©゙doubtnut

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MAGNETIC EFFECT OF ELECTRIC CURRENT - -

Examlpe

1. A current path shaped as shown in figure produces a magnetic field at P the centre fo the arc. If the arc subtends an angle of 30° and the radius of the arc is 0.6 m . What is the magnitude of the field at P, if the current is 3.0

A?
R

$$
\text { A. } 26 \times 10^{-7} T
$$

B. 4 T
C. $4 \times 10^{-7} T$

D. 2.6 T

Answer: A

D View Text Solution

2. A straight wire of length 30 cm and mass

60 mg lies in a direction 30° east of north.The earth's magnetic field at this is horizontal and has a magnitude of $0.8 G$. What current must be passed through the wire,so that it may float in air ?
A. 10 A
B. $60 A$
C. $50 A$
D. 20 A

Answer: C

- Watch Video Solution

Exercise 1 Topical Problems

1. Magnetic effects of electric were discovered by
A. Faraday
B. Oersted
C. Ampere
D. Joule

Answer: B
(D) Watch Video Solution
2. Which of the following gives the value of magnetic field according to, Biot-Savart's law

$$
\begin{aligned}
& \text { A. } \frac{i \Delta l \sin \theta}{r^{2}} \\
& \text { B. } \frac{\mu_{0}}{4 \pi} \frac{i \Delta l \sin \theta}{r} \\
& \text { C. } \frac{\mu_{0}}{4 \pi} \frac{i \Delta l \sin \theta}{r^{2}} \\
& \text { D. } \frac{\mu_{0}}{4 \pi} \frac{i \Delta l \sin \theta}{r^{3}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

3. Magnetic field at a distance r from an infinitely long straight conductor carrying steady varies as
A. $1 / r^{2}$
B. $1 / r$
C. $1 / r^{2}$
D. $1 / \sqrt{r}$

Answer: B

D Watch Video Solution
4. The strength of the magnetic field at a point r near a long straight current carrying wire is
B. The field at a distance $\frac{r}{2}$ will be
A. $\frac{B}{2}$
B. $\frac{B}{4}$
C. 2B
D. 4B

Answer: C

- Watch Video Solution

5. Two parallel wires carrying equal currents i_{1}
and i_{2} with $i_{1}>i_{2}$. When the current are in
the same direction, the $10 m T$. If the direction of i_{2} is reversed, the field becomes $30 m T$. The ratio i_{1} / i_{2} is
A. 4
B. 3
C. 2
D. 1

Answer: C
6. The current is flowing in south direction along a power line. The direction of magnetic
field above the power line (neglecting earth's field) is
A. south
B. east
C. north
D. west

Answer: D

D Watch Video Solution

7. Two infinitely long, thin, insulated, straight
wires lie in the $x-y$ plane along the x - and y axis respectively. Each wire carries a current I, respectively in the positive x-direction and positive y-direction. The magnetic field will be zero at all points on the straight line:
B. $y=-x$
C. $y=x-1$
D. $y=-x+1$

Answer: A

- Watch Video Solution

8. The magneitc field produced at the center of a current carrying circular coil of radius r, is
A. directly proportional to r
B. inversely proportional to r
C. directly proportional to r^{2}
D. inversely proportional to r^{2}

Answer: B

D Watch Video Solution

9. An arc of a circle of raduis R subtends an angle $\frac{\pi}{2}$ at the centre. It carriers a current i.

The magnetic field at the centre will be
A. $\frac{\mu_{0} i}{2 R}$
B. $\frac{\mu_{0} i}{8 R}$
C. $\frac{\mu_{0} i}{4 R}$
D. $\frac{2 \mu_{0} i}{5 R}$

Answer: B

D Watch Video Solution

10. A particle carrying a charge equal to 100
times the charge on an electron is rotating per second in a circular path of radius
0.8 metre. The value of the magnetic field produced at the centre will be ($\mu_{0}=$ permeability for vacuum)

$$
\begin{aligned}
& \text { A. } \frac{10^{-7}}{\mu_{0}} \\
& \text { B. } 10^{-7} \mu_{0} \\
& \text { C. } 10^{-6} \mu_{0} \\
& \text { D. } 10^{-7} \mu_{0}
\end{aligned}
$$

Answer: B

D Watch Video Solution
11. In the figure shown, there are two semicircles of radii r_{r} and r_{2} in which a current i is flowing. The magnetic induction at the centre O will be

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} i}{4}\left(r_{1}+r_{3}\right) \\
& \text { B. } \frac{\mu_{0} i}{4}\left(r_{1}-r_{3}\right) \\
& \text { C. } \frac{\mu_{0} i}{4}\left[\frac{r_{1}+r_{3}}{r_{1} r_{2}}\right] \\
& \text { D. } \frac{\mu_{0} i}{4}\left[\frac{r_{1}-r_{3}}{r_{1} r_{2}}\right]
\end{aligned}
$$

Answer: C

View Text Solution

12. A current of $0.1 A$ circulates around a coil of 100 turns and having a radius equal to 5 cm .

The magnetic field set up at the centre of the coil is
($\mu_{0}=4 \pi \times 10^{-7}$ weber/amper-metre)
A. $5 \pi \times 10^{-5} T$
B. $8 \pi \times 10^{-5} T$
C. $4 \pi \times 10^{-5} T$
D. $4 \pi \times 10^{-5} T$

Answer: C

- Watch Video Solution

13. A current i flow through a closed loop as
shown in figure. The magnetic field at the centre O is

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} i}{2 \pi R}(\pi-\theta+\tan \theta) \\
& \text { B. } \frac{\mu_{0} i}{2 \pi R}(\pi-\theta+\sin \theta) \\
& \text { C. } \frac{\mu_{0} i}{2 \pi R}(\theta+\sin \theta)
\end{aligned}
$$

D. None of these

Answer: A

D View Text Solution

14. A current I ampere flows in circular arc of
wire whose radius is R, which subtends and
$3 \pi / 2$ radian at its centre. The magnetic induction B at the centre is

$$
\text { A. } \frac{\mu_{0} i}{R}
$$

B. $\frac{\mu_{0} i}{2 R}$
C. $\frac{2 \mu_{0} i}{R}$
D. $\frac{3 \mu_{0} i}{8 R}$

Answer: D

D View Text Solution

15. Magnetic field due to a ring having n turns
at a distance x on its axis is proportional to (if
$r=$ radius of ring)
A. $\frac{r}{\left(x^{2}+r^{2}\right)}$
B. $\frac{r}{\left(x^{2}+r^{2}\right)^{3 / 2}}$
C. $\frac{n r^{2}}{\left(x^{2}+r^{2}\right)^{3 / 2}}$
D. $\frac{n^{2} r^{2}}{\left(x^{2}+r^{2}\right)^{3 / 2}}$

Answer: C

- Watch Video Solution

16. A strong magnetic field is applied on a
stationary electron, then
A. moves in the direction of the field
B. moves in an opposite direction of the field
C. remains stationary
D. starts spinning

Answer: C

- Watch Video Solution

17. An electron is moving on a circular path of radius r with speed v in a transverse magnetic
field B. e/m for it will be

> A. $\frac{v}{B r}$
> B. $\frac{B}{r v}$
> C. Bvr
> D. $\frac{v r}{B}$

Answer: A

D Watch Video Solution
18. When a charged particle enters a uniform magnetic field its kinetic energy
A. remains constant
B. increases
C. decreases
D. becomes zero

Answer: A

D Watch Video Solution
19. A conducting loop carrying a current i is placed in a uniform magnetic field pointing into the plane of the paper as shown. The loop
will have a tendency to
A. contract
B. expand
C. move towards + ve X-axis
D. move towards -ve X-axis

Answer: B
20. Two proton beams going in the same direction repel each
other whereas two wires carrying currents in
the same
direction attract each other. Explain.
A. potential difference between them
B. mutual inductance between them
C. electric force between them
D. magnetic force between them

Answer: D

- Watch Video Solution

21. Two parallel conductors A and B of equal
lengths carry currents I and $10 I$, respectively, in the same direction. Then
A. A and B will repel each other with same
force
B. A and B with attract each other with
C. A will attract B but will repel A
D. A and B will attract each other with

different forces

Answer: A

D Watch Video Solution

22. Two thin, long, parallel wires, separated by
a distance ' d ' carry a current of ' i ' A in the same direction. They will
A. $\mu_{0} i / 2 \pi d^{2}$
B. $\mu_{0} i^{2} / 2 \pi d^{2}$
C. $\mu_{0} i^{2} / 2 \pi d$
D. $\mu_{0} i / 2 \pi d$

Answer: C

D Watch Video Solution

23. Two long conductors, separated by a distance d carry current I_{1} and I_{2} in the same direction. They exert a force F on each other.

Now the current in one of them is increased to
two times and its direction is reversed. The distance is also increased to $3 d$. The new value of the force between them is

$$
\begin{aligned}
& \text { A. }-\frac{F}{3} \\
& \text { B. } \frac{F}{3} \\
& \text { C. } \frac{2 F}{3} \\
& \text { D. } \frac{-2 F}{3}
\end{aligned}
$$

Answer: D

24. Currents of $10 \mathrm{~A}, 2 \mathrm{~A}$ are passed through two parallel wires A and B respectively in opposite directions. If the wire A is infinitely long and the length of the wire B is 2 metre, the force on the conductor B, which is situated at 10 cm distance from A will be
A. $8 \times 10^{-5} N$
B. $4 \times 10^{-5} N$
C. $4 \times 10^{-1} N$
D. $8 \times 10^{-7} N$

Answer: A

D Watch Video Solution

25. The force between two long parallel wires
A and B carrying current is $0.004 \mathrm{Nm}^{-1}$. The conductors are $0.01 m$ apart. If the current in conductor A is twice that of conductor B, then the current in the conductor B would be
A. $5 A$
B. 50 A

C. 10 A

D. 100 A

Answer: C

D Watch Video Solution

26. A square current carrying loop abcd is
placed near an infinitely long another current
carrying wire ef. Now, match the following two columns.

Mark the correct option from the codes given
below.

$$
\begin{aligned}
& \text { A. } \begin{array}{llll}
A & B & C & D \\
p & q, s & q, s & q, s \\
A & B & C & D \\
\text { B. } \\
q & p & s & r \\
A & B & C & D \\
p & q & p & q \\
A & B & C & D \\
p & q & q & q, r
\end{array} \text { D. }
\end{aligned}
$$

Answer: A

D View Text Solution
27. A metallic loop is placed in a nonuiform magnetic field. Will an emf be induced in the loop?
A. the loop will feel a force of attraction
B. the loop will a force of repulsion
C. it will move to and fro about its centre of gravity

D. None of the above

28. A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not depend upon
A. shape of the loop
B. area of the loop
C. number of turns in the loop
D. strength of the current
29. Current i is carried in a wire of length L. If
the wire is turned into a circular coil, the maximum magnitude of torque in a given magnetic field B will be
A. $\frac{L^{2} B^{2}}{2}$
B. $\frac{L^{2} B}{2}$
C. $\frac{L^{2} i B}{4 \pi}$
D. $\frac{L^{2} B}{4 \pi}$

Answer: C

- Watch Video Solution

30. A circular coil of 20 turns and radius 10 cm carries a current of $5 A$. It is placed in a uniform magnetic field of $0 \cdot 10 T$. Find the torque acting on the coil when the magnetic field is applied (a) normal to the plane of the coil (b) in the plane of coil. Also find out the total force acting on the coil.

A. 31.4 Nm

B. 3.14 Nm

C. 0.314 Nm

D. zero

Answer: D

- Watch Video Solution

Exercise 2 Miscellaneous Problems

1. A line wire is hidden in a wall its position can be located with the help of
A. watt-meter
B. moving coil galvanometer
C. magnetic needle
D. the position of the line wire cannot be
located without breaking the wall

Answer: C

2. Biot-Savart law indicates that the moving electrons (velocity \vec{v}) produce a magnetic field \vec{B} such that
A. B is perpendicular to v
$B . B$ is parallel to v
C. it obeys inverse cube law
D. it is along the line joining the electron
and point of observation
3. A current flows in a conductor from east to
west. The direction of the magnetic field at a points above the conductor is
A. towards north
B. towards south
C. towards east
D. towards west

- Watch Video Solution

4. An equilateral triangle of side length I is formed from a piece of wire of uniform resistance. The current i is fed as shown in the figure. The the megnitude of the magnetic field at its centre O is
A. $\frac{\sqrt{3} \mu_{0} i}{2 \pi l}$
B. $\frac{3 \sqrt{3} \mu_{0} i}{2 \pi l}$
C. $\frac{\mu_{0} i}{2 \pi l}$

D. zero

Answer: D

D View Text Solution

5. An infinitely long conductor is bent into a circle as shown in figure. It carries a current i ampere and the radius of loop is R metre. The magnetic induction at the centre of loop is

$$
\text { A. } \frac{\mu_{0} 2 i}{4 \pi R}(\pi+1)
$$

B. $\frac{\mu_{0} 2 i}{4 \pi R}(\pi-1)$
C. $\frac{\mu_{0} i}{8 \pi R}(\pi+1)$
D. zero

Answer: A

D View Text Solution

6. Magnetic field produced at the point O due
to current flowing in as infinite wire shaped as
show in the figure is
A. $\frac{\mu_{0} i}{4 \pi R}$
B. $\frac{\mu_{0} i}{4 R}-\frac{\mu_{0} i}{4 \pi R}$
C. $\frac{\mu_{0} i}{4 R}+\frac{\mu_{0} i}{2 \pi R}$
D. $\frac{\mu_{0} i}{4 R}+\frac{\mu_{0} i}{4 \pi R}$

Answer: D

D View Text Solution

7. Two long thin wires $A B C$ and DEF are arranged as shown in the figure. The
magnitude of the magnetic field at O is
A. $\frac{\mu_{0} i}{4 \pi r}$
B. $\frac{\mu_{0} i}{2 \pi r}$
C. $\frac{\mu_{0} i}{2 \sqrt{2} \pi r}$
D. zero

Answer: D

D View Text Solution
8. Three long, straight and parallel wires
carrying currents are arranged as shown in
figure. The force experienced by 10 cm length of wire Q is
A. $14 \times 10^{-4} N$ towards the right
B. $14 \times 10^{-4} N$ towards the left
C. $2.6 \times 10^{-4} N$ towards the right
D. $2.6 \times 10^{-4} N$ towards the left

Answer: C
9. A current of 10 ampere is flowing in a wire of
length 1.5 m . A force of 15 N acts on it when it
is placed in a uniform magnetic field of 2 tesla.
The angle between the magnetic field and the direction of the current is
A. 30°
B. 45°
C. 60°

D. 90°

Answer: A

D Watch Video Solution

10. Two infinitely long conductors carruying equal currents are shaped as shown in fiugre.

The point P is located symmetrically with respect to the two conductors. The magnetic field at P due to any one conductor is B. The
A. zore
B. B
C. $\sqrt{2} B$
D. 2 B

Answer: A

- View Text Solution

11. A 100 turns coil shown in figure carries a
current of 2 A in a magnetic field $\mathrm{B}=0.2$
$W b / m^{2}$. The torque acting on the coil is
A. $0.32 \mathrm{~N}-\mathrm{m}$
B. $32-\mathrm{Nm}$
C. $0.0032 \mathrm{~N}-\mathrm{m}$
D. $0.032 \mathrm{~N}-\mathrm{m}$

Answer: A
12. A circular loop which is in the form of a major arc of a circle is kept in the horizontal plane and a constant magnetic field B is applied in the vertical direction such that the magnetic lines of forces go into the plane. If R is radius of circle and it carries a current i in the radius clockwise direction, then the force on the loop will be
A. BIR $\tan \alpha$

B. $2 \mathrm{BIR} \cos (\alpha / 2)$

C. $2 \mathrm{BIR} \sin (\alpha / 2)$
D. None of the above

Answer: C

D View Text Solution

13. Two circular coils 1 and 2 are made from the same wire but the radius of the 1st coil is twice that of the 2 nd coil. What is the ratio of potentail difference applied across them so
that the magnetic field at their centres is the same?
A. 3
B. 4
C. 6
D. 2

Answer: B

D Watch Video Solution
14. Some current $\mathrm{i}=2 \mathrm{~A}$ is flgure. The frame is a combination of two equilateral triangles ACD
and CDE of side 1 m . It is placed in uniform magnetic field $B=4 T$ acting perpendicular to
the plane of frame. The magnitude of magnetic force acting on the frame is
A. 24 N
B. zero
C. 16 N

D. 8 N

Answer: A

D View Text Solution

15. A conducting stick of length 2 L and maas m
is moving down a smooth inclined plane of inclination 60° with conductor perpendicular to the paper inwards. A vertically upward magnetic field B exists in space there. The
magnitude of magnetic field B is

> A. $\frac{m g}{4 L}$
> B. $\frac{m g}{L}$
> C. $\frac{\sqrt{3} m g}{4 L}$
> D. $\frac{3 \sqrt{m} g}{2 L}$

Answer: C

D View Text Solution
16. A charge q is moving with a velocity $v_{1}=1 \hat{i} \mathrm{~m} / \mathrm{s}$ at a point in a magentic field and experiences a force $F=q[-\hat{j}+1 \hat{k}] \mathrm{N}$. If the charge is moving with a voloctiy $v_{2}=2 \hat{j}$ m / s at the same point then it experiences a force $F_{2}=q(1 \hat{i}-1 \hat{k}) \quad \mathrm{N}$. The magnetic induction B at that point is

$$
\begin{aligned}
& \text { А. }(\hat{l}+\hat{j}+\hat{k}) w b / m^{2} \\
& \text { в. }(\hat{l}-\hat{j}+\hat{k}) w b / m^{2} \\
& \text { С. }(-\hat{l}+\hat{j}-\hat{k}) w b / m^{2}
\end{aligned}
$$

$$
\text { D. }(\hat{l}+\hat{j}-\hat{k}) w b / m^{2}
$$

Answer: A

D Watch Video Solution

17. The magnetic field existing in a region is gicen by $\vec{B}=B_{0}\left(1+\frac{x}{l}\right) \vec{k}$. A square loop of edge I and carrying a current I, is placed with its edges parallel to the $x-y$ axes. Find the magnitude of the net magnetic force experienced by the loop.
A. $2 B_{0} l i$
B. zero
C. $B_{0} l i$
D. $4 B_{0} l i$

Answer: C

D Watch Video Solution

18. A straight rod of mass m and length L is
suspended from the identical springs as
shown in figure. The spring is stretched a
distance x_{0} due to the weight ot the wire.

The circuit has total resistance R. When the magnetic field parpendicular to the plane of paper is switched on, then springs are observed to extend further by the same distance. The magnetic field strenght is
A. $\frac{2 m g R}{L E}$
B. $\frac{m g R}{L E}$
C. $\frac{m g R}{2 L E}$
D. $\frac{m g R}{E}$

Answer: B

D View Text Solution

19. Figure here shows three cases, in all cases
the circular path has radius r and straight ones are infinitely long. For same current the magnetic field at the center P in cases 1,2 and 3 have the ratio
A. $\left(\frac{\pi}{2}\right):\left(\frac{\pi}{2}\right):\left(\frac{3 \pi}{4}-\frac{1}{2}\right)$

$$
\begin{aligned}
& \text { B. }\left(-\frac{\pi}{2}+1\right):\left(\frac{\pi}{2}+1\right):\left(\frac{3 \pi}{4}+\frac{1}{2}\right) \\
& \text { C. }-\frac{\pi}{2}: \frac{\pi}{2}: 3 \cdot \frac{\pi}{4} \\
& \text { D. }\left(-\frac{\pi}{2}-1\right):\left(\frac{\pi}{2}-\frac{1}{4}\right):\left(\frac{3 \pi}{4}+\frac{1}{2}\right)
\end{aligned}
$$

Answer: A

D View Text Solution

20. A square coil of edge I having n turns
carries a curent i. it is kept on a smooth
horizontal plate. A uniform magnetic field B exists in a direction parallel to an edge the
total mass of the coil is M . What should be the
minimum value of B for which the coil will
start tipping over?

> A. $\frac{M g}{n i L}$
> B. $\frac{M g}{2 n i L}$
> C. $\frac{M g}{4 n i L}$
> D. $\frac{2 M g}{n i L}$

Answer: B

D Watch Video Solution

