đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MEASUREMENTS

Example

1. The acceleration due to gravity is $9.8 m s^{-2}$. Give its value in ft s^{-2}
A. $31 \mathrm{fts}^{-2}$
B. $32 f t s^{2}$
C. $31 \mathrm{fts}^{-2}$
D. $32 \mathrm{fts}{ }^{2}$

Answer: B

D Watch Video Solution

2. The wavelength of a light is of the order of $6400 \AA$.

Express this in micron and metre.
A. 0.64 micron
B. 0.84 micron
C. 0.24 micron

D. 0.34 micron

Answer: A

- Watch Video Solution

3. Calulate the angle of 1 " (secondof arc or arc sec) in radian. (Use $360^{\circ}=2 \pi$ rad, $1^{\circ}=60^{\prime}$ and $1^{\prime}=60 "$)
A. $4.85 \times 10^{-6} \mathrm{rad}$
B. $4.85 \times 10^{6} \mathrm{rad}$
C. $4.85 \times 10^{5} \mathrm{rad}$
D. $4.85 \times 10^{-5} \mathrm{rad}$
4. IF C and denote capacitance and resistance, then find the dimesion of $C R$
A. ampere $^{2}-\mathrm{sec}$

Kg-metre ${ }^{2} / \sec ^{2}$
B. $\frac{\text { ampere-sec }^{2}}{\text { Kg-metre/sec }}$
C. $\frac{\text { ampere }^{2}-\sec ^{2}}{\text { Kg-metre }^{2} / \sec ^{2}}$
D. $\frac{\mathrm{ampere}^{2}-\mathrm{sec}^{2}}{\mathrm{Kg}-\mathrm{metre}^{2} \sec ^{2}}$

Answer: C

- Watch Video Solution

5. Show that the expression of the time period T of a
simple pendulum of length I given by $T=2 \pi \sqrt{\frac{l}{g}}$ is dimensionally correct
A. Right
B. Wrong
C. Information incomplete
D. None of these

Answer: A

6. The velocity v of a particle depends upon time t , according to the equation $v=a+b t+\frac{c}{d+t}$ Write the dimensions of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d .
A. $\left[L T^{-1}\right],[T]$
B. $[L T],[T]$
C. $[L],[L]$
D. $[T],[T]$

Answer: A

7. The value of gravitation is
$G=6.67 \times 10^{-11} N-\frac{m^{2}}{k g^{2}}$ in SI units. Convert it into CGS system of units .
A. 6.67×10^{8}
B. 6.67×10^{-8}
C. 5.67×10^{-8}
D. 5.67×10^{8}

Answer: B
8. The centripetal force F acting on a particle moving uniformly in a circle may depend upon mass (m), velocity (v) and radius (r) of the circle . Derive the formula for F using the method of dimensions.
A. $f=\frac{m v}{r}$
B. $F=\frac{(m v)^{2}}{r}$
C. $F=\frac{(m v)^{2}}{(r)^{2}}$
D. None of these

Answer: B
9. How many significiant figures are there in the measured values.
(i) $227.2 g$,
(ii) 3600 g
(iii) $0.00602 g$
(iv) $250 \times 10^{10} g$
A. $4,2,3,3$
B. $3,4,3,2$
C. $4,2,5,2$
D. $3,2,2,1$

Answer: A
10. A thin wire has length of 21.7 cm and radius 0.46 mm .

Calculate the volume of the wire to correct significant figures?
A. $4 \mathrm{~cm}^{3}$
B. $0.14 \mathrm{~cm}^{3}$
C. $0.14 \mathrm{~cm}^{3}$
D. $0.001 \mathrm{~cm}^{3}$

Answer: B

- Watch Video Solution

11. A substance weight 5.74 g occupies a volume of $1.2 \mathrm{~cm}^{3}$. Caluclate its density with due regard to significant digits.
A. $4.8 \mathrm{~cm}^{-3}$
B. $4.2 \mathrm{~cm}^{-3}$
C. $4.1 \mathrm{~cm}^{-3}$
D. $4.5 \mathrm{~cm}^{-3}$

Answer: A

D Watch Video Solution
12. Round off the following numbers upto three significant figures.
(i)2.520, (ii) 4.645 , (iii) 22.78 , (iv) 36.25
A. 2. $\sqrt{2}, 4.65,22.7,36.3$
B. 2. $\sqrt{2}, 4.64,22.8,36.4$
C. 2.50, 4.64, 22.7, 36.3
D. None of the above

Answer: B
13. What is the order of magnitude of the distance of the sun from the earth in SI unit?
A. 12
B. 11
C. 13
D. None of these

Answer: B

D Watch Video Solution

14. The length of a rod as measured in an experiment was found to be $2.48 \mathrm{~m}, 2.46 \mathrm{~m}, 2.49 \mathrm{~m}, 2.50 \mathrm{~m}$ and 2.48 m .

Find the average length, absolute arror in each observation and the percentage error.
A. $(2.48 \pm 0.01) m, 0.40 \%$
B. $(3.48 \pm 0.02) m, 0.45 \%$
C. $(2.48 \pm 0.01) m, 0.45 \%$
D. $(3.48 \pm 0.02) m, 045 \%$

Answer: A

- Watch Video Solution

15. The volumes of two bodies are measured to be $V_{1}=(10.2 \pm 0.02) \mathrm{cm}^{3}$ and $V_{2}=(6.4 \pm 0.01) \mathrm{cm}^{3}$.

Calculate sum and difference in volumes with error limits.

$$
\begin{aligned}
& \text { A. }(16.6 \pm 0.03)(3.8 \pm 0.03) \\
& \text { B. }(0.03 \pm 3.8)(0.03 \pm 16.6) \\
& \text { C. }(16.6 \pm 3.8)(16.6 \pm 0.03) \\
& \text { D. }(3.8 \pm 0.05)(16.6 \pm 0.03)
\end{aligned}
$$

Answer: A

- Watch Video Solution

16. Calculate focal length of a spherical mirror from the following observations : object distance,
$u=(50.1 \pm 0.5) \mathrm{cm} \quad$ and \quad image distance
$v=(20.1 \pm 0.2) \mathrm{cm}$.
A. (0.04 ± 14.3)
B. (14.3 ± 0.4)
C. (14.3 ± 0.04)
D. None of these

Answer: B

- Watch Video Solution

17. Calculate percentage error in determination of time period of a pendulum.
$T=2 \pi \sqrt{\frac{l}{g}}$
where, l and g are measured with $\pm 1 \%$ and $\pm 2 \%$.
A. $\pm 1.05 \%$
B. $\pm 1.15 \%$
C. $\pm 1.5 \%$
D. $\pm 0.05 \%$

Answer: C

(D) Watch Video Solution

Practice Exercise Exercise 1

1. In the SI system, unit of temperature is
A. degree centigrade
B. Kelvin
C. degree celsius
D. degree Fahrenheit

Answer: B

- Watch Video Solution

2. Joule-second is the unit of
A. energy
B. momentun
C. angular mometum
D. power

Answer: C

D Watch Video Solution

3. Density of a liquid in CGS system is $0.625 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$. What is its magnitude is SI system?
A. 0.625
B. 0.0625
C. 0.00625
D. 625

Answer: D

- Watch Video Solution

4. Which of the following pairs has the same unit?
A. Wavelength and Rydberg constant
B. Relative velocity and relative density
C. Thermal capacity and Boltzmann constant
D. Time period and acceleration gradlient

Answer: C

5. The wrong unit conversation among the following is
A. 1 angstrom $=10^{-(10)} \mathrm{m}$
B. 1 fermi $=10^{-15}$
C. 1 light year $=9.46 \times 10^{15}$
D. 1 astronomical unit $=1.496 \times 10^{-11}$

Answer: D

- Watch Video Solution

6. The dimensions of surface tension are
A. $\left[M^{2} L^{2} T^{-2}\right]$
B. $\left[M^{2} L T^{-2}\right]$
C. $\left[M T^{-2}\right]$
D. $\left[M L T^{-2}\right]$

Answer: C

- Watch Video Solution

7. The dimensions of impulse are equal to that of
A. force
B. linear mometum
C. pressure

D. angular momentum

Answer: B

- Watch Video Solution

8. Which of the following is a dimension contant?
A. poission's ratio
B. refractive index
C. Relative density
D. Gravitational constant
9. Which one of the following is not the dimensionless quantity?
A. Planck's constant
B. Dielectric constant
C. Solid angle
D. Strain

Answer: A

- Watch Video Solution

10. Which one of the following have same dimensions?
A. Torque and force
B. potential energy and force
C. Torque and potential energy
D. Planck's constant and linear momentum

Answer: C

- Watch Video Solution

11. If c and R denote capacity and resistance the dimensions of CR are :
A. $\left[M^{0} L^{0} T\right]$
B. $\left[M L^{0} T\right]$
C. $\left[M^{0} L^{0} T^{2}\right]$
D. not expressible in terms of M, L and T

Answer: A

- Watch Video Solution

12. The force F on a sphere of radius r moving in a medium with velocity v is given by $F=6 \pi \eta r v$. The dimensions of η are
A. $\left[M L^{-3}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M T^{-1}\right]$
D. $\left[M L^{-1} T^{-1}\right]$

Answer: D

- Watch Video Solution

13. Given that $y=a \cos \left(\frac{t}{P}-q x\right)$, where t represents distance is metre. Which of the following statements is true ?
A. The unit of x is same as that of q
B. The unit of x is same as that of p
C. The unit of t is same as that of q
D. The unit of t is same as that of p

Answer: D

D Watch Video Solution

14. The dimensions of $\frac{a}{b}$ in the equation $P=\frac{a-t^{2}}{b x}$ where P is pressure, x is distance and t is time are
A. $\left[M^{2} L T^{-3}\right]$
B. $\left[M T^{-2}\right]$
C. $\left[L T^{-3}\right]$
D. $\left[M L^{3} T^{-1}\right]$

D Watch Video Solution

15. The equation of a wave is given by
$y=a \sin \omega\left[\frac{x}{v}-k\right]$
where ω is angular velocity and v is the linear velocity .

The dimensions of k will be
A. $\left[T^{-2}\right]$
B. $\left[T^{-1}\right]$
C. $[T]$
D. $[L T]$

Answer: C

D Watch Video Solution

16. If 'muscle times speed equals power', then what is the ratio of the SI unit and the CGS unit of muscle?
A. 10^{5}
B. 10^{3}
C. 10^{7}
D. 10^{-5}

Answer: A
17. The dimensions of $\frac{1}{2} \epsilon_{0} E^{2}$ (ϵ_{0} : permittivity of free space, E: electric field) is-
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M L T^{-1}\right]$

Answer: B
18. If P represents radiation pressure, c represents the speed of light and q represents the radiation energy per unit area per second, then calculate non-zero integres such that $p^{x} q^{y} c^{z}$ is dimensionless.
A. $x=1, y=1, z=-1$
B. $x=1, y=-1, z=1$
C. $x=-1, y=1, z=1$
D. $x=-1, y=1, z=1$

Answer: B
19. The units of length, velocity and force are doubled.

Which of the following is the correct change in th other units?
A. Unit of time is doubled
B. Unit of mass is doubled
C. Unit of momentum is doubled
D. Unit of energy is doubled

Answer: C

- Watch Video Solution

20. Assuming that the mass m of the largest stone that
can be moved by a flowing river depends upon the velocity v, of water, its density ρ and acceleration due to gravity g , then m is directly proportional to
A. v^{3}
B. v^{4}
C. v^{5}
D. v^{6}

Answer: D

21. What is the number of significant figures in $0.0310 \times 10^{3} ?$
A. 2
B. 3
C. 4
D. 6

Answer: B

- Watch Video Solution

22. The number of significant figures in $11.118 \times 10^{-6} \mathrm{~V}$
A. 3
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

23. In which of the following numerical values, all zeros are significant?
A. 0.2020
B. 20.0
C. 2020
D. 'None of these

Answer: B

- Watch Video Solution

24. What is the number of significant figure in (3.20 + 4.80) $\times 10^{5}$?
A. 5
B. 4
C. 3
D. 2

Answer: C

D Watch Video Solution

25. Subtract 0.2 J from 7.26 and express the result with correct number of significant figures
A. 7.1
B. 7.06
C. 7
D. None of these

Answer: D
26. The length, breadth and thickness of a sheet are
$4.234 \mathrm{~m}, 1.005 \mathrm{~m}$ and 2.01 cm respectively. Give the volume of the sheet to the correct significant figures.
A. $0.0855 m^{3}$
B. $0.086 m^{3}$
C. $0.08556 \mathrm{~m}^{3}$
D. $0.08 m^{3}$

Answer: A
27. Multiply 107.88 by 0.610 and express the result with correct number of significant figures.
A. 65.8068
B. 64.807
C. 65.81
D. 65.8

Answer: D

- Watch Video Solution

28. The radius of a thin wire is 0.16 mm . The area of cross
section taking significant figures into consideration in
square millimeter is
A. 0.08
B. 0.08
C. 0.0804
D. 0.080384

Answer: B

D Watch Video Solution

29. Which of the following measurement is most precise?
A. 5.00 mm
B. 5.00 cm
C. 5.00 m
D. 5.00 km

Answer: A

- Watch Video Solution

30. The mean length of an object is 5 cm . Which of the following measurement is most accurate?
A. 4.9 cm
B. 4.805 cm
C. 5.25 cm
D. 5.4 cm

Answer: A

D Watch Video Solution

31. If error in measuring diameter of a circle is 4%, the error in the radius of the circle would be
A. 0.02
B. 0.08
C. 0.04
D. 0.01

Answer: C

- Watch Video Solution

32. The heat generated in a circuit is dependent upon the resistance, current and time for which the current is
flown. If the error in measuring the above are $1 \%, 2 \%$ and

1\% respectively, then maximum error in measuring the heat is
A. 0.08
B. 0.06
C. 0.18
D. 0.12

Answer: B
33. A force F is applied on a square plate of side L. If the percentage error in the determination of L is 2% and that in F is 4%. What is the permissible error in pressure?
A. 0.08
B. 0.06
C. 0.04
D. 0.02

Answer: A
34. A cuboid has volume $V=l \times 2 l \times 3 l$, where I is the length of one side. If the relative percentage error in the measurment of I is 1%, then the relative percentage error in measurement of V is
A. 0.18
B. 0.06
C. 0.03
D. 0.01

Answer: C

35. If the error in the measurement of momentum of a particle is (+ 100\%), then the error in the measurement of kinetic energy is
A. 1
B. 2
C. 3
D. 4

Answer: C

36. The radius of a ball is $(5.2 \pm 0.2) \mathrm{cm}$. The percentage

 error in the volume of the ball is (approximately).A. 0.11
B. 0.04
C. 0.07
D. 0.09

Answer: A

- Watch Video Solution

37. The random error in the arithmetic mean of 100 observations is x, then random error in the arithmetic
mean of 400 observations would be
A. $4 x$
B. $\frac{1}{4} x$
C. 2 x
D. $\frac{1}{2} x$

Answer: B

- Watch Video Solution

38. A physical quantity Q is calculated according to the expression
$Q=\frac{A^{3} B^{3}}{C \sqrt{D}}$

If percentage errors in A, B, C, D are $2 \%, 1 \%, 3 \%$ and 4% respectively. What is the percentage error in Q ?
A. $\pm 8 \%$
B. $\pm 10 \%$
C. $\pm 14 \%$
D. $\pm 12 \%$

Answer: C

- Watch Video Solution

39. A capillary tube is attached horizontally to a constant pressure head arrangement. If the radius of the capillary
tube is increased by 10%, then the rate of flow of the liquid shall change nearly by
A. $+10 \%$
B. $+46 \%$
C. -10%
D. -40%

Answer: B

D Watch Video Solution

40. The length of a strip measured with a meter rod is
10.0 cm . Its width measured with a venier calipers is
1.00 cm . The least count of the meter rod is 0.1 cm and
that of vernier calipers 0.01 cm . What will be error in its area?
A. $\pm 13 \%$
B. $\pm 7 \%$
C. $\pm 4 \%$
D. $\pm 2 \%$

Answer: D

- Watch Video Solution

41. The length of a cylinder is measured with a meter rod having least count 0.1 cm . Its diameter is measured with vernier calipers having least count 0.01 cm . Given that
length is 5.0 cm . and radius is 2.0 cm . The percentage error in the calculated value of the volume will be
A. 1.5%
B. 2.55
C. 3.5%
D. 4%

Answer: B

D Watch Video Solution

42. A physical quantity is given by $X=M^{a} L^{b} T^{c}$. The percentage error in measurement of M, L and T are
α, β and γ respectively. Then maximum percentage error in the quantity X is
A. $a \propto+\boldsymbol{\eta}+c \gamma$
B. $a \propto+\boldsymbol{\eta}+c \gamma$
C. $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}$
D. None of these

Answer: A

- Watch Video Solution

1. If dimensions of A and B are different, then which of the following operaion is valid ?
A. $\frac{A}{B}$
B. $e^{-A / B}$
C. A-B
D. $A+B$

Answer: A

- Watch Video Solution

2. The diameter of a wire is measured to be $0.0250 \times$
$10^{-4} \mathrm{~m}$. The number of significant figures in the

measurement is

A. five
B. four
C. three
D. none

Answer: C

- Watch Video Solution

3. Dimensional formula for electromotive force is same as that for
A. potential
B. current
C. forced
D. energy

Answer: A

- Watch Video Solution

4. The number of significant figures in 0.06900 is
A. 5
B. 4
C. 2
D. 3

Answer: B

- Watch Video Solution

5. The sum of the numbers $436.32,227.2$ and 0.301 in
appropriate significant figures is
A. 663.821
B. 664
C. 663.8
D. 663.82

Answer: C
6. The dimensional formula for magnetic flux is
A. $\left[M L^{2} T^{-2} A^{-1}\right]$
B. $\left[M L^{3} T^{-2} A^{-2}\right]$
C. $\left[M^{0} L^{-2} T^{-2} A^{-2}\right]$
D. $\left[M L^{2} T^{-1} A^{2}\right]$

Answer: A

- Watch Video Solution

7. If force (F) velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are
A. $\left[F v T^{-1}\right]$
B. $\left[F v T^{-2}\right]$
C. $\left[F v^{1} T^{-1}\right]$
D. $\left[F v^{-1} T\right]$

Answer: D

- Watch Video Solution

8. If the unit of force is 1 kN , unit of length 1 km and unit of time is 100 s , what will be the unit of mass?
A. 1000 kg
B. 1 kg

C. 10000kg

D. 100 kg

Answer: C

D Watch Video Solution

9. If momentum (p), area (A) and time (t) are taken to be fundamental quantities then energy has the dimensional formula
A. $\left[p A^{-1} T^{1}\right]$
B. $\left[p^{2} A T\right]$
C. $\left[p A^{-1 / 2} T\right]$
D. $\left[p A^{1 / 2} T^{-1}\right]$

Answer: D

- Watch Video Solution

10. If $E=$ energy,$G=$ gravitational constant, $I=$ impulse and M =mass, then dimensions of $\frac{G I M^{2}}{E^{2}}$ are same as that of
A. time
B. mass
C. length
D. force

D Watch Video Solution

11. If force F, Length L and time T are chosen as
fundamental quantites, the dimensional formula for Mass is
A. $\left[F L^{-1} T^{2}\right]$
B. $\left[F L T^{-2}\right]$
C. $\left[F L^{-1} T^{-1}\right]$
D. $\left[F L^{5} T^{2}\right]$
12. From the dimensional consideration, which of the following equations is correct?
A. $T=2 \pi \frac{\sqrt{R^{3}}}{G M}$
B. $T=2 \pi \frac{\sqrt{G M}}{R^{3}}$
C. $T=2 \pi \frac{\sqrt{G M}}{R^{2}}$
D. $T=2 \pi \sqrt{\frac{R^{2}}{G M}}$

Answer: A

D View Text Solution

13. In the equation $\left(\frac{1}{p \beta}\right)=\frac{y}{k_{B} T}$, where p is the pressure, y is the distance, k_{B} is Boltzmann constant and T is the tempreture. Dimensions of β are
A. $\left[M^{-1} L^{1} T^{2}\right]$
B. $\left[M^{0} L^{2} T^{0}\right]$
C. $\left[M^{1} L^{-1} T^{-2}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

Answer: B

- Watch Video Solution

14. If the error involved in the measurement of mass and length of one side of a cube are 4% and 3% respectively. What is the maximum permissible relative error in calculation of density of meterail of the cube?
A. 0.12
B. 0.13
C. 0.14
D. 0.15

Answer: B
15. the length , breadth and heigth of a rectangular block of wood wre measured to be :
$l=12.13 \pm 0.02 \mathrm{~cm}, b=8.16 \pm .01 \mathrm{~cm}, h=3.46 \pm 0.01 \mathrm{~cm}$
Determine the percentage error in the volume of the block.
A. 0.0016
B. 0.0012
C. 0.0028
D. 0.0058

Answer: D
16. A physical quantity X is given by
$X=\frac{2 k^{3} l^{2}}{m \sqrt{n}}$
The percentage error in the measurement of K, I, m and n are $1 \%, 2 \%, 3 \%$ and 4% respectively. The value of X is uncertain by
A. 0.08
B. 0.1
C. 0.12
D. None of these

Answer: C

17. Young's modulus of steel is $1.9 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ When expressed is CGS units of $d y n e s / \mathrm{cm}^{2}$ it will be equal to $\left(1 N=10^{5} d y \mathrm{ne}, 1 \mathrm{~m}^{2}=10^{4} \mathrm{~cm}^{2}\right)$
A. 1.9×10^{10}
B. 1.9×10^{11}
C. 1.9×10^{12}
D. 1.9×10^{13}

Answer: C

- Watch Video Solution

