đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MHTCET 2014

Physics

1. In cyclotron for a given magnet radius of the
semicircle traced by positive ion is directly
proportional to (where $\mathrm{v}=$ velocity of positive ion)

A. v^{-2}
B. v^{-1}
C. v
D. v^{2}

Answer: C
(Watch Video Solution
2. A body is moved along a straight line by a machine delivering constant power . The distance moved by the body is time t is proptional to
A. $t^{1 / 2}$
B. $t^{2 / 3}$
C. t
D. $t^{3 / 2}$

Answer: D

3. In insulators (CB is conduction band and VB

 is valence band)A. VB is partially filled with electrons
B. CB is partially filled with electrons
$C . C B$ is empty and $V B$ is filled with
electrons
D. $C B$ is filled with electrons and $V B$ is

Answer: C

D Watch Video Solution

4. An object of radius R and mass M is rolling horizontally without slipping with speed v . It then rolls up the hill to a maximum height $h=\frac{3 v^{2}}{4 g}$. The moment of inertia of the object is ($\mathrm{g}=$ acceleration due to gravity)

$$
\text { A. } \frac{2}{5} M R^{2}
$$

$$
\text { B. } \frac{M R^{2}}{2}
$$

C. $M R^{2}$
D. $\frac{3}{2} M R^{2}$

Answer: B

D Watch Video Solution

5. In a Wheatstone's bridge, three resistances
P, Q and R connected in the three arms and the
fourth arm is formed by two resistances
S_{1} and S_{2} connected in parallel. The condition for the bridge to be balanced will be

> A. $\frac{R\left(s_{1}+s_{2}\right)}{s_{1} s_{2}}$
> B. $\frac{s_{1} s_{2}}{R\left(s_{1}+s_{2}\right)}$
> C. $\frac{R s_{1} s_{2}}{\left(s_{1}+s_{2}\right)}$
> D. $\frac{\left(s_{1}+s_{2}\right)}{R s_{1} s_{2}}$

Answer: A

D Watch Video Solution

6. In common base circuit of a transistor, current amplification factor is 0.95 . Calculate the emitter current, if base current is 0.2 mA
A. 2 mA
B. 4 m A
C. 6 mA
D. 8 mA

Answer: B

D Watch Video Solution
7. The rartio (inS1units) of magnetic dipole moment to that of the angular momentum of
an electron of mass $m k g$ and charge e

coulomb in Bohr's orbit of hydrogen atom is

A. $\frac{e}{m}$
B. $\frac{m}{e}$
C. $\frac{2 m}{e}$
D. $\frac{e}{2 m}$

Answer: D
(Watch Video Solution
8. Gases excert pressure on the walls of the container, because the gas molecules
A. have finite volume
B. obey Boyle's law
C. possess momentum
D. collide with one another

Answer: C
(Watch Video Solution
9. Two coherent sources of intensity ratio α interface . In interference pattern

$$
\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=
$$

A. $\frac{2 \alpha}{1+\alpha}$
B. $\frac{2 \sqrt{\alpha}}{1+\alpha}$
C. $\frac{2 \alpha}{1+\sqrt{\alpha}}$
D. $\frac{1+\alpha}{2 \alpha}$

Answer: B
10. Light of wavelength λ_{A} and λ_{B} falls on two
identical metal plates A and B respectively .
The maximum kinetic energy of
photoelectrons in K_{A} and K_{B} respectively,
then which one of the following relations is
true ? $\left(\lambda_{A}=2 \lambda_{B}\right)$

> A. $K_{A}<\frac{K_{B}}{2}$
> B. $2 K_{A}=K_{B}$
> C. $K_{A}=2 K_{B}$
D. $K_{A}>2 K_{B}$

Answer: A

D Watch Video Solution

11. If, an electron in hydrogen atom jumps
from an orbit of lelvel $n=3$ to an orbit of level $\mathrm{n}=2$, emitted radiation has a freqwuency ($\mathrm{R}=$ Rydbertg's contant ,c = velocity of light)
A. $\frac{3 R_{C}}{27}$
B. $\frac{R_{C}}{25}$
C. $\frac{8 R_{C}}{9}$
D. $\frac{5 R_{C}}{36}$

Answer: D

D Watch Video Solution

12. In electromagnetic wave, according to

Maxwell , changing electric field gives
A. stationary magnetic field
B. conduction current
C. eddy current

D. displacement current

Answer: D

D Watch Video Solution

13. The de-Broglie wavelength of an electron in

4th orbit is (where, $r=$ radius of 1st orbit)
A. $2 \pi r$
B. $4 \pi r$
C. $6 \pi r$

D. $16 \pi r$

Answer: C

D Watch Video Solution

14. A string of length L and force constant k is
stretched to obtain extension I. It is further
stretched to obtain extension l_{1}. The work done in second streching is

$$
\text { A. } \frac{1}{2} k l_{1}\left(2 l+l_{1}\right)
$$

B. $\frac{1}{2} K l_{1}^{2}$
C. $\frac{1}{2} K\left(l^{2}+l_{1}^{2}\right)$
D. $\frac{1}{2} K\left(l_{1}^{2}+l^{2}\right)$

Answer: D

D Watch Video Solution

15. The equiconvex lens has focal length f. If is
cut perpendicular to the principal axis passin through optical centre, then focal length of each half is
A. $\frac{t}{2}$
B. t
c. $\frac{3 t}{2}$
D. $2 t$

Answer: D

D Watch Video Solution

16. If ' N ' is the number of turns in a coil, the
value of self inductance varies as
A. N^{0}
B. N
C. N^{2}
D. N^{-2}

Answer: B

D Watch Video Solution
17. Surface density of charge on a sphere of
radius R in terms of electric intensity E at a
distance in free space is
($\varepsilon_{0}=$ permittivity of free space)

$$
\text { A. } \varepsilon_{0} E\left(\frac{R}{r}\right)^{2}
$$

B. $\frac{\varepsilon_{0} E R}{r^{2}}$
C. $\varepsilon_{0} E\left(\frac{r}{R}\right)^{2}$
D. $\frac{\varepsilon_{0} E r}{R^{2}}$

Answer: C
(Watch Video Solution
18. A body sliding on a smooth inclined plane
requires $4 s$ to reach the bottom, starting from
rest at the at the top. How much time does it
take to cover ont-foruth the distance startion
from rest at the top?
A. 1 s
B. 2 s
C. 3 s
D. 4 s

Answer: B
19. In vacum, to travel distance d, light takes
time t and in medium to travel distance 5d, it takes time T . The critical angle of the medium is

> A. $\sin ^{-1}\left(\frac{5 T}{t}\right)$
> B. $\sin ^{-1}\left(\frac{5 t}{3 T}\right)$
> C. $\sin ^{-1}\left(\frac{5 t}{T}\right)$
> D. $\sin ^{-1}\left(\frac{3 t}{5 T}\right)$

Answer: C

D Watch Video Solution

20. In electromagnetic spectrum , the frequencies of α-rays, X -rays and ultraviolet rays are denoted by n_{1}, n_{2} and n_{3} respectively then
A. $n_{1}>n_{2}>n_{3}$
B. $n_{1}<n_{2}<n_{3}$
C. $n_{1}<n_{2}<n_{3}$

$$
\text { D. } n_{1}<n_{2}<n_{3}
$$

Answer: A

D Watch Video Solution

21. In LCR series circuit, an alternating emf e
and current i are given by the equations
$e=\sin (100 t)$ volt.
$i=100 \sin \left(100 t+\frac{\pi}{3}\right) \mathrm{mA}$
The average power dissipated in the circuit will be
A. 100 W
B. 10 W
C. 5 W
D. 2.5 W

Answer: D

D Watch Video Solution

22. A block rests on a horizontal table which is executing SHM in the horizontal plane with an
amplitude A. What will be the frequency of
oscillation, the block will just start to slip?

Coefficient of friction $=\mu$.
A. $\frac{1}{2 \pi} \sqrt{\frac{\mu g}{A}}$
B. $\frac{1}{4 \pi} \sqrt{\frac{\mu g}{A}}$
C. $2 \pi \sqrt{\frac{A}{\mu g}}$
D. $4 \pi \sqrt{\frac{A}{\mu g}}$

Answer: A
(D) Watch Video Solution
23. A sound wave travelling with a velocity V
in a medium A reaches a point on the interface of medium A and medium B. If the velocity in the medium B be $2 V$, then the angle
of incidence for total internal reflection of the wave will be greater than:
A. 15°
B. 30°
C. 45°
D. 90°

Answer: B

- Watch Video Solution

24. A gas is compressed isothermally. The rms
velocity of its molecules
A. increases
B. decreases
C. first increases and then decreases

D. remains the same

Answer: D

- Watch Video Solution

25. Two concentric spheres kept in air have radii R and r. They have similar charge and equal surface charge density σ. The electrical potential at their common centre is (where,
$\varepsilon_{0}=$ permittivity of free space)

$$
\text { A. } \frac{\sigma(R+r)}{\varepsilon_{0}}
$$

> B. $\frac{\sigma(R-r)}{\varepsilon_{0}}$
> C. $\frac{\sigma(R+r)}{2 \varepsilon_{0}}$
> D. $\frac{\sigma(R+r)}{4 \varepsilon_{0}}$

Answer: A

- Watch Video Solution

26. The velocity of water in river is $9 \mathrm{~km} / \mathrm{h}$ of
the upper surface. The river is 10 m deep. If
the coefficient of viscosity of water is 10^{-2}
poise then the shearing stress between horizontal layers of water is
A. $0.25 \times 10^{-2} \mathrm{~N} / \mathrm{m}^{2}$
B. $0.25 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$
C. $0.5 \times 10^{-3} N / m^{2}$
D. $0.75 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$

Answer: A
(Watch Video Solution
27. A sphere P of mass m moving with velocity
u collides head on with another sphere Q of mass m which is at rest. The ratio of final velocity of Q to initial velocity of P is
($\mathrm{e}=$ coefficient of restitution)

$$
\begin{aligned}
& \text { A. } \frac{e-1}{2} \\
& \text { B. }\left[\frac{e+1}{2}\right]^{1 / 2} \\
& \text { C. } \frac{e+1}{2} \\
& \text { D. }\left[\frac{e+1}{2}\right]^{2}
\end{aligned}
$$

28. Magnetic induction produced at the centre
of a circular loop carrying current is B. The magnetic moment of the loop of radius R is
(Me = permeability of tree space)

$$
\begin{aligned}
& \text { A. } \frac{B R^{3}}{2 \pi \mu_{0}} \\
& \text { B. } \frac{2 \pi B R^{3}}{\mu_{0}} \\
& \text { C. } \frac{B R^{2}}{2 \pi \mu_{0}} \\
& \text { D. } \frac{2 \pi B R^{2}}{\mu_{0}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

29. In air , a charged soap bubble of radius r is
in equilibrium having outside and inside pressures being equal . The charge on the drop is $\left(\varepsilon_{0}=\right.$ permittivity of free space, $\mathrm{T}=$ surface tension of soap solution)
A. $4 \pi r^{2} \sqrt{\frac{2 T \varepsilon_{0}}{t}}$
B. $4 \pi r^{2} \sqrt{\frac{4 E \varepsilon_{0}}{t}}$
C. $4 \pi r^{2} \sqrt{\frac{6 T \varepsilon_{0}}{t}}$
D. $4 \pi r^{2} \sqrt{\frac{8 T \varepsilon_{0}}{t}}$

Answer: D

D Watch Video Solution

30. A block B is pushed momentarily along a horizontal surface with an initial velocity v. If mu is the coefficient of sliding friction between B and the surface, block B will come
to rest after a time:

A. $\frac{v}{\mu g}$
B. $\frac{v g}{\mu}$
C. $\frac{v \mu}{g}$
D. $\frac{\mu g}{v}$

Answer: A
(Watch Video Solution
31. Two charges of equal magnitude q are placed in air at a distance 2a apart and third charge $-2 q$ is placed at mid-point . The potential energy of the system is $\left(\varepsilon_{0}=\right.$ permittivity of free space)

$$
\begin{aligned}
& \text { A. }-\frac{q^{2}}{8 \pi \varepsilon_{0} a} \\
& \text { B. }-\frac{3 q^{2}}{8 \pi \varepsilon_{0} a} \\
& \text { C. }-\frac{5 q^{2}}{8 \pi \varepsilon_{0} a} \\
& \text { D. }-\frac{7 q^{2}}{8 \pi \varepsilon_{0} a}
\end{aligned}
$$

Answer: D

D Watch Video Solution

32. An electron in potentiometer experiences a force $2.4 \times 10^{-19} N$. The length of potentiometer wire is 6 m . The emf of the battery connected across the wire is
(electronic charge $=1.6 \times 10^{-19} C$)
A. 6 V
B. 9 V

C. 12 V

D. 15 V

Answer: B

D Watch Video Solution

33. The dimensional formula for Reynold's number is
A. $\left[L^{0} M^{0} T^{0}\right]$
B. $\left[L^{1} M^{1} T^{1}\right]$

$$
\begin{aligned}
& \text { C. }\left[L^{-1} M^{1} T^{1}\right] \\
& \text { D. }\left[L^{1} M^{1} T^{-1}\right]
\end{aligned}
$$

Answer: A

D Watch Video Solution

34. Calculate angular velocity of the earth so
that acceleration due to gravity at 60°
latitude becomes zero (radius of the earth $=$ 6400 km , gravitational acceleration at poles $=$ $\left.10 \mathrm{~m} / \mathrm{s}^{2}, \cos 60^{\circ}=0.5\right)$
A. $7.8 \times 10^{-2} \mathrm{rad} / \mathrm{s}$
B. $0.5 \times 10^{-3} \mathrm{rad} / \mathrm{s}$
C. $1 \times 10^{-3} \mathrm{rad} / \mathrm{s}$
D. $2.5 \times 10^{-3} \mathrm{rad} / \mathrm{s}$

Answer: D

D Watch Video Solution

35. A stationary partical explodes into two partical of a masses m_{1} and m_{2} which move
in opposite direction with velocities v_{1} and v_{2}
. The ratio of their kinetic energies E_{1} / E_{2} is

$$
\begin{aligned}
& \text { A. } \frac{m_{2}}{m_{1}} \\
& \text { B. } \frac{m_{1}}{m_{2}} \\
& \text { C. } \frac{2 m_{2}}{m_{1}} \\
& \text { D. } \frac{2 m_{1}}{m_{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

36. The moment of inertia of a uniform rod about a perpendicular axis passing through one end is I_{1}. The same rod is bent into a ring and its moment of inertia about a diameter is
I_{2}. Then I_{1} / I_{2} is
A. $\frac{4 \pi}{3}$
B. $\frac{8 \pi^{2}}{3}$
C. $\frac{5 \pi}{3}$
D. $\frac{8 \pi^{2}}{5}$
37. Three identicle particle each of mass 1 kg are placed with their centres on a straight line.

Their centres are marked A, B and C respectively. The distance of centre of mass of the system from A is.

$$
\begin{aligned}
& \text { A. } \frac{A B+A C}{2} \\
& \text { B. } \frac{A B+B C}{2} \\
& \text { C. } \frac{A C-A B}{3}
\end{aligned}
$$

D. $\frac{A B+A C}{3}$

Answer: D

D Watch Video Solution

38. The relation between force F and density d
is $F=\frac{x}{\sqrt{d}}$.
The dimension of x is

$$
\begin{aligned}
& \text { A. }\left[L^{-1 / 2} M^{3 / 2} T^{-2}\right] \\
& \text { B. }\left[L^{-1 / 2} M^{1 / 2} T^{-2}\right]
\end{aligned}
$$

C. $\left[L^{-1} M^{3 / 2} T^{-2}\right]$
D. $\left[L^{-1} M^{1 / 2} T^{-2}\right]$

Answer: A

D Watch Video Solution

39. When a wave travels in a medium, the particle displacement is given by the equation
$y=a \sin 2 \pi(b t-c x)$, where a, b and c are constants. The maximum particle velocity will be twice the wave velocity. If
A. $b=a c$

$$
\text { B. } b=\frac{1}{a c}
$$

C. $c=\pi a$
D. $c=\frac{1}{\pi a}$

Answer: D

- Watch Video Solution

40. Electromagnets are made of soft iron because soft iron has
A. high susceptibility and low retentivity
B. low susceptibility and high retentivity
C. low susceptibility and low retentivity
D. high susceptibility and high retentivity

Answer: D

D Watch Video Solution
41. The massses of the three wires of copper are in the ratio $1: 3: 5$. And their lengths are
in th ratio $5: 3: 1$. the ratio of their electrical

resistance is

A. $25: 1: 125$
B. $1: 125: 25$
C. $125: 1: 25$
D. $125: 25: 1$

Answer:

D Watch Video Solution
42. A body of mass m is raised to a height 10 R
from the surface of the earth, where R is the radius of the earth. Find the increase in potential energy. ($\mathrm{G}=$ universal constant of gravitational, $M=$ mass of the earth and $g=$ acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{G M m}{11 R} \\
& \text { B. } \frac{G M m}{10 R} \\
& \text { C. } \frac{m g R}{11 G} \\
& \text { D. } \frac{10 G M m}{11 R}
\end{aligned}
$$

Answer: D

D Watch Video Solution

43. The angle θ between the vector $p=\hat{i}+\hat{j}+\hat{k}$ and unit vector along X-axis is
A. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
C. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
D. $\cos ^{-1}\left(\frac{1}{2}\right)$

Answer: A

- Watch Video Solution

44. A small metal ball of mass m is dropped in
a liquid contained in a vessel, attains a terminal velocity v . If a metal ball of same material but of mass 8 m is droped is same
liquid then the terminal velocity will be
A. V
B. 2 V

C. 4 V

D. 8 V

Answer: C

D Watch Video Solution

45. A wooden box of mass 8 kg slides down an inclined plane of inclination 30° to the horizontal with a constant acceleration of $0.4 m s^{-2}$ What is the force of friction between the box and inclined plane ? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
A. 12.2 N
B. 24.4 N
C. 36.8 N
D. 48.8 N

Answer: C

- Watch Video Solution

