©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MAGNETIC EFFECT OF ELECTRIC CURRENT

1. A current path shaped as shown in figure produces a magnetic field at P the centre fo the arc. If the arc subtends an angle of 30° and the radius of the arc is 0.6 m . What is the magnitude of the field at P, if the current is 3.0

A?
A. $26 \times 10^{-7} T$
B. 4 T
C. $4 \times 10^{-7} T$
D. 2.6 T

Answer: A

D View Text Solution

2. A straight wire of length 30 cm and mass 60 mg lies in a direction 30° east of north.The earth's magnetic field at this is horizontal and has a magnitude of $0.8 G$. What current must be passed through the wire,so that it may float in air?
A. 10 A

B. $60 A$

C. 50 A
D. 20 A

Answer: C

D Watch Video Solution

Exercise 1 Topical Problems

1. Magnetic effects of electric were discovered
by
A. Faraday

B. Oersted

C. Ampere
D. Joule

Answer: B

D Watch Video Solution

2. Which of the following gives the value of magnetic field according to, Biot-Savart's law
A. $\frac{i \Delta l \sin \theta}{r^{2}}$
B. $\frac{\mu_{0}}{4 \pi} \frac{i \Delta l \sin \theta}{r}$
C. $\frac{\mu_{0}}{4 \pi} \frac{i \Delta l \sin \theta}{r^{2}}$
D. $\frac{\mu_{0}}{4 \pi} \frac{i \Delta l \sin \theta}{r^{3}}$

Answer: C

- Watch Video Solution

3. Magnetic field at a distance r from an infinitely long straight conductor carrying steady varies as
A. $1 / r^{2}$
B. $1 / r$
C. $1 / r^{2}$
D. $1 / \sqrt{r}$

Answer: B

- Watch Video Solution

4. The strength of the magnetic field at a point r near a long straight current carrying wire is B.

The field at a distance $\frac{r}{2}$ will be
A. $\frac{B}{2}$
B. $\frac{B}{4}$
C. 2B
D. 4 B

Answer: C

D Watch Video Solution

5. Two parallel wires carrying equal currents i_{1} and i_{2} with $i_{1}>i_{2}$. When the current are in the same direction, the 10 mT . If the direction of i_{2}
is reversed, the field becomes 30 mT . The ratio
i_{1} / i_{2} is
A. 4
B. 3
C. 2
D. 1

Answer: C

Watch Video Solution
6. The current is flowing in south direction along a power line. The direction of magnetic
field above the power line (neglecting earth's field) is
A. south
B. east
C. north
D. west

Answer: D
7. Two infinitely long, thin, insulated, straight wires lie in the x - y plane along the x - and y - axis respectively. Each wire carries a current I, respectively in the positive x-direction and positive y-direction. The magnetic field will be zero at all points on the straight line:
A. $y=x$
B. $y=-x$
C. $y=x-1$
D. $y=-x+1$

Answer: A

D Watch Video Solution

8. The magneitc field produced at the center of a current carrying circular coil of radius r, is
A. directly proportional to r B. inversely proportional to r
C. directly proportional to r^{2}
D. inversely proportional to r^{2}

Answer: B

D Watch Video Solution

9. An arc of a circle of raduis R subtends an
angle $\frac{\pi}{2}$ at the centre. It carriers a current i.
The magnetic field at the centre will be
A. $\frac{\mu_{0} i}{2 R}$
B. $\frac{\mu_{0} i}{8 R}$
C. $\frac{\mu_{0} i}{4 R}$
D. $\frac{2 \mu_{0} i}{5 R}$

Answer: B

- Watch Video Solution

10. A particle carrying a charge equal to 100
times the charge on an electron is rotating per second in a circular path of radius 0.8 metre.

The value of the magnetic field produced at the centre will be ($\mu_{0}=$ permeability for vacuum)

$$
\begin{aligned}
& \text { A. } \frac{10^{-7}}{\mu_{0}} \\
& \text { B. } 10^{-7} \mu_{0}
\end{aligned}
$$

C. $10^{-6} \mu_{0}$
D. $10^{-7} \mu_{0}$

Answer: B

D Watch Video Solution

11. In the figure shown, there are two semicircles of radii r_{r} and r_{2} in which a current i is flowing.

The magnetic induction at the centre O will be
A. $\frac{\mu_{0} i}{4}\left(r_{1}+r_{3}\right)$
B. $\frac{\mu_{0} i}{4}\left(r_{1}-r_{3}\right)$

$$
\begin{aligned}
& \text { C. } \frac{\mu_{0} i}{4}\left[\frac{r_{1}+r_{3}}{r_{1} r_{2}}\right] \\
& \text { D. } \frac{\mu_{0} i}{4}\left[\frac{r_{1}-r_{3}}{r_{1} r_{2}}\right]
\end{aligned}
$$

Answer: C

- View Text Solution

12. A current of $0.1 A$ circulates around a coil of

100 turns and having a radius equal to 5 cm . The magnetic field set up at the centre of the coil is ($\mu_{0}=4 \pi \times 10^{-7}$ weber/amper-metre)

A. $5 \pi \times 10^{-5} T$
 B. $8 \pi \times 10^{-5} T$
 C. $4 \pi \times 10^{-5} T$
 D. $4 \pi \times 10^{-5} T$

Answer: C

- Watch Video Solution

13. A current i flow through a closed loop as
shown in figure. The magnetic field at the centre

O is
A. $\frac{\mu_{0} i}{2 \pi R}(\pi-\theta+\tan \theta)$
B. $\frac{\mu_{0} i}{2 \pi R}(\pi-\theta+\sin \theta)$
C. $\frac{\mu_{0} i}{2 \pi R}(\theta+\sin \theta)$
D. None of these

Answer: A

D View Text Solution
14. A current I ampere flows in circular arc of
wire whose radius is R, which subtends and $3 \pi / 2$ radian at its centre. The magnetic induction B at the centre is
A. $\frac{\mu_{0} i}{R}$
B. $\frac{\mu_{0} i}{2 R}$
C. $\frac{2 \mu_{0} i}{R}$
D. $\frac{3 \mu_{0} i}{8 R}$

View Text Solution

15. Magnetic field due to a ring having n turns at
a distance x on its axis is proportional to (if $r=$ radius of ring)
A. $\frac{r}{\left(x^{2}+r^{2}\right)}$
B. $\frac{r}{\left(x^{2}+r^{2}\right)^{3 / 2}}$
C. $\frac{n r^{2}}{\left(x^{2}+r^{2}\right)^{3 / 2}}$
D. $\frac{n^{2} r^{2}}{\left(x^{2}+r^{2}\right)^{3 / 2}}$

- Watch Video Solution

16. A strong magnetic field is applied on a stationary electron, then
A. moves in the direction of the field
B. moves in an opposite direction of the field
C. remains stationary
D. starts spinning

Answer: C
17. An electron is moving on a circular path of radius r with speed v in a transverse magnetic field B.e/m for it will be

$$
\begin{aligned}
& \text { A. } \frac{v}{B r} \\
& \text { B. } \frac{B}{r v} \\
& \text { C. } \mathrm{Bvr} \\
& \text { D. } \frac{v r}{B}
\end{aligned}
$$

Answer: A
18. When a charged particle enters a uniform magnetic field its kinetic energy
A. remains constant
B. increases
C. decreases
D. becomes zero

Answer: A

19. A conducting loop carrying a current i is placed in a uniform magnetic field pointing into the plane of the paper as shown. The loop will have a tendency to
A. contract
B. expand
C. move towards + ve X-axis
D. move towards -ve X-axis

- View Text Solution

20. Two proton beams going in the same direction repel each
other whereas two wires carrying currents in the same
direction attract each other. Explain.
A. potential difference between them
B. mutual inductance between them
C. electric force between them
D. magnetic force between them

Answer: D

D Watch Video Solution

21. Two parallel conductors A and B of equal lengths carry currents I and $10 I$, respectively, in the same direction. Then
A. A and B will repel each other with same
force
B. A and B with attract each other with same
C. A will attract B but will repel A
D. A and B will attract each other with different forces

Answer: A

- Watch Video Solution

22. Two thin, long, parallel wires, separated by a distance 'd' carry a current of 'i' A in the same direction. They will
A. $\mu_{0} i / 2 \pi d^{2}$
B. $\mu_{0} i^{2} / 2 \pi d^{2}$
C. $\mu_{0} i^{2} / 2 \pi d$
D. $\mu_{0} i / 2 \pi d$

Answer: C

- Watch Video Solution

23. Two long conductors, separated by a distance d carry current I_{1} and I_{2} in the same direction. They exert a force F on each other.

Now the current in one of them is increased to
two times and its direction is reversed. The distance is also increased to $3 d$. The new value of the force between them is

$$
\begin{aligned}
& \text { A. }-\frac{F}{3} \\
& \text { B. } \frac{F}{3} \\
& \text { C. } \frac{2 F}{3} \\
& \text { D. } \frac{-2 F}{3}
\end{aligned}
$$

Answer: D

24. Currents of $10 A, 2 A$ are passed through two parallel wires A and B respectively in opposite directions. If the wire A is infinitely long and the length of the wire B is 2 metre, the force on the conductor B, which is situated at 10 cm distance from A will be

$$
\begin{aligned}
& \text { A. } 8 \times 10^{-5} N \\
& \text { B. } 4 \times 10^{-5} N \\
& \text { C. } 4 \times 10^{-1} N \\
& \text { D. } 8 \times 10^{-7} N
\end{aligned}
$$

Answer: A

- Watch Video Solution

25. The force between two long parallel wires A and B carrying current is $0.004 \mathrm{Nm}^{-1}$. The conductors are $0.01 m$ apart. If the current in conductor A is twice that of conductor B, then the current in the conductor B would be
A. $5 A$
B. $50 A$
C. $10 A$

D. $100 A$

Answer: C

- Watch Video Solution

26. A square current carrying loop abcd is placed near an infinitely long another current carrying wire ef. Now, match the following two columns.

Mark the correct option from the codes given
below.

$$
\begin{aligned}
& \text { A. } \left.\begin{array}{llll}
A & B & C & D \\
p & q, s & q, s & q, s \\
\text { B. } \begin{array}{llll}
A & B & C & D \\
q & p & s & r \\
\text { C. } & B & C & D \\
p & q & p & q \\
A & B & C & D \\
p & q & q & q, r
\end{array}
\end{array} \text { D. } \begin{array}{lll}
&
\end{array}\right)
\end{aligned}
$$

Answer: A
27. A metallic loop is placed in a nonuiform magnetic field. Will an emf be induced in the loop?
A. the loop will feel a force of attraction
B. the loop will a force of repulsion
C. it will move to and fro about its centre of gravity

D. None of the above

Answer: D

28. A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not depend upon
A. shape of the loop
B. area of the loop
C. number of turns in the loop
D. strength of the current

Answer: A
29. Current i is carried in a wire of length L. If the wire is turned into a circular coil, the maximum magnitude of torque in a given magnetic field B will be

$$
\begin{aligned}
& \text { A. } \frac{L^{2} B^{2}}{2} \\
& \text { B. } \frac{L^{2} B}{2} \\
& \text { C. } \frac{L^{2} i B}{4 \pi} \\
& \text { D. } \frac{L^{2} B}{4 \pi}
\end{aligned}
$$

- Watch Video Solution

30. A circular coil of 20 turns and radius 10 cm carries a current of $5 A$. It is placed in a uniform magnetic field of $0 \cdot 10 T$. Find the torque acting on the coil when the magnetic field is applied (a) normal to the plane of the coil (b) in the plane of coil. Also find out the total force acting on the coil.
A. 31.4 Nm
B. 3.14 Nm

C. 0.314 Nm

D. zero

Answer: D

D Watch Video Solution

Exercise 2 Miscellaneous Problems

1. A line wire is hidden in a wall its position can
be located with the help of
A. watt-meter
B. moving coil galvanometer

C. magnetic needle

D. the position of the line wire cannot be located without breaking the wall

Answer: C

- Watch Video Solution

2. Biot-Savart law indicates that the moving
electrons (velocity \vec{v}) produce a magnetic field \vec{B} such that
A. B is perpendicular to v
B. B is parallel to v
C. it obeys inverse cube law
D. it is along the line joining the electron and point of observation

Answer: A

D Watch Video Solution

3. A current flows in a conductor from east to west. The direction of the magnetic field at a
points above the conductor is
A. towards north

B. towards south

C. towards east
D. towards west

Answer: A

D Watch Video Solution

4. An equilateral triangle of side length I is
formed from a piece of wire of uniform
resistance. The current i is fed as shown in the
figure. The the megnitude of the magnetic field at its centre O is

> A. $\frac{\sqrt{3} \mu_{0} i}{2 \pi l}$
> B. $\frac{3 \sqrt{3} \mu_{0} i}{2 \pi l}$
> C. $\frac{\mu_{0} i}{2 \pi l}$
> D. zero

Answer: D
5. An infinitely long conductor is bent into a circle as shown in figure. It carries a current \mathbf{i} ampere and the radius of loop is R metre. The magnetic induction at the centre of loop is
A. $\frac{\mu_{0} 2 i}{4 \pi R}(\pi+1)$
B. $\frac{\mu_{0} 2 i}{4 \pi R}(\pi-1)$
C. $\frac{\mu_{0} i}{8 \pi R}(\pi+1)$
D. zero

6. Magnetic field produced at the point O due to

current flowing in as infinite wire shaped as show in the figure is

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} i}{4 \pi R} \\
& \text { B. } \frac{\mu_{0} i}{4 R}-\frac{\mu_{0} i}{4 \pi R} \\
& \text { C. } \frac{\mu_{0} i}{4 R}+\frac{\mu_{0} i}{2 \pi R} \\
& \text { D. } \frac{\mu_{0} i}{4 R}+\frac{\mu_{0} i}{4 \pi R}
\end{aligned}
$$

Answer: D

D View Text Solution

7. Two long thin wires ABC and DEF are arranged as shown in the figure. The magnitude of the magnetic field at O is

> A. $\frac{\mu_{0} i}{4 \pi r}$
> B. $\frac{\mu_{0} i}{2 \pi r}$
C. $\frac{\mu_{0} i}{2 \sqrt{2} \pi r}$

D. zero

Answer: D

D View Text Solution

8. Three long, straight and parallel wires carrying currents are arranged as shown in figure. The force experienced by 10 cm length of wire Q is
A. $14 \times 10^{-4} N$ towards the right
B. $14 \times 10^{-4} N$ towards the left
C. $2.6 \times 10^{-4} N$ towards the right
D. $2.6 \times 10^{-4} N$ towards the left

Answer: C

- View Text Solution

9. A current of 10 ampere is flowing in a wire of length 1.5 m . A force of 15 N acts on it when it is placed in a uniform magnetic field of 2 tesla. The
angle between the magnetic field and the direction of the current is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: A

D Watch Video Solution
10. Two infinitely long conductors carruying equal currents are shaped as shown in fiugre.

The point P is located symmetrically with respect to the two conductors. The magnetic field at P due to any one conductor is B. The total field at P is
A. zore
B. B
C. $\sqrt{2} B$
D. 2 B

Answer: A

D View Text Solution

11. A 100 turns coil shown in figure carries a current of 2 A in a magnetic field $\mathrm{B}=0.2 \mathrm{~Wb} / \mathrm{m}^{2}$.

The torque acting on the coil is
A. $0.32 \mathrm{~N}-\mathrm{m}$
B. $32-\mathrm{Nm}$
C. $0.0032 \mathrm{~N}-\mathrm{m}$

D. $0.032 \mathrm{~N}-\mathrm{m}$

Answer: A

- View Text Solution

12. A circular loop which is in the form of a major arc of a circle is kept in the horizontal plane and a constant magnetic field B is applied in the vertical direction such that the magnetic
lines of forces go into the plane. If R is radius of circle and it carries a current i in the radius clockwise direction, then the force on the loop

will be

A. BIR $\tan \alpha$

$$
\text { B. } 2 \mathrm{BIR} \cos (\alpha / 2)
$$

C. 2 BIR $\sin (\alpha / 2)$

D. None of the above

Answer: C

13. Two circular coils 1 and 2 are made from the same wire but the radius of the 1st coil is twice that of the $2 n d$ coil. What is the ratio of potentail difference applied across them so that the magnetic field at their centres is the same?
A. 3
B. 4
C. 6
D. 2

- Watch Video Solution

14. Some current $\mathrm{i}=2 \mathrm{~A}$ is flgure. The frame is a combination of two equilateral triangles $A C D$ and CDE of side 1 m . It is placed in uniform magnetic field $\mathrm{B}=4 \mathrm{~T}$ acting perpendicular to the plane of frame. The magnitude of magnetic force acting on the frame is
A. 24 N
B. zero
C. 16 N

D. 8 N

Answer: A

D View Text Solution

15. A conducting stick of length 2 L and maas m
is moving down a smooth inclined plane of inclination 60° with conductor perpendicular to the paper inwards. A vertically upward magnetic field B exists in space there. The magnitude of

magnetic field B is

A. $\frac{m g}{4 L}$
B. $\frac{m g}{L}$
C. $\frac{\sqrt{3} m g}{4 L}$
D. $\frac{3 \sqrt{m} g}{2 L}$

Answer: C

16. A charge q is moving with a velocity $v_{1}=1 \hat{i}$ m / s at a point in a magentic field and experiences a force $F=q[-\hat{j}+1 \hat{k}] \mathrm{N}$. If the charge is moving with a voloctiy $v_{2}=2 \hat{j} \mathrm{~m} / \mathrm{s}$ at the same point then it experiences a force $F_{2}=q(1 \hat{i}-1 \hat{k}) \mathrm{N}$. The magnetic induction B at that point is

$$
\begin{aligned}
& \text { A. }(\hat{l}+\hat{j}+\hat{k}) w b / m^{2} \\
& \text { B. }(\hat{l}-\hat{j}+\hat{k}) w b / m^{2} \\
& \text { C. }(-\hat{l}+\hat{j}-\hat{k}) w b / m^{2} \\
& \text { D. }(\hat{l}+\hat{j}-\hat{k}) w b / m^{2}
\end{aligned}
$$

Answer: A

- Watch Video Solution

17. The magnetic field existing in a region is gicen by $\vec{B}=B_{0}\left(1+\frac{x}{l}\right) \vec{k}$. A square loop of edge I and carrying a current I, is placed with its edges parallel to the $x-y$ axes. Find the magnitude of the net magnetic force experienced by the loop.
A. $2 B_{0} l i$
B. zero
C. $B_{0} l i$
D. $4 B_{0} l i$

Answer: C

- Watch Video Solution

18. A straight rod of mass m and length L is
suspended from the identical springs as shown
in figure. The spring is stretched a distance x_{0} due to the weight ot the wire.

The circuit has total resistance R. When the magnetic field parpendicular to the plane of paper is switched on, then springs are observed to extend further by the same distance. The magnetic field strenght is

$$
\begin{aligned}
& \text { A. } \frac{2 m g R}{L E} \\
& \text { B. } \frac{m g R}{L E} \\
& \text { C. } \frac{m g R}{2 L E} \\
& \text { D. } \frac{m g R}{E}
\end{aligned}
$$

- View Text Solution

19. Figure here shows three cases, in all cases the circular path has radius r and straight ones are infinitely long. For same current the magnetic field at the center P in cases 1,2 and 3 have the ratio
A. $\left(\frac{\pi}{2}\right):\left(\frac{\pi}{2}\right):\left(\frac{3 \pi}{4}-\frac{1}{2}\right)$
B. $\left(-\frac{\pi}{2}+1\right):\left(\frac{\pi}{2}+1\right):\left(\frac{3 \pi}{4}+\frac{1}{2}\right)$
C. $-\frac{\pi}{2}: \frac{\pi}{2}: 3 . \frac{\pi}{4}$

$$
\text { D. }\left(-\frac{\pi}{2}-1\right):\left(\frac{\pi}{2}-\frac{1}{4}\right):\left(\frac{3 \pi}{4}+\frac{1}{2}\right)
$$

Answer: A

- View Text Solution

20. A square coil of edge I having n turns carries
a curent i. it is kept on a smooth horizontal plate. A uniform magnetic field B exists in a direction parallel to an edge the total mass of the coil is M. What should be the minimum value of B for which the coil will start tipping over?

> A. $\frac{M g}{n i L}$
> B. $\frac{M g}{2 n i L}$
> C. $\frac{M g}{4 n i L}$
> D. $\frac{2 M g}{n i L}$

Answer: B

- Watch Video Solution

Example

1. A striaight wire carries a current of 3 A
calculate the magnitude of the magentic field at
a point 15 cm away from the wire
A. $2 \times 10^{-6} T$
B. $4 \times 10^{-6} T$
C. $3 \times 10^{-6} T$
D. $8 \times 10^{-6} T$

Answer:
2. A solenoid of 1.5 metre length and 4.0 cm diameter posses 10 turn per cm . A current of 5 ampere is flowing through it. The magnetic induction at axis inside the solenoid is

$$
\text { A. } 2 P I \times 10^{-3} t
$$

$$
\text { B. } 2 O I \times 10^{-5} t
$$

$$
\text { C. } 2 P I \times 10^{-3} g
$$

$$
\text { D. } 2 P I \times 10^{-5} g
$$

Answer:

3. A solenoid of length $0 \cdot 5 m$ has a radius of

1 cm and is made up of 500 turns. It carries a
current of $5 A$. What is the magnitude of the magnetic field inside the solenoid?

$$
\begin{aligned}
& \text { A. } 4.39 \times 10^{-5} T \\
& \text { B. } 3.28 \times 10^{-3} T \\
& \text { C. } 2.39 \times 10^{-5} T \\
& \text { D. } 6.28 \times 10^{-2} T
\end{aligned}
$$

4. A moving coil galvanometer has 10 turns each of length 12 cm and breadth 8 cm the coil of MCG carries a current of $125 \mu \mathrm{~A}$ The coil is kept perpendicular to uniform magnetic field of induction $10^{-2} \mathrm{~T}$ the twis t constant of phosphor bronz fibre is $12 \times 10^{-9} \mathrm{Nm} /$ degree calculate the defection produced
A. 10°
B. 20°
C. 30°

D. 60°

Answer:

D Watch Video Solution

5. A rectangular coil having 100 turns each of length 1.0 cm and breadth 0.5 cm is suspended in radial magnetic field of induction 0.02 T the torisional constant of suspension fibre is
$2 \times 10^{-8} \mathrm{Nm} /$ degreee calculate current sensitivity of MCG
A. $500 \mathrm{div} / \mathrm{A}$
B. 600div /A
C. $400 \mathrm{div} / \mathrm{A}$

D. none of these

Answer:

6. A current of 5.0 A is passed through the coil of a galvanometer having 500 turns and each turns has an average area of $3 \times 10^{-4} \mathrm{~m}^{2}$ if a torque of $1.5 \mathrm{~N}-\mathrm{m}$ is required for this coil
carrying same current to set it parallel to a magnetic field calculate the strength of the magnetic field
A. 20 T
B. 25 T
C. 23T
D. 21 T

Answer:

- Watch Video Solution

7. A galvanometer of resistance 15Ω gives full scale deflection for a current of 2 mA . Calculate the shunt resistance needed to convert it into an ammeter of range 0 to 5 A .
A. 0.09Ω
B. 0.08Ω
C. 23Ω

D. 0.006Ω

Answer:

Watch Video Solution

8. A moving coil galvanometer hs a resistance of 25ω and gives a full scale deflection for a current of 10 mA how will you convert it in to voltemeter having range 0-100 V ?
A. $9.975 k \Omega$ in series
B. $8.965 k \Omega$ in series

C. $10.343 k \Omega$ in series

D. $6.638 k \Omega$ in series

Answer:

D Watch Video Solution

9. A moving coil galvanometer has 100 turns and
each turn has an area $2.0 \mathrm{~cm}^{2}$. The magnetic field produced by the magnet is $0.01 T$. The deflection in the coil is 0.05 radian when a
current of 10 mA is passed through it. Find the torsional constant of the suspension wire.

$$
\begin{aligned}
& \text { A. } 3.0 \times 10^{-4} \mathrm{Nmrad}^{-1} \\
& \text { B. } 4 \times x 10^{-5} \mathrm{Nmrad}^{-1} \\
& \text { C. } 5 \times 10^{-6} \mathrm{Nmrad}^{-1} \\
& \text { D. } 7 \times 10^{-7} \mathrm{Nmrad}^{-1}
\end{aligned}
$$

Answer:

10. In the given circuit the current is to be measured the value of the current if the ammeter shown is a galvanometer with a resistance $R_{g}=60 \omega$ is

A. 0.99 A
B. 0.048 A

C. 0.02 A

D. 0.06 A

Answer:

D Watch Video Solution

11. In a cyclotron, a magnetic field of $2 \cdot 4 T$ is used to accelerate protons. How rapidly should
the electric field between the dees be reversed?

The mass and the charge of protons are
$1.67 \times 10^{-27} \mathrm{~kg} \quad$ and respectively.
A. 1.342×10^{-69}
B. 2.342×10^{-8}
C. 2.3645×10^{-10}

D. none of these

Answer:

12. A proton and an α-particle enter a uniform magnetic field moving with the same speed. If the proton takes $25 \mu s$ to make 5 revolutions, then the periodic time for the $\alpha-$ particle would be
A. $50 \mu s$
B. $25 \mu s$
C. $10 \mu s$
D. $5 \mu s$

- Watch Video Solution

Exercise 1

1. A pair of stationary and infinitely long bent wires is placed in the $X-Y$ plane as shown in figure.The wires carry currents of 10 A each as shown.The segments L and M are along the x axis.The segments P and Q are pallel to the Y axis such that $O S=O R=0.02 m$. Find the magnitude and direction of the magnetic
induction at the origin O.

A. $10^{-3} T$
B. $4 \times 10^{-3} T$
C. $2 \times 10^{-6} T$
D. $10^{-4} T$

Answer: D

- Watch Video Solution

2. A closely wound solenoid 80 cm long has layers of windings of $400 t u r n s$ each. The diameter of the solenoid is 1.8 cm . If the current carried is $8 \cdot 0 A$ estimate the magnitude of \vec{B} inside the solenoid near its centre.
A. $1.5 \times 10^{-2} T$ opposite to the axis of solenoid
B. $2.5 \times 10^{-2} T$ along the axis of solenoid
C. $3.5 \times 10^{-2} T$ along the axis fo solenoid

D. $1.5 \times 10^{-2} T$ opposite to the axis of

 solenoidAnswer: B

D Watch Video Solution

3. A solenoid of length 50 cm and a radius of cros section 1 cm has 1000 turns of wire wound over it if the current carried is 5A the magnetic field on its axis near the centre of the solenoid
is approximately (Given permeability of free
space $\mu_{0}=4 \pi \times 10^{-7} T-m A^{-1}$)
A. $0.63 \times 10^{-2} T$
B. $1.26 \times 10^{-2} T$
C. $2.51 \times 10^{-2} T$
D. $6.3 T$

Answer: B
4. A current I ampere flows along an infinitely long straight thin walled tube, then the magnetic induction at any point inside the tube is.
A. infinite
B. zero
C. $\frac{\mu_{0} 22 i}{4 \pi r} T$
D. $\frac{\mu_{0} i T}{2 r}$

Answer: D
5. The magnetic induction at apoint P which is at the distance 4 cm from a long current carrying wire is $10^{-3} T$. The field of induction at a distance 12 cm from the current will be
A. 3.33×10^{-9} tesla
B. 1.11×10^{-4} tesla
C. 3×10^{-3} tesla
D. 9×10^{-2} tesla
6. A long straight wire of radius a carries a steady current i. The current is uniformly distributed across its cross section. The ratio of the magnetis field at $(a) /(2)$ and $(2 a)$ is
A. $\frac{1}{4}$
B. 4
C. 1
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

7. A horizontal overhead power lines carries a current of 90 A in east to west direction. What is the magnitude and direction of the magnetic field due to the current $1.5 m$ below the line?
A. $1.2 \times 10^{-5} \mathrm{~T}$ perpendicularly outward to the plane of paper
B. $1.9 \times 10^{-5} T$ perpendicularly outward to
the plne of paper
C. $2.6 \times 10^{-5} T$ perpendicularly inward to
the plane of paper
D. $2.6 \times 10^{-5} T$ perpendicularly inward to
the plane of paper

Answer: A

- Watch Video Solution

8. The magnitude of the magnetic field inside a long solenoid is increased by
A. decreasing its radius
B. decreasing the current throught it
C. increasing its area of cross section
D. introducing a medium of higher
permeability

Answer: D
9. The magnetic flux denisty B at a distance r from a long stright rod carrying a steady current varies with r as show in the

B.

Answer: D

Watch Video Solution

10. A solenoid has length 0.4 m , radius 1 cm and

400 turns of wire. If a current fo 5 A is passed
through this solenoid, then what is the magnetic field inside the solenoid?
A. $6.28 \times 10^{-4} T$

$$
\begin{aligned}
& \text { B. } 6.28 \times 10^{-3} T \\
& \text { C. } 6.28 \times 10^{-7} T \\
& \text { D. } 628 \times 10^{-6} T
\end{aligned}
$$

Answer: B

- Watch Video Solution

11. There are 50 turns of a wire in every cm
langth of a long solenoid. If 4 ampere current is
flowing in the solenoid, the approximate value
of magnetic field along its axis at an internal point and at one end will be respectively

> A. $\frac{\mu_{0} i}{\pi r}$
> B. $\frac{2 \mu_{0} i}{\pi r}$
> C. $\frac{\mu_{0} i}{2 \pi r}$
> D. zero

Answer: D

12. There are 50 turns of a wire in every cm
langth of a long solenoid. If 4 ampere current is
flowing in the solenoid, the approximate value of magnetic field along its axis at an internal point and at one end will be respectively

$$
\begin{aligned}
& \text { A. } 12.6 \times 10^{-7} w b m^{-2}, 6.3 \times 10^{-3} w b m^{-2} \\
& \text { B. } \\
& 12.6 \times 10^{-3} w b m^{-2}, 252 \times m^{-2} 10^{-3} w b m^{-2} \\
& \text { C. } 25.1 \times 10^{-5} w b m^{-2}, 6.3 \times 10^{-3} w b m^{-2} \\
& \text { D. } 25.1 \times 10^{-5} w b m^{-2}, 6.3 \times 10^{-3} w b m^{-2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

13. A direct current I flow along the length of an infinitely long striaght thin walled pipe then the magnetic field is
A. uniform throughout the pipe but not zero
B. zero only along the axis of the pipe
C. zero at any point inside the pipe

D. maximum at the center and minimum at

the edge

Answer: C

D Watch Video Solution

14. A moving coil galvanometer gives full scale defection when a current of 0.05 A is passed through its coil it is converted in to a voltmeter reading up to 5 V by using an external resistance
of 975ω what is the resistance of the galvanometer coil ?
A. 30Ω
B. 25Ω
C. 50Ω
D. 40Ω

Answer: B
15. A voltmeter has resistance of 2000 ohms and it can measure upto $2 V$. If we want ot increase
its range to 10 V then the, required resistance in series will be
A. 4000ω
B. 6000ω
C. 7000ω
D. 8000ω

Answer: D
16. An ammeter has resistance R_{0} and range I
what resistance should be connected in parallel
with it to increase its range by nl ?

$$
\begin{aligned}
& \text { A. } \frac{R_{0}}{n-1} \\
& \text { B. } \frac{R_{0}}{n+1} \\
& \text { C. } \frac{R_{0}}{n}
\end{aligned}
$$

D. none of these

Answer: C
17. The deflection in a moving coil galvanometer is
A. directly proportional to the torsioonal constant
B. directly proportional to the number of
turns in the coil
C. inversely proportional to the area of the
coil

D. inversely proportional to the current

flowing

Answer: B

- Watch Video Solution

18. A narrow beam of protons and deutrons,
each having the same momentum, enters a region of uniform magnetic field directed perpendicular to their direction of momentum.

The ratio of the radii of the circular paths described by them is
A. 1: 2
B. 1: 1
C. 2:1
D. $1: 3$

Answer: B
19. A proton, a deuteron and an α-particle with the same KE enter a region of uniform magnetic field, moving at right angles to B. What is the ratio of the radii of their circular paths?
A. $1: \sqrt{2}: 1$
B. $1: \sqrt{2}: \sqrt{2}$
C. $\sqrt{2}: 1$:
D. $\sqrt{2}: \sqrt{2}: 1$

Answer: A
20. Magnetic field
A. can increase the speed of charge particle B. can accelerate a charge particle
C. both a and b are correct
D. both a and b are incorrect

Answer: B

(D)
21. What uniform magnetic enter a magnetic field applied perpendicular to a beam of electrons moving at $1.3 \times 10^{6} \mathrm{~ms}^{-1}$ is required to make the electrons travel in a circular arc of radius 0.35 m
A. $21 \times 10^{-5} T$
B. $6 \times 10^{-5} T$
C. $2.1 \times 10^{-5} T$
D. $6 \times 10^{-5} T$

- Watch Video Solution

22. A charged particle enters a magnetic field H with its initial velocity making an angle of 45° with H. The path of the particle will be

A. straight line

B. a circle
C. an ellipse
D. a hellix
23. A charged particle moves along a circle under the action of passible constant electric and magnetic fields. Which of the following are possible?
A. $E=0, B=0$
B. $E=0, B \neq 0$
C. $E \neq 0, B=0$
D. $E \neq 0, B \neq 0$

Answer: B

D Watch Video Solution

24. An electric field of $1500 \mathrm{~V} / \mathrm{m}$ and a magnetic
field of $0.40 \mathrm{~Wb} / \mathrm{m}^{2}$ act on a moving electron.

The minimum uniform speed along a straight
line, the electron could have is
A. $16 \times 10^{15} \mathrm{~ms}^{-1}$
B. $6 \times 10^{-16} \mathrm{~ms}^{-1}$
C. $3.75 \times 10^{3} \mathrm{~ms}^{-1}$

$$
\text { D. } 3.75 \times 10^{2} \mathrm{~ms}^{-1}
$$

Answer: C

D Watch Video Solution

25. Identify the correct statement from the following
A. cyclotron frequencty is independent particle in cyclotron does charge particle
B. kinetic energy of charged particle in cycoltron does not depend on its mass
C. cyclotron frequency does not depend on speed of charged particle
D. kinetic energy of charged particle in
cyclotron is independent of its charge

Answer: C

26. If the radius of the dees of cyclotron is r then the kinetic energy of a proton of mass m accelerated by the cycloton at an oscillating frequency v is
A. $4 \pi^{2} m^{2} v^{2} r^{2}$
B. $4 \pi^{2} m v^{2} r^{2}$
C. $2 \pi^{2} m v^{2} r^{2}$
D. $\pi^{2} m v^{2} r^{2}$

Answer: C
27. If the velocity of charged particle has both perpendicular and parallel components while moving through a magnetic field ,then what is the path following by a charged particle?
A. circular
B. elliptical
C. linear
D. helical

- Watch Video Solution

28. A uniform magnetic field $\bar{B}=B_{0} \hat{j}$ exists in
a space. A particle of mass m and charge q is projected towards negative x-axis with speed v from the a point $(d, 0,0)$ The maximum value v for which the particle does not hit $y-z$ plane is.

$$
\begin{aligned}
& \text { A. } \frac{B q a}{m} \\
& \text { B. } \frac{B q a}{2 m} \\
& \text { C. } \frac{B q}{a m}
\end{aligned}
$$

D. $\frac{B q}{2 a m}$

Answer: A

- Watch Video Solution

29. An electron and a proton enter a magnetic
field perpendicularly. Both have same kinetic energy. Which of the following is true
A. trajectory of electron is less curved
B. trajectroy of proton is less curved
C. both trajectroy ar equally curved

D. both move in strainght line path

Answer: C

D Watch Video Solution

30. Two charged particles traverse identical
helical paths in a completely opposite sense in a uniform magnetic field $\vec{B}=B_{0} \widehat{K}$
A. they have equal z components of momenta
B. they must have equal charges
C.they necessarily represent a particle antiaritcl pair
D. the charge to masss ratio satisfy

$$
\frac{e}{(m)_{1}}+\frac{e}{(m)_{2}}=0
$$

Answer: D

- Watch Video Solution

31. A proton and an α particle accelerated through the same potential difference enter a region of uniform magnetic field normally if the
radius of the proton orbit is 10 cm ten radius of α particle is

A. 10 cm

B. $10 \sqrt{2} \mathrm{~cm}$
C. 20 cm
D. $5 \sqrt{2} \mathrm{~cm}$

Answer: B
32. Electrons move at right angles to a magnetic
field of 1.5×10^{-2} Tesla with a speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge of the electron is $1.7 \times 10^{11} \mathrm{C} / \mathrm{kg}$. The radius of the circular path will be
A. 2.9 cm
B. 3.9 cm
C. 2.35 cm
D. 2 cm

- Watch Video Solution

33. A particle of mass M and charge Q moving with velocity \vec{v} describe a circular path of radius R when subjected to a uniform transverse magnetic field of induction B. The work done by the field when the particle completes one full circle is
A. $\frac{m v^{2}}{R} 2 \pi R$
B. zero
C. $B Q R \pi R$

D. $B Q v 2 \pi R$

Answer: B

D Watch Video Solution

34. A particle of mass m, charge q and kinetic energy T enters in a transverse uniform magnetic field of induction B. After the 3 s , the kinetic energy of the particle will be
A. $3 T$
B. 2 T
C. T

D. 4T

Answer: C

- Watch Video Solution

35. The magnietic force on a charge particle moving in the field does no work because
A. kinetic energy of the charged particle does not change
B. the charge of the particle remains same
C. the magnetic force is perpendicular to velocity of the particle
D. the magentic force is parallel to magnetic field

Answer: C

D Watch Video Solution

36. The figure shows three situations when an electron moves with velocity \vec{v} travels through
a uniform magnetic field \vec{B}. In each case, what
is the direction of magnetic force on the electron

A. positive z axis negative x axis positive y
axis
B. negative z axis negative x axis and zero
C. positive z axis positive y axis and zero
D. negative z axis positive x axis and zero

Answer: B

D Watch Video Solution

Exercise 2

1. Same current i is flowing in the three infinitely
long wires along positive x-,y- and z-directions.

The magnetic filed at a point ($0,0,-\mathrm{a}$) would be
A. $\frac{\mu_{0} i}{2 \pi a}(\hat{j}-\hat{i})$
B. $\frac{\mu_{0} i}{2 \pi a}(\hat{j}+\hat{i})$

> C. $\frac{\mu_{0} i}{\pi a}(\hat{j}-\hat{i})$
> D. $\frac{\mu_{0} i}{2 \pi a}(\hat{I}+\hat{j}+\hat{k})$

Answer: A

D Watch Video Solution

2. A tangent galvanometer is connected directly to an ideal battery. If the number of turns in the coil is doubled, the deflection will
A. increase
B. decrease

C. remain unchanged

D. either increase or decrease

Answer: A

D Watch Video Solution

3. Two parallel long wires carry currents i_{1} and i_{2}
with $i_{1}>i_{2}$. When the currents are in the same direction then the magnetic field midway between the wires is $10 \mu T$. when the direction
of i_{2} is reversed ,then it becomes $40 \mu T$. then
ratio of i_{1} / i_{2} is
A. 1
B. 3
C. 2
D. 4

Answer: C

Watch Video Solution
4. A proton of mass m and charge q is moving in a plane with kinetic energy E . if there exists a uniform magnetic field B , perpendicular to the plane motion. The proton will move in a circular path of radius

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{2 E m}}{q B} \\
& \text { B. } \frac{\sqrt{E m}}{2 q B} \\
& \text { C. } \frac{\sqrt{E m}}{2 q B} \\
& \text { D. } \frac{\sqrt{2 E q}}{m B}
\end{aligned}
$$

- Watch Video Solution

5. A stream of electron and protons are directed towards a narrow slit in a screen the intervening region has a uniform electric field E vertically downwards and a unifrom magnetic field B out of the plane of the as shown then

A. electron and protons with speed $\frac{|B|}{|B|}$ will pass through the slit
B. protons with speed $\frac{|E|}{B \mid}$ will pass through
the slit electrons of the same speed will
not
C. neither electron nor protons will go
through the slit irrespective of their speed
D. electron will always be deflected upwards
irrespective of their speed
6. The magnetic field on the axis of a long solenoid having n turns per unit length and carrying a current is
A. $\mu_{0} n i$
B. $\mu_{0} n^{2} i$
C. $\mu_{0} n i^{2}$

D. none of these

- Watch Video Solution

7. A neutorn a proton an electron and an α particle enter a region of uniform magnetic field with the same velocities the magnetic field is perpendicular and directed into the plane of the paper the tracks of the palrticles are labelled in the the electron follows the track

A. D
B. C
C. B
D. A

Answer: A

- View Text Solution

8. The radius of the path of an electron moving at a speed of $3 \times 10^{7} \mathrm{~ms}^{-1}$ perpendiuclar to a magnetic field $5 \times 10^{-4} \mathrm{~T}$ is nearly
A. 15 cm
B. 45 cm
C. 27 cm
D. 34 cm

Answer: D

D Watch Video Solution

9. An electron having charge $1.6 \times 10^{-19} \mathrm{C}$ and
mass $9 \times 10^{-31} \quad \mathrm{~kg}$ is moving with
$4 \times 10^{6} \mathrm{~ms}^{-1}$ speed in a magnetic field
2×10^{-1} tesla in circular orbit. The force acting on electron and the radius of the circular orbit will be
A. $18.8 \times 10^{-13} N, 1.1 \times 10^{-4} m$
B. $12.8 \times 10^{-14} N, 1.1 \times 10^{-3} m$
C. $12.8 \times 10^{-13} N, 1.1 \times 10^{-3} m$
D. $1.28 \times 10^{-13} \mathrm{~N} 1.1 \times 10^{-4} \mathrm{~m}$

Answer: D

- Watch Video Solution

10. A long solenoid with 10 turn / cm and a radius of 7.0 cm carries a current of $20.0 \mathrm{~mA} . \mathrm{A}$
current of 6.0 A exists in a straight conductor
loacted along the central axis of the solenoid at
what radial distance from the axis will the direction of the magneitic field be at 45° to the axial direction
A. 4.8 cm
B. 8.1 cm
C. 9.9 c
D. 10.6 cm

Answer: A

- Watch Video Solution

11. Two thin long parallel wires seperated by a distance 'b' are carrying a current ' I' amp each.

The magnitude of the force3 per unit length exerted by one wire on the other is
A. $\frac{\mu_{0} i^{2}}{b^{2}}$
B. $\frac{\mu_{0} i^{2}}{2 \pi b}$
C. $\frac{\mu_{0} i}{2 \pi b}$
D. $\frac{\mu_{0} i}{2 \pi b^{2}}$

Answer: B

D Watch Video Solution

12. If a current is passed through a spring then
the spring will
A. gets compressed
B. gets expanded
C. oscillates

D. remains unchanged

Answer: A

D Watch Video Solution

13. An uniform beam of positively charged particles is moving with a constant velocity parallel to another beam of negatively charged particles, velocity in opposite direction separated by a distance d the variation of magnetic field B along a perpendicular line draw between the two beams is best represented by

c.

Answer: D

- Watch Video Solution

14. A long horizontally fiexed wire carries a current of 100 A directely above and parallel to it is a fine wire that carries a current of 20 A and weight $0.04 \mathrm{~N} / \mathrm{m}$ The distance between the two wires for which the upper wire is just supported by magnetic repulsion is

$$
\begin{aligned}
& \text { A. } 10^{-2} \mathrm{~mm} \\
& \text { B. } 10^{-2} \mathrm{~cm} \\
& \text { C. } 10^{-2} \mathrm{~m} \\
& \text { D. } 10^{-2} \mathrm{~km}
\end{aligned}
$$

- Watch Video Solution

15. A proton and a deuteron both having the same kinetic energy enter perpendicularly in to uniform magnetic field B for motion of proton and deuteron on ciruclar path of radius R_{p} and R_{d} respectively the correct statement is

$$
\begin{aligned}
& \text { A. } R_{d}=\sqrt{R_{p}} \\
& \text { B. } R_{d}=R_{p} / \sqrt{2} \\
& \text { C. } R_{d}=R_{p} \\
& \text { D. } R_{d}=2 R_{p}
\end{aligned}
$$

Answer: A

- Watch Video Solution

16. A n electrically charged particle enters into a uniform magnetic induction field in a direction perpendicular to the field with a velocity v then it travels
A. ina straight line without acceleration
B. with force in the direction of the field
C. in a circular path with a radius directly

proportional to

D. in a circular path with a radius directly

 proportional to its velocity
Answer: D

- Watch Video Solution

17. A magnetic field $4 \times 10^{-3} \mathrm{kT}$ exerts a force
$(4 \hat{I}+3 \hat{j}) \times 10^{10} \mathrm{~N}$ on a particle having a
charge $10^{-9} \mathrm{C}$ and going on the XY plane The velocity of the particle is

$$
\begin{aligned}
& \text { A. }-75 \hat{I}+100 \hat{j} \\
& \text { В. }-100 \hat{I}+75 \hat{j} \\
& \text { C. } 25 \hat{I}+2 \hat{j} \\
& \text { D. } 2 \hat{I}+25 \hat{i}
\end{aligned}
$$

Answer: A

18. Currents of $10 A, 2 A$ are passed through two parallel wires A and B respectively in opposite directions. If the wire A is infinitely long and the length of the wire B is 2 metre, the force on the conductor B, which is situated at 10 cm distance from A will be

$$
\begin{aligned}
& \text { A. } 8 \times 10^{-7} \mathrm{~N} \\
& \text { B. } 8 \times 10^{-5} N \\
& \text { C. } 4 \times 10^{-7} N \\
& \text { D. } 4 \times 10^{-5} N
\end{aligned}
$$

Answer: B

D Watch Video Solution

19. An electron having charge $1.6 \times 10^{-19} C$ and mass $9 \times 10^{-31} \quad \mathrm{~kg}$ is moving with
$4 \times 10^{6} \mathrm{~ms}^{-1}$ speed in a magnetic field
2×10^{-1} tesla in circular orbit. The force acting on electron and the radius of the circular orbit will be

$$
\text { A. } 12.8 \times 10^{-13} B, 11 \times 10^{-3} m
$$

$$
\begin{aligned}
& \text { B. } 1.28 \times 10^{-14} N, 11 \times 10^{-3} m \\
& \text { C. } 12.8 \times 10^{-13} N, 11 \times 10^{-3} m \\
& \text { D. } 1.28 \times 10^{-13} N, 11 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

Answer: D

D Watch Video Solution

20. An electron and a proton are moving on straight parallel paths with same velocity. They enter a semi infinite region of uniform magnetic field perpendicular to the velocity.

Which of the following statement(s) is /are true?
A. they will never come out of the magnetic
field region
B. they will come out travelling along parallel
paths
C. they will come out at the same time
D. none of the above

Answer: B
21. The maximum velocity to which a proton can be accelerated in a cyclotron of 10 MHZ frequency and radius 50 cm is

$$
\begin{aligned}
& \text { A. } 6.28 \times 10^{8} \mathrm{~ms}^{-1} \\
& \text { B. } 3.14 \times 10^{8} \mathrm{~ms}^{-1} \\
& \text { C. } 6.28 \times 10^{7} \mathrm{~ms}^{-1} \\
& \text { D. } 3.14 \times 10^{7} \mathrm{~ms}^{-1}
\end{aligned}
$$

Answer: D
22. An electron is accelerated by a potential difference of 12000 volts. It then enters a uniform magnetic field of $10^{-3} T$ applied perpendicular to the path of electron. Find the radius of path. Given mass of electron
$=9 \times 10^{-31} \mathrm{~kg}$ and charge on electron
$=1.6 \times 10^{-19} C$
A. 36.7 m
B. 36.7 cm
C. 3.67 m

D. 3.67 cm

Answer: A

D Watch Video Solution

23. A current I ampere flows along an infinitely
long straight thin walled tube, then the magnetic induction at any point inside the tube is .
A. 0
B. ∞
C. $\frac{\mu_{0} i}{2 r}$
D. $\frac{\mu_{0} i}{2 \pi r}$

Answer: A

- Watch Video Solution

24. The current in the windings on a toroid is
$2.0 A$. There are 400 turns and the mean
circumferential length is 40 cm . If the inside magnetic field is $1.0 T$, the relative permeability is near to
A. 100
B. 200
C. 300
D. 400

Answer: D

D Watch Video Solution

25. A rectangular loop carrying a current i is
situated near a long straight wire such that the
wire is parallel to one of the sides of the loop
and is in the plane of the loop. If steady current
I is established in the wire as shown in the figure,

A. rotate about an axis parallel to the wire
B. move away from the wire
C. move towards the wire
D. remain statioinary

Answer: C

D Watch Video Solution

Mht Cet Corner

1. The charge on a particle Y is double the charge on particle X. These two particles X and Y after being accelerated through the same potential difference enter a region of uniform magnetic field and describe circular paths of
radii R_{1} and R_{2} respectively. The ratio of the mass of X to that of Y is

$$
\begin{aligned}
& \text { A. } \frac{r_{1}}{r_{2}} \\
& \text { B. } \frac{\sqrt{r_{1}}}{r_{2}} \\
& \text { C. }\left[\frac{r_{2}}{r_{1}}\right]^{2} \\
& \text { D. }\left[\frac{r_{1}}{r_{2}}\right]^{2}
\end{aligned}
$$

Answer: A

Watch Video Solution

2. A galvanometer of resistance 30Ω is connected to a battery of emf 2 V with 1970Ω resistance in series. A full scale deflection of 20 divisions is obtained in the galvanometer. To reduce the deflection to 10 divisions, the resistance in series required is
A. 4030ω
B. 4000ω
C. 3970ω
D. 2000ω

Answer: C

D Watch Video Solution

3. Sensitivity of a moving coil galvanometer can be increased by
A. decreasing the number of turns of coil
B. increasing the number of turns of coil
C. decreasing the area of a coil
D. by using a weak magnet

Answer: B

- Watch Video Solution

4. A range of galvanometer is V , when 50Ω resistance is connected in series. Its range gets doubled when 500Ω resistance is connected in series. Galvanometer resistance is
A. 100ω
B. 200ω
C. 300ω

D. 400ω

Answer: D

Watch Video Solution

5. In cyclotron for a given magnet radius of the semicircle traced by positive ion is directly proportional to (where $v=$ velocity of positive ion)
A. v^{-2}
B. v^{-1}
C.v
D. v^{2}

Answer: C

- Watch Video Solution

6. When a proton is released from rest in a room, it starts with an initial acceleration a_{0} towards west. When it is projected towards north with a speed v_{0} it moves with an initial accelaration $3 a_{0}$ towards west. The electric and
the maximum possible magnetic field in the room
(i) $\frac{m a_{0}}{e}$, towards west
(ii) $\frac{2 m a_{0}}{e v_{0}}$, downward
(iii) $\frac{m a_{0}}{e}$, towards east
(iv) $\frac{2 m a_{0}}{e v_{0}}$, upward
A. $\frac{m a_{0}}{e}$ west $\frac{2 m a_{0}}{e v_{0}}$ up
B. $\frac{m a_{0}}{e}$ west $\frac{2 \mathrm{ma}_{0}}{e v_{0}}$ down
C. $\frac{m a_{0}}{e}$ East $\frac{3 \mathrm{ma}_{0}}{\mathrm{ev}_{0}}$ up
D. $\frac{m a_{0}}{e}$ East $\frac{3 m a_{0}}{\mathrm{ev}_{0}}$ down

- Watch Video Solution

7. A current loop in a magnetic field

A. experience a troque whether the field is
uniform or non unifrom in all orientations
B. can be in equilibrium in one orientatin
C. can be equilbrium in two orientations

both the equilibrium states are unsatable

D. can be in equilibrium in two orientation
one stable while the other is unstable

Answer: D

D Watch Video Solution

8. Which of the following while in motion cannot be deflected by magnetic field?
A. protons
B. cathode rays
C. alpha particles
D. neutrons

Answer: D

D Watch Video Solution

9. Fleming 's left and right handle rule are used in
A. DC motor and AC generator
B. DC generator and AC motor
C. DC generator and DC motor
D. both rules are same any one can be used

Answer: C

D Watch Video Solution

10. Tangent galvanometer mearusre
A. capacitance
B. current
C. resistance
D. potential difference
11. An electron is travelling along the x-direction.

It encounters magnetic field in the y-direction. Its subsequent motion will be
A. straight line along the x direction
B. a circle in the XZ plane
C. a circle in the YZ plane
D. a circle in the $X Y$ plane
12. To decrease the range of an ammeter its resistance need to be incrased an ammeter has resistacne R_{0} and range / which of the following resistance can be connected in series with it to drecease its range to l / n

$$
\begin{aligned}
& \text { A. } \frac{R_{0}}{n} \\
& \text { B. } \frac{R_{0}}{n-1} \\
& \text { C. } \frac{R_{0}}{n+1}
\end{aligned}
$$

D. none of these

Answer: D

D Watch Video Solution

13. A galvanometer has a resistance of 3663Ω. A
shunt Sis connected across it such that (1/34) of
the total current passes through the galvanometer. Then the value of the shunt is :
A. 3663ω
B. 111ω
C. 107.7ω

D. 3555.3ω

Answer: B

D Watch Video Solution

14. In an ammeter 10% of main current is passing through the galvanometer. If the resistance of the galvanometer is G, then the shunt resistance, in ohms is
A. 60ω
B. 240ω
C. 120ω

D. 480ω

Answer: C

D Watch Video Solution

15. Three moving coil galvanometer A, B and C are made of coils of three different material
identical in all other respect then in which of the above cases sensitivity maximum

A. A

B. C
C. B

D. same in each case

Answer: A

16. A galvanometer has a resistance of G ohm and range of V volt. Calculate the resistance to be used in seres with it to extend its range its renge to $\mathrm{n} V$ volt.
A. nG
B. $\frac{G}{n}$
C. $(n-1) G$
D. $\frac{G}{n-1}$

Answer: C
17. Two tangent galvanometers having coils of the same radius are connected in series. A current flowing in them produces deflections of 60° and 45° respectively. The ratio of the number of turns in the coils is
A. $\frac{4}{\sqrt{3}}$
B. $\frac{\sqrt{3+1}}{1}$
C. $\frac{\sqrt{3}+1}{\sqrt{3-1}}$
D. $\frac{\sqrt{3}}{1}$

Answer: D

D Watch Video Solution

18. We have a galvanometer of resistance 25Ω. It is shunted by a 2.5Ω wire. The part of total
current that flows through the galvanometer is
given as

$$
\begin{aligned}
& \text { A. } \frac{l_{g}}{l}=\frac{4}{11} \\
& \text { B. } \frac{l_{g}}{l}=\frac{3}{11} \\
& \text { C. } \frac{l_{g}}{l}=\frac{2}{11}
\end{aligned}
$$

D. $\frac{l_{g}}{l}=-\frac{1}{11}$

Answer: D

(Watch Video Solution

19. An electron and a proton with equal momentum enter perpendicularly into a uniform magnetic field, then
A. path of both will be straight line
B. both are equally curved
C. the path of proton shall be less curved

than that of electron

D. the path of proton shall be less curved than that of electron

Answer: B

- Watch Video Solution

20. The radius of circular path of an electron when subjected to a perpendicular magnetic field is

> A. $\frac{m V}{b e}$
> B. $\frac{m e}{B e}$
> C. $\frac{m E}{B e}$
> D. $\frac{B e}{M v}$

Answer: A

- Watch Video Solution

