In Fraunhofer diffraction experiment, L is
the distance between screen and the obstacle,
b is the size of obstacle and λ is wavelength of incident light. The general condition for the applicability of Fraunhofer diffraction is :

$$
\begin{aligned}
& \text { A. } \frac{b^{2}}{L \lambda} \gg 1 \\
& \text { B. } \frac{b^{2}}{L \lambda}=1 \\
& \text { C. } \frac{b^{2}}{L \lambda} \ll 1 \\
& \text { D. } \frac{b^{2}}{L \lambda} \neq 1
\end{aligned}
$$

- Watch Video Solution

48. The distance between the first and the
sixth minima in the diffraction pattern of a single slit is 0.5 mm . The screen is 0.5 m away from the slit. If the wavelength of light used is 5000 Å. Then the slit width will be
A. 5 mm
B. 2.5 mm
C. 1.25 mm

D. 1.0 mm

Answer: B

D Watch Video Solution

49. Red light of wavelength 625 nm is incident normally on a optical diffraction grating with 2×10^{5} lines $/ \mathrm{m}$. Including central principal maxima, how many maxima may be observed on a screen which is far from the grating?
A. 15
B. 17
C. 8
D. 16

Answer: B

D Watch Video Solution

50. A parallel monochromatic beam of light is incident normally on a narrow slit. A diffraction pattern is formed on a screen placed perpendicular to the direction of the
incident beam. At the first minimum of the diffraction pattern, the phase difference between the rays coming from the two edges of the slit is
A. 0
B. $\frac{\pi}{2}$
C. π
D. 2π

Answer: D

51. The source is at some distance from an obstacle. Distance between obstacle and the point of observation is b and wavelength of light is λ. Then the average distance of nth

Fresnel zone will be at a distance ...from the point of observation.
A. $\frac{b n \lambda}{2}$
B. $b-\frac{n \lambda}{2}$
C. $b+\frac{n \lambda}{2}$
D. $b-n \lambda$

Answer: C

- Watch Video Solution

52. When a compact disc is illuminated by a source of white light, coloured lines are observed. This is due to
A. dispersion
B. diffraction
C. interference
D. refraction

Answer: B

- Watch Video Solution

53. When light is incident on a diffraction grating, the zero order principal maximum will be
A. spectrum of the colours
B. white
C. one of the component colours
D. absent

Answer: B

- Watch Video Solution

Exercise 2 Miscellaneous Problems

1. Light propagates 2 cm distance in glass of refractive index 1.5 in time t_{0}. In the same time
t_{0}, light propagates a distance of 2.25 cm in medium. The refractive index of the medium is
A. $4 / 3$
B. $3 / 2$
C. $8 / 3$
D. None of these

Answer: A

D Watch Video Solution

2. Two waves of same frequency and same amplitude from two monochromatic sources are allowed to superpose at a certain point. If in one case the phase difference is 0 and in
other case it is $\pi / 2$ then the ratio of the intensities in the two cases will be
A. $1: 1$
B. 2:1
C. $4: 1$
D. None of these

Answer: B

- Watch Video Solution

3. Light of wavelength 500 nm is used to form interference pattern in Young's double slit experiment. A uniform glass plate of refractive index 1.5 and thickness 0.1 mm is introduced
in the path of one of the interfering beams.
The number of fringes which will shift the cross wire due to this is
A. 100
B. 200
C. 300

D. 400

Answer: A

D Watch Video Solution

4. Following diffraction pattern was obtained using a diffraction grating using two different wavelengths λ_{1} and λ_{2}. With the help of the figure identify which is the longer wavelength and their ratios ?
A. λ_{2} is long than λ_{1} and the ratio of the longer to the shorter wavelength is 1.5
B. λ_{1} is longer than λ_{2} and the ratio of the
longer to the shorter wavelength is 1.5
C. λ_{1} and λ_{2} are equal and their ratio is 1.0
D. λ_{2} is longer than λ_{1} and the ratio of the
longer to the shorter wavelength is 2.5

Answer: C

5. In Young's double slit experiment, one of the slit is wider than other, so that amplitude of the light from one slit is double of that from other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:

$$
\begin{aligned}
& \text { A. } \frac{I_{m}}{9}(4+5 \cos \phi) \\
& \text { B. } \frac{I_{m}}{3}\left(1+2 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { C. } \frac{I_{m}}{5}\left(1+4 \cos ^{2} \frac{\pi}{2}\right) \\
& \text { D. } \frac{I_{m}}{2}\left(1+8 \cos ^{2} \frac{\phi}{2}\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution

6. Two light waves having the same wavelength λ in vacuum are in phase initially.

Then the first ray travels a path of length L_{1} through a medium of refractive index μ_{1}. Then second ray travels a path of length L_{2} throug
a medium of refractive index μ_{2}. The two waves are then combined to observed
interference effects. The phase difference between the two, when they interfere, is

$$
\begin{aligned}
& \text { A. } \frac{2 \pi}{\lambda}\left(\mu_{1} L_{1}-\mu_{2} L_{2}\right) \\
& \text { B. } \frac{2 \pi}{\lambda}\left(L_{2}-L_{1}\right) \\
& \text { C. } \frac{2 \pi}{\lambda}\left(\frac{L_{1}}{\mu_{1}}-\frac{L_{2}}{\mu_{2}}\right) \\
& \text { D. } \frac{2 \pi}{\lambda}\left(\mu_{2} L_{1}-\mu_{1} L_{2}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

7. In Young's double slit experiment, the 10th maximum of wavelength λ_{1} is at distance of y_{1}
from the central maximum. When the wavelength of the source is changed to λ_{2},

5th maximum is at a distance of y_{2} from its
central masximum. Then $\frac{y_{1}}{y_{2}}$ is
A. $\frac{2 \lambda_{1}}{\lambda_{2}}$
B. $\frac{2 \lambda_{2}}{\lambda_{1}}$
C. $\frac{\lambda_{1}}{2 \lambda_{2}}$
D. $\frac{\lambda_{2}}{2 \lambda_{1}}$

Answer: A

D Watch Video Solution

8. Consider sunlight incident on a slit of width
$10^{4} \AA$. The image seen through the slit shall
A. be a fine sharp slit white in colour at the
centre
B. a bright slit white at the centre diffusing
to zero intensity at the edges
C. a bright slit white at the centre diffusing to regions of different colours
D. only be a diffused slit white in colour

Answer: A

D Watch Video Solution

9. Two identical radiators have a separation of
$d=\lambda / 4$ where λ is the wavelength of the
waves emitted by either source. The initial phase difference between the sources is $\lambda / 4$.

Then the intensity on the screen at a distant point situated at an angle $\theta=30^{\circ}$ from the radiators is (here I_{0} is intensity at that point due to one radiator alone)
A. I_{0}
B. $2 I_{0}$
C. $3 I_{0}$
D. $4 I_{0}$

Answer: B
10. Air has refractive index 1.0003 . The
thickness of air column, which will have one more wavelength of yellow light $(6000 \AA)$ than in the same thickness of vaccuum is
A. 2 mm
B. 2 cm
C. 2 m
D. 2 km

Watch Video Solution

11. Yong's double-slit experiment is carried out by using green, red and blue light, one color at a time. The fringe widths recorded are β_{G}, β_{R} and β_{B}, respectively. Then
A. $\beta_{G}>\beta_{B}>\beta_{R}$
B. $\beta_{B}>\beta_{G}>\beta_{R}$
C. $\beta_{R}>\beta_{B}>\beta_{G}$
D. $\beta_{R}>\beta_{G}>\beta_{B}$

Answer: D

- Watch Video Solution

12. In a certain double slit experimental arrangement interference fringes of width 1.0 mm each are observed when light of wavelength $5000 \AA$ is used. Keeping the set up unaltered, if the source is replaced by another source of wavelength $6000 \AA$, the fringe width will be
A. 1.2 mm
B. 1.5 mm
C. 1.8 mm
D. 2.0 mm

Answer: A

D Watch Video Solution
13. Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through
it normally. The refractive index of the plate is
μ.
A. $\frac{\lambda}{4(\mu-1)}$
B. $\frac{3 \lambda}{4(\mu-1)}$
C. $\frac{\lambda}{(\mu-1)}$
D. $\frac{\lambda}{2(\mu-1)}$

Answer: D

- Watch Video Solution

14. A telescope has an objective lens of 10 cm
diameter and is situated at a distance of one kilometre from two objects. The minimum distance between these two objects, which can be resolved by the telescope, when the mean wavelength of light is $5000 \AA$, of the order of
A. 0.5 m
B. 5 m
C. 5 mm
D. 5 cm

Answer: C

D Watch Video Solution

15. A single slit Fraunhofer diffraction pattern
is formed with white light. For what wavelength of light the fourth secondary maximum in the diffraction in the diffraction pattern coincides with the third secondary maximum in the pattern for red light of wavelength $6500 \AA$?
A. $4055.6 \AA$
B. $5055.6 \AA$
C. $4642.8 \AA$
D. $9100 \AA$

Answer: B

- Watch Video Solution

16. If white light is used in a biprism experiment, then
A. fringe pattern disappers

B. all fringes will be coloured

C. central fringe will be white others will be coloured

D. central fringe will be dark

Answer: C

- Watch Video Solution

17. How will the diffraction pattern of single
slit change when yellow light is replaced by blue light? The fringe will be
A. wider
B. narrower
C. brighter
D. fainter

Answer: B

D Watch Video Solution
18. In Young's double slit experiment, we get 60 fringes in the field of view of monochromatic light of wavelength $4000 \AA \AA$. If we use monochromatic light of wavelength $6000 \AA$, then the number of fringes obtained in the same field of view is
A. 60
B. 90
C. 40
D. 1.5

Answer: C

D Watch Video Solution

19. nth bright fringe if red light
$\left(\lambda_{1}=7500 \AA\right)$ coincides with $(\mathrm{n}+1)$ th bright fringe of green light $\left(\lambda_{2}=6000 \AA\right)$ The value of n, is
A. 4
B. 5
C. 3
D. 2

Answer: A

D Watch Video Solution

20. In a biprism experiement, by using light of wavelength $5000 \AA, 5 \mathrm{~mm}$ wide fringes are obtained on a screen $1.0 m$ away from the coherent sources. The separation between the two coherent sources is
A. 1.0 mm
B. 0.1 mm
C. 0.05 mm
D. 0.01 mm

Answer: B

- Watch Video Solution

21. The ratio of intensities of consecutive
maxima in the diffraction pattern due to a
single slit is
А. $1: 4: 9$
B. 1:2:3
C. $1: \frac{4}{9 \pi^{2}}: \frac{4}{25 \pi^{2}}$
D. $1: \frac{4}{\pi^{2}}: \frac{9}{\pi^{2}}$

Answer: C

D Watch Video Solution

22. Light of wavelength λ is incident on a slit of width d. the resulting diffraction pattern is
observed on a screen at a distance D. the
linear width of the principal maximum is equal to the width of the slit if D equals

$$
\begin{aligned}
& \text { A. } \frac{d^{2}}{2 \lambda} \\
& \text { B. } \frac{d}{\lambda} \\
& \text { C. } \frac{2 \lambda^{2}}{d} \\
& \text { D. } \frac{2 \lambda}{d}
\end{aligned}
$$

Answer: A

D Watch Video Solution

23. In a Young's double slit experiment, the two slits act as coherent sources of waves of equal amplitude A and wavelength λ in another experiment with the same arrangement the two slits are made to act as incoherent sources of waves of same amplitude and wavelength. if the intensity at the middle point of the screen in te first case is I_{1} and in te second case I_{2} then the ratio $\frac{I_{1}}{I_{2}}$ is
A. 4
B. 2
C. 1
D. 0.5

Answer: B

- Watch Video Solution

24. A narrow slit of width 2 mm is illuminated
by monochromatic light fo wavelength 500 nm .

The distance between the first minima on either side on a screen at a distance of 1 m is
A. 5 mm
B. 0.5 mm
C. 1 mm
D. 10 mm

Answer: B

- Watch Video Solution

25. In Young's experiment one slit is covered
with a blue filter and the other (slit) with a
yellow filter then the interference pattern
A. Will be blue
B. Will be yellow
C. Will be green
D. Will not be formed

Answer: D

D Watch Video Solution

26. A micture of light, consisting of wavelength 590nm and an unknown wavelength,
illuminates Young's double slit and gives rise
to two overlapping interference patterns on
the scree. The central maximum of both lights
coincide. Further, it is obseved that the third bright fringe of known light coincides with the

4th bright fringe of the unknown light. From
this data, the wavelength of the unknown light is:
A. 393.4 nm
B. 885.0 nm
C. 442.5 nm
D. 776.8 nm

Answer: C

- Watch Video Solution

27. Find the ratio of intensities at the two
points X and Y on a screen in Young's double slit experiment, where waves from the two source S_{1} and S_{2} have path difference of zero, and $\lambda / 4$ respectively.
A. $3: 2$
B. $2: 1$
C. $\sqrt{2}: 1$
D. $4: 1$

Answer: B

D Watch Video Solution

28. The wavelength of the light used in Young's double slit experiment is λ. The intensity at a point on the screen is I, where the path difference is $\frac{\lambda}{6}$. If I_{0} denotes the maximum intensity, then the ratio of I and I_{0} is
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{4}$

Answer: D

D Watch Video Solution

29. In Young's double slit experiment the two slits are d distance apart. Interference pattern
is observed on a screen at a distance D from
the slits. A dark fringe is observed on the screen directly opposite to one of the slits.

The wavelength of light is

> A. $\frac{D^{2}}{2 d}$
> B. $\frac{d^{2}}{2 D}$
> C. $\frac{D^{2}}{d}$
> D. $\frac{d^{2}}{D}$

Answer: D

D Watch Video Solution
30. In a Young's double slit experiment (slit distance d) monochromatic light of
wavelength λ is used and the figure pattern observed at a distance L from the slits. The angular position of the bright fringes are

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{n \lambda}{d}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{\left(n+\frac{1}{2}\right) \lambda}{d}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{n \lambda}{L}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{\left(n+\frac{1}{2}\right) \lambda}{L}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

31. A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observe on screen 1 m away. It is observed that the first minimum is at a distance of 2.5 mm from the centre of the screen. Find the width of the slit.

A. 0.2 mm

B. 0.3 mm
C. 0.4 mm
D. 0.5 mm

Answer: A

- Watch Video Solution

32. A parallel beam of light of wavelength $6000 \AA$ gets diffracted by a single slit of width
0.3 mm . The angular position of the first minima of diffracted light is :
A. $6 \times 10^{-3} \mathrm{rad}$
B. $1.8 \times 10^{-3} \mathrm{rad}$
C. $3 \times 10^{-3} \mathrm{rad}$
D. $2 \times 10^{-3} \mathrm{rad}$

Answer: D

D Watch Video Solution

33. Two stars are situated at a distance of 8
light years from the earth. These are to be just resolved by a telescope of diameter 0.25 m . If
the wavelength of light used is $5000 \AA$, then the distance between the stars must be

A. $3 \times 10^{10} m$
B. $3.35 \times 10^{11} m$
C. $1.95 \times 10^{11} \mathrm{~m}$
D. $4.32 \times 10^{10} \mathrm{~m}$

Answer: C

- Watch Video Solution

34. Two luminous point sources separated by a certain distance are at 10 km from an observer.

If the aperture of his eye is $2.5 \times 10^{-3} \mathrm{~m}$ and the wavelength of light used is 500 nm, the distance of separation between the point sources just seen to be resolved is
A. 12.2 m
B. 24.2 m
C. 2.44 m
D. 1.22 m

Answer: C

- Watch Video Solution

35. The condition for diffraction of mth order minima is
A. $d \sin \theta_{m}=m \lambda, m=1,2,3, \ldots$
B. $d \sin \theta_{m}=\frac{m \lambda}{2}, m=1,2,3, \ldots$
C. $d \sin \theta_{m}=(m+1) \frac{\lambda}{2}, m=1,2,3, \ldots$
D. $d \sin \theta_{m}=(m-1) \frac{\lambda}{2}, m=1,2,3, \ldots$

D Watch Video Solution

36. Light of wavelength $6328 \AA$ is incident normally on a slit of width 0.2 mm . Angular width of the central maximum on the screen will be :
A. 0.36°
B. 0.18°
C. 0.72°

D. 0.09°

Answer: B

D Watch Video Solution

37. Maximum diffraction takes place in a given
slit for
A. γ-rays
B. ultraviolet light
C. infrared light

D. radiowaves

Answer: D

D Watch Video Solution

38. In a double slit experiment, the two slits
are 1 mm apart and the screen is placed 1 m
away. A monochromatic lightg of wavelength
500 nm is used, what will be the width of each
slit for obtaining ten maxima of double slit
within the central maxima of single slit pattern ?
A. 0.2 mm
B. 0.1 mm
C. 0.5 mm
D. 0.02 mm

Answer: A

D Watch Video Solution
39. A fringe width of a certain interference pattern is $\beta=0.002 \mathrm{~cm}$ What is the distance of 5th dark fringe centre?
A. $1 \times 10^{-2} \mathrm{~cm}$
B. $11 \times 10^{-2} \mathrm{~cm}$
C. $13 \times 10^{-3} \mathrm{~cm}$
D. $3.28 \times 10^{6} \mathrm{~cm}$

Answer: C

- Watch Video Solution

40. Calculate the resolving power of a telescope when light of wavelength 540 nm is used. Diameter of objective lens is 6 cm .
A. $9.1 \times 10^{-4} \mathrm{rad}^{-1}$
B. $0.1 \times 10^{-4} \mathrm{rad}^{-1}$
C. $5 \times 10^{-4} \mathrm{rad}^{-1}$
D. $6 \times 10^{-4} \mathrm{rad}^{-1}$

Answer: B

D Watch Video Solution

1. Interference fringes are produced on a screen by using two light sources of intensities / and 9/. The phase difference between the beams $\frac{\pi}{2}$ is at point P and π at point Q on the screen. The difference between the resultant intensities at point P and Q is
A. 21
B. 41
C. 61
D. 81

Answer: C

D Watch Video Solution

2. Two coherent sources P and Q produce interference at point A on the screen where there is a dark band which is formed between

4th bright band and 5th bright band.
Wavelength of light used is $6000 \AA$. The path difference between PA and QA is
A. $1.4 \times 10^{-4} \mathrm{~cm}$
B. $2.7 \times 10^{-4} \mathrm{~cm}$
C. $4.5 \times 10^{-4} \mathrm{~cm}$
D. $6.2 \times 10^{-4} \mathrm{~cm}$

Answer: B

D Watch Video Solution

3. The distances of a point on the screen from two slits in biprism experiment is 1.8×10^{-5} m and $1.23 \times 10^{-5} \mathrm{~m}$ if wavelength of light
used is $6000 \AA$ then fringe formed at that point is
A. 10th bright
B. 10th dark
C. 9th bright
D. 9th dark

Answer: B

D Watch Video Solution
4. Two coherent monochromatic light beams
of intensities 1 and 41 are superposed. The maximum and minimum possible intensities in the resulting beam are
A. 31 and 21
B. 4I and 5I
C. 161 and 31
D. 251 and I

Answer: D

5. In young double slit experiment the ratio of intentsities of bright and dark bands is 16 which means
A. the ratio of their amplitudes is 5
B. intensities of individual sources are 25
and 9 units respectively.
C. the ratio of their amplitudes is 4
D. intensities of individual sources are 4
and 3 units respectively.

Answer: B

D Watch Video Solution

6. Two coherent sources of intensity ratio α
interfere in interference pattern $\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}$
is equal to
A. $\frac{2 \alpha}{1+\alpha}$
B. $\frac{2 \sqrt{\alpha}}{a+\alpha}$
C. $\frac{2 \alpha}{1 \sqrt{\alpha}}$
D. $\frac{1+\alpha}{2 \alpha}$

Answer: B

D Watch Video Solution

7. In a single slit diffraction pattern intensity and width of fringes are
A. unequal width
B. equal width
C. equal width and equal intensity
D. unequal width and unequal intensity

Answer: D

D Watch Video Solution

8. In Young's double slit experiment, if the slit
widths are in the ratio $1: 9$, then the ratio of
the intensity at minima to that at maxima will be
A. 1
B. $\frac{1}{9}$
C. $\frac{1}{4}$

D. $\frac{1}{3}$

Answer: C

D Watch Video Solution

9. A plane wave front of wavelength λ is
incident on a single slite of width b. What is
the angular width for secondary maximum?

$$
\begin{aligned}
& \text { A. } \frac{\lambda}{2 b} \\
& \text { B. } \frac{\lambda}{b}
\end{aligned}
$$

C. $\frac{2 \lambda}{b}$
D. $\frac{b}{\lambda}$

Answer: B

D Watch Video Solution

10. If the aperature of a telescope is decreased
resolving power will
A. increase
B. decrease

C. remain same

D. zero

Answer: B

D Watch Video Solution

11. In an interference experiment, third bright
fringe is obtained at a point on the screen with a light of 700 nm . What should be the wavelength of the light source in order to obtain 5th bright fringe at the same point
A. 500 nm
B. 630 nm
C. 750 nm
D. 420 nm

Answer: D

D Watch Video Solution

12. If fringe width is 0.4 mm , the distance between fifth bright and third dark band on same side is
A. 1 mm
B. 2 mm
C. 3 mm
D. 4 mm

Answer: A

D Watch Video Solution

13. In an interference experiment, the spacing between successive maxima or minima is
(Where the symbols have their usual meanings)
A. $\lambda d / D$
B. $\lambda D / \lambda$
C. $d D / \lambda$
D. $\lambda d / 4 D$

Answer: B
(Watch Video Solution
14. If young's douel slit experiment is performed in water
A. the fringe width will decrease
B. the fringe width will increase
C. the fringe width will remain unchanged
D. there will be no change

Answer: A

- Watch Video Solution

15. In Young's double slit experiment, 62
fringes are seen in visible region for sodium
light of wavelength $5893 \AA$. If violet light of wavelength $4358 \AA$, is used in place of sodium light, then number of fringes seen will be
A. 54
B. 64
C. 74
D. 84

Answer: D
16. In a Fresnel biprism experiment, the two positions of lens give separation between the slits as 16 cm and 9 cm respectively. What is the actual distance of separation?
A. 12.5 cm
B. 12 cm
C. 13 cm
D. 14 cm

Answer: B

- Watch Video Solution

17. The path difference produced by two waves
is $3.75 \mu \mathrm{~m}$ and the wavelength is $5000 \AA$. The point is
A. uncertain
B. dark
C. partially bright
D. bright

Answer: B

- Watch Video Solution

18. A Young's double slit experiment is
conducted with slit separation 10 mm , where
the screen is $2 m$ away from the slits. If wavelength of light used is $6000 \AA$, answer the

following

Fringe width in mm is
A. 1.15 mm
B. 0.30 mm
C. 0.24 mm
D. 0.12 mm

Answer: A

D Watch Video Solution

19. In Young's double slit experiment, a minimum is obtained when the phase difference of super imposing waves is
A. zero
B. $(2 n-1) \pi$
C. $n \pi$
D. $(n+1) \pi$

Answer: B

D Watch Video Solution

20. In Young's double slit experiment,
wavelength $\lambda=5000 \AA$ the distance between,
the slits is 0.2 mm and the screen is at 200 cm
from the slits. The central maximum is at $x=0$ The third maximum (Taking the central maximum as zeroth maximum) will be at x equal to
A. 5 cm
B. 0.5 cm
C. 1.67 cm
D. 1.5 cm

Answer: D

21. If the ratio of amplitude of wave is $2: 1$, then

the ratio of maximum and minimum intensity
is
A. $9: 1$
B. 1:9
C. $4: 1$
D. 1:4

Answer: A

- Watch Video Solution

22. If a torch is used in place of monochromatic light in Young's experiment what will happen?
A. Fringe will appear for a moment then it
will disappear
B. Fringes will occur as from
monochromatic light
C. Only bright fringes will appear
D. No fringe will appear

Answer: D

D Watch Video Solution

23. If the ratio of amplitude of two waves is
$4: 3$, then the ratio of maximum and minimum
intensity is
A. $16: 18$
B. $18: 16$
C. $49: 1$
D. 1: 49

Answer: C

D Watch Video Solution

24. In a double slit experiment, the distance between slits is increased 10 times whereas
their distance from screen is halved, then what is the fringe width?
A. It remains same
B. Becomes $\frac{1}{10}$
C. Becomes $\frac{1}{20}$
D. Becomes $\frac{1}{90}$

Answer: C

- Watch Video Solution

