đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MHTCET 2015

Physics

1. In the expression for boyle 's law the product pV has dimensions of
A. force
B. impluse
C. energy
D. momentum

Answer: b

D Watch Video Solution
2. What is the angular velocity of a second hand and minute hand of a clock?
A. $\frac{59 \pi}{900} r a \frac{d}{s}$
B. $\frac{59 \pi}{1800} \mathrm{ra} \frac{\mathrm{d}}{\mathrm{s}}$
C. $\frac{59 \pi}{2400} r a \frac{d}{s}$
D. $\frac{59 \pi}{3600} r a \frac{d}{s}$

Answer: b

D Watch Video Solution

3. A metallic rod of length ' L ' and crosssection ' A ' has Young's modulus ' Y ' and coefficient of linear expansion ' α '. If the rod
is heated to a temperature. ' T ' the energy
stored per unit volume is:

$$
\begin{aligned}
& \text { A. } \frac{Y a \alpha L t^{2}}{2} \\
& \text { B. } \frac{Y a \alpha^{2} L t^{2}}{2} \\
& \text { C. } \frac{Y a \alpha^{2} L^{2} t^{2}}{2} \\
& \text { D. } \frac{Y a \alpha L t}{2}
\end{aligned}
$$

Answer: d

D Watch Video Solution

4. In a sonometer experiment the bridges are separted by a fixed distance the wire which is slightly elastic emits a tone of frequency n when held by tension T If the tension is increased to 4 T the tone emitted by the wire will be of frequency
A. n
B. 2 n
C. slightly greater than $2 n$
D. slightly less than $2 n$

Answer: d

D Watch Video Solution

5. A particle executes S.H.M. of amplitude 25
cm and time period 3 s . What is the minimum
time required for the particle to move between two points 12.5 cm on either side of the mean position ?
A. 0.6 s
B. 0.5 s
C. 0.4 s
D. 0.2 s

Answer: d

- Watch Video Solution

6. The Pitch of the whistle of an engine appears to drop to $\frac{5}{6}$ th of original value when it passes a stationary observer if the speed of sound in air is $350 \mathrm{~m} / \mathrm{s}$ then the speed of engine is
A. $35 \mathrm{~m} / \mathrm{s}$
B. $70 \mathrm{~m} / \mathrm{s}$
C. $105 \mathrm{~m} / \mathrm{s}$
D. $140 \mathrm{~m} / \mathrm{s}$

Answer: a

D Watch Video Solution
7. A solid cylinder has mass M radius R and length / its moment of inertia about an axis
passing through its centre and perpendicular to its own axis is

$$
\begin{aligned}
& \text { A. } \frac{2 M R^{2}}{3}+\frac{M I^{2}}{12} \\
& \text { B. } \frac{M R^{2}}{3}+\frac{M I^{2}}{12} \\
& \text { C. } \frac{3 M R^{2}}{3}+\frac{M I^{2}}{12} \\
& \text { D. } \frac{M R^{2}}{4}+\frac{M I^{2}}{12}
\end{aligned}
$$

Answer: D

D Watch Video Solution

8. A particle is executing SHM of periodic time

T the time taken by a particle in moving from
mean position to half the maximum
displacement is $\left(\sin 30^{\circ}=0.5\right)$

> A. $\frac{T}{2}$
> B. $\frac{T}{4}$
> C. $\frac{T}{8}$
> D. $\frac{T}{12}$

Answer: d

9. The dimensions of stefan 's constant are

A. $\left[M^{0} L T^{-3} K^{-4}\right]$
B. $\left[M L T^{-3} K^{-3}\right]$
C. $\left[M L^{2} T^{-3} K^{-4}\right]$
D. $\left[M L^{0} T^{-3} K^{-4}\right]$

Answer: a

10. An open and closed organ pipe have the
same length the ratio pth mode of frequency of vibration of air in two pipe is
A. $P(2 p+1)$
B. $\frac{2 p}{2 p-1}$
C. p
D. 1

Answer: c

D Watch Video Solution
11. A cord is wound round the circumference of
wheel of radius r. The axis of the wheel is
horizontal and fixed and moment of inertia
about it is I. A weight $m g$ is attached to the
end of the cord and falls from rest. After
falling through a distance h, the angular velocity of the wheel will be.
A. $[m g h]^{1 / 2}$
B. $\left[\frac{2 m g h}{I+2 m r^{2}}\right]^{1 / 2}$
C. $\left[\frac{2 m g h}{I+m r^{2}}\right]^{1 / 2}$
D. $\left[\frac{m g h}{I+2 m r^{2}}\right]^{1 / 2}$

Answer: b

D Watch Video Solution

12. Toy cart tied to the end of an unstretched
string of length a, when revolved moves in a horizontal circle of radius 2 a with a time period T. Now the toy cart is speeded up until it moves in a horizontal circle of radius 3a with a period T. If Hooke's law ($F=k x$) holds, then
A. $T_{1}=(2) \sqrt{3} T$
B. $T_{1}=\frac{\sqrt{3}}{2} T$
C. $T_{1}=\frac{\sqrt{2}}{3} T$
D. $T_{1}=\frac{\sqrt{3}}{2} T$

Answer: d

D Watch Video Solution

13. In a pipe opened at both ends n_{1} and n_{2} be
the frequencies corresponding to vibrating
lengths L_{1} and L_{2} respectively .The end correction is

$$
\begin{aligned}
& \text { A. } \frac{n_{1} I_{2}-n_{2} I_{2}}{2\left(n_{1}-n_{2}\right)} \\
& \text { B. } \frac{n_{2} I_{2}-n_{1} I_{1}}{2\left(n_{2}-n_{1}\right)} \\
& \text { C. } \frac{n_{2} I_{2}-n_{1} I_{1}}{2\left(n_{1}-n_{2}\right)} \\
& \text { D. } \frac{n_{2} I_{2}-n_{1} I_{1}}{n_{1}-n_{2}}
\end{aligned}
$$

Answer: d

D Watch Video Solution

14. A mass is suspended from a spring have spring constant k is displaced veritcally and relased it oscillates with period T the weight of the mass suspended is ($\mathrm{g}=$ gravitatioanal acceleration)
A. $\frac{k T g}{4 \pi^{2}}$
B. $\frac{k T^{2} g}{4 \pi^{2}}$
C. $\frac{k T g}{2 \pi^{2}}$
D. $\frac{k T^{2} g}{2 \pi^{2}}$
15. A satellite of mass m is in a circular orbit of
radius r round the Earth. Calculate its angular momentum with respect to the centre of the orbit in terms of the mass M of the Earth and G.
A. $(G M m r)^{1 / 2}$
B. $\left(G M^{2} m r\right)^{1 / 2}$
C. $\left(G M m^{2} r^{2}\right)^{1 / 2}$

$$
\text { D. }\left(G M^{2} m^{2} r\right)^{1 / 2}
$$

Answer: b

D Watch Video Solution

16. A liquid rises to a height of 1.8 cm in a glass
capillary A another glass capillary B having
diameter 90% of capillary A is immersed in the same liquid the rise of liquid in capillary B is
A. 1.4 cm

B. 1.8 cm

C. 2.0 cm

D. 2.2 cm

Answer: a

D Watch Video Solution

17. A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_{c} is varying with time t as $a_{c}=k^{2} r t^{2}$, where k is a constant. The
power delivered to the particle by the forces acting on it is :
A. $m^{2} k^{2} r^{2} t^{2}$
B. $m k^{2} r^{2} t$
C. $m k^{2} r t^{2}$
D. $m k r^{2} t$

Answer: b
(Watch Video Solution
18. A simple pendulum is oscillating with amplitue A and angular frequency ω At ratio of kinetic energy to potential energy is

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{A^{2}-x^{2}} \\
& \text { B. } \frac{X^{2}-a^{2}}{x^{2}} \\
& \text { C. } \frac{A^{2}-x^{2}}{x^{2}} \\
& \text { D. } \frac{A-x}{x}
\end{aligned}
$$

Answer: a

19. The equation of the progressive wave is y $=\mathrm{a} \sin \pi\left(n t-\frac{x}{5}\right)$ the ratio maximum paritcle velocity to wave velocity is

> A. $\frac{\pi a}{5}$
> B. $\frac{2 \pi a}{5}$
> C. $\frac{3 \pi a}{5}$
> D. $\frac{4 \pi a}{5}$

Answer: A

D Watch Video Solution
20. Let the acceleration due to gravity be g_{1} at a height h above the earth's surface g_{2} at a depth d below the earth's surface. If $g_{1}=g_{2}, h \ll R$ and $d \ll R$ then
A. $d=h$
B. $d=\frac{h}{2}$
C. $d=\frac{h}{4}$
D. $d=2 h$

Answer: a

21. A rope 1 cm in diameter breaks if the tension in it exceeds 500 N . The maximum tension that any be given to a similar rope of diameter 2 cm is
A. 2000 N
B. 1000 N
C. 500 N
D. 250 N

Answer: a

D Watch Video Solution

22. The length and diameter of a metal wire is
doubled the fundamental frequency of
vibration will change from n to (tension being
kept constant and material of both the wires
is same)
A. $\frac{n}{4}$
B. $\frac{n}{8}$
c. $\frac{n}{12}$
D. $\frac{n}{16}$

Answer: a

D Watch Video Solution

23. A hollow spere of mass M and radius R is rotating with angular frequency ω it suddenly stops rotating and 75% of kinetic energy is
converted to heat if s is the speicific heat of
the material in $\mathrm{j} / \mathrm{kg} \mathrm{k}$ then rise in
temperature of the spere is (MI of hollow
sphere $=\frac{2}{3} M R^{2}$
A. $\frac{R \omega}{4 s}$
B. $\frac{R^{2} \omega^{2}}{4 s}$
C. $\frac{R \omega}{2 s}$
D. $\frac{R^{2} \omega^{2}}{2 s}$

Answer: b

D Watch Video Solution
24. A large number of liquid drops each of radius 'a' coalesce to form a single spherical drop of radish b. The energy released in the process is converted into kinetic energy of the big drops formed. The speed of big drop will be
A. $\left[\frac{6 T}{\rho}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{1 / 2}$
B. $\left[\frac{6 T}{\rho}\left(\frac{1}{b}-\frac{1}{a}\right)\right]^{1 / 2}$
C. $\left[\frac{\rho}{6 T}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{1 / 2}$
D. $\left[\frac{\rho}{6 T}\left(\frac{1}{b}-\frac{1}{a}\right)\right]^{-1 / 2}$

Answer: a

D Watch Video Solution

25. A black body radiates heat at temperatures
$T_{1} \quad$ and $\quad T_{2}\left(T_{2}>T_{1} \quad\right.$ the \quad frequency corresponding to maxium energy is
A. more at T_{1}
B. more at T_{2}
C. equal for T_{1} and T_{2}
D. independent of T_{1} and T_{2}

Answer: b

D Watch Video Solution

26. For dimgnetic materials magnetic susceptibility is
A. large and negative
B. small and positive
C. small and negative
D. large and positive

Answer: c

D Watch Video Solution

27. For balmer series wavelength of first line is
λ_{1} and for brackett series wavelength of first
line is λ_{2} then $\frac{\lambda_{1}}{\lambda_{2}}$ is
A. 0.81
B. 0.162
C. 0.198
D. 0.238

Answer: c

- Watch Video Solution

28. The distances of a point on the screen
from two slits in biprism experiment is
$1.8 \times 10^{5} \mathrm{~m}$ and $1.23 \times 10^{5} \mathrm{~m}$ if wavelength of
light used is $6000 \AA$ then fringe formed at that point is
A. 10th bright
B. 10 th dark
C. 9th bright
D. 9th dark

Answer: c

D Watch Video Solution

29. Same current is flowing in two alternating
circuits. The first circuit contains only inductances and the other contains only a capacitor, if the frequency of the e.m.f of AC is
increased, the effect on the value of the current will be
A. increase in first circuit and decrease in
second
B. increase in both circuits
C. decrease in both circuits
D. decrease in first circuit and increase in
second

Answer: c

30. The differeence in the effective capacity of two similar capacitor when joined in series and then in parallel is $6 \mu \mathrm{~F}$ the capacity of each capacitor is
A. $2 \mu F$
B. $4 \mu F$
C. $8 \mu F$
D. $16 \mu F$
31. Which logic gate produces LOW output when any of the inputs in HIGH
A. AND
B. OR
C. NAND
D. NOR

Answer: b
32. An electron of mass m and charge q is accelerated from rest in a uniform electric field of strength E . The velocity acquired by it as it travels a distance I is
A. $\left[\frac{2 E q l}{m}\right]^{1 / 2}$
B. $\left[\frac{2 E q}{m I}\right]^{1 / 2}$
C. $\left[\frac{2 E m}{q l}\right]^{1 / 2}$
D. $\left[\frac{E q}{m I}\right]^{1 / 2}$

Answer: a

D Watch Video Solution

33. A light is travelling from air a medium the velocity of light in a medium is reduced to to
0.75 times the velocity n air assume that angle of incidence I is very small the deviation of the ray is
A. i
B. $\frac{i}{3}$
C. $\frac{i}{4}$
D. $\frac{3 i}{4}$

Answer: b

- Watch Video Solution

34. The electric field intensity at point near and outside the surface of a charged conductor of any shate is E_{1} the elecric field intensity due to uniformly charged conductor of any shape is E_{1} the electric field intensity
due ot uniformly charged infinite thin plane
sheet is E_{2} the relation between E_{1} and E_{2} is

$$
\begin{aligned}
& \text { A. } 2 E_{1}=E_{2} \\
& \text { B. } E_{1}=E_{2} \\
& \text { C. } E_{1}=2 E_{2} \\
& \text { D. } E_{1}=4 E_{1}
\end{aligned}
$$

Answer: b
(Watch Video Solution
35. Sensivitivity of a moving coil galvanometer can be increased by
A. decreasing the number of turns of coil
B. increasing the number of turns of coil
C. decreasing the area of a coil
D. by using a weak magnet

Answer: B

D Watch Video Solution

36. For the hydrogen atom the energy of radiation emitted in the transitation from 4th excited state
to 2nd exicited state according to Bohr 's theory is
A. 0.57 eV
B. 0.667 eV
C. 0.967 eV
D. 1.267 eV

Answer: C
37. Two coherent monochromatic light beams of intensities 4/ and 9/ are superimosed the maxmum and minimum possible intenties in the resulting beam are
A. 31 and 21
B. 91 and 51
C. 161 and 31
D. 251 and I

Answer: a

- Watch Video Solution

38. The resistances in left and right gap of a meter brigdge are 20ω and 30ω respecitively when the resistance in the left gap is reduced to half its value then balance point shifts by
A. 15 cm to the right
B. 15 cm to the left
C. 20 cm to the right

D. 20 cm to the left

Answer: a

D Watch Video Solution

39. For the same angle of incidence the angles
fo refreaction in media P, Q, R and S are $50^{\circ}, 40^{\circ}, 30^{\circ}, 20^{\circ}$ respectively the speed of lights is minimum in medium
A. P
B. Q
C. R
D. S

Answer: S

D Watch Video Solution

40. The process of regaining of information from carrier wave at the receiver is termed as
A. demodulation
B. modulation
C. attenuation
D. amplification

Answer: c

D Watch Video Solution

41. A potentiometer wire of length 10 m is
connected in series with a battery the emf of a
cell balances against 250 cm length of wire if
length of potentiometer wire is increased by 1 m then new balancing length of wire will be
A. 2.00 m
B. 2.25 m
C. 2.50 m
D. 2.75 m

Answer: a
(Watch Video Solution
42. Two coils A and B have mutual inductance
2×10^{2} henry if the current in he primary is
$\mathrm{i}=5 \sin 10^{\pi} \mathrm{t}$ then the maximum value of emf induced in coil B is
A. π volt
B. $\frac{\pi}{2}$ volt
C. $\frac{\pi}{3}$ volt
D. $\frac{\pi}{4}$ volt

Answer: c

43. For a transitor the current ratio $\alpha_{D C}$ is 69/70 the current gain $\beta_{D C}$ is
A. 66
B. 67
C. 69
D. 71

Answer: d

- Watch Video Solution

44. In young double slit experiment the ratio of intentsities of bright and dark bands is 16 which means
A. the ratio of their amplitudes is 5
B. intensities of individual sources are 25
and 9 units respiectively
C. the ratio of their amplitudes is 4
D. intensities of individual sources are 4
and 3 units respectively

Answer: B

D Watch Video Solution

45. A range of galvanometer is V when 50Ω
resistance is connected is connected in series
its range gets doubled when 500Ω resistance is connected in series galvanometer resistance is
A. 100ω
B. 200ω
C. 300ω
D. 400ω

Answer: b

D View Text Solution
46. The capacity of a parallel plate air capacitor is $2 \mu F$ and voltage beteen the plates is changing at the rate of $3 \mathrm{v} / \mathrm{s}$ the displacement current in the capacitor is
A. $2 \mu A$
B. $3 \mu A$
C. $5 \mu A$
D. $6 \mu A$

Answer: a

- Watch Video Solution

47. A capacitor $C_{1}=4 \mu \mathrm{~F}$ is connected is series with another capacitor $C_{2}=1 \mu \mathrm{~F}$ the
A. $2: 1$
B. $4: 1$
C. $8: 1$
D. 16: 1

Answer: a
(Watch Video Solution
48. When monochromatic light of wavelength
λ is incident on a metallic surface the stopping potential for photoelectric current is $3 V_{0}$ when same surface is illuminated with light of waelength 2λ the stopping potential is V_{0}

The threshold wavelength for this surface when photoelectric effect takes place is
A. λ
B. 2λ
C. 3λ

D. 4λ

Answer: d

D Watch Video Solution

49. A coil carrying current I has radius r and number of turns n it is rewound so that radis of new coil is $\frac{r}{4}$ and it carries current I the ratio fo magenic moment of new coil to that of original coil is
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer: b

- Watch Video Solution

50. The de Broglie wavelength λ of a particle
A. is proportional to mass
B. is proportional to impluse
C. is inversely proportional to impulse
D. does not depend on impulse

Answer: a

D Watch Video Solution

51. In the expression for boyle 's law the product pV has dimensions of
A. force
B. impluse

C. energy

D. momentum

Answer: b

D View Text Solution

52. The difference between angular speed fo
minute hand and second hand of a clock is
A. $\frac{59 \pi}{900} r a \frac{d}{s}$
B. $\frac{59 \pi}{1800} \mathrm{ra} \frac{d}{s}$
C. $\frac{59 \pi}{2400} r a \frac{d}{s}$
D. $\frac{59 \pi}{3600} \mathrm{ra} \frac{\mathrm{d}}{\mathrm{s}}$

Answer: b

D View Text Solution

53. A metal rod of length L cross sectional area

A young modulus Y and coefficient of linear expansion α is heated to $t^{\circ} C$ The work that can be performed by the rod when heated is

> A. $\frac{Y a \alpha L t^{2}}{2}$
> B. $\frac{Y a \alpha^{2} L t^{2}}{2}$
> C. $\frac{Y a \alpha^{2} L^{2} t^{2}}{2}$
> D. $\frac{Y a \alpha L t}{2}$

Answer: d

D View Text Solution

54. In a sonometer experiment the bridges are separted by a fixed distance the wire which is slightly elastic emits a tone of frequency n
when held by tension T If the tension is increased to 4T the tone emitted by the wire will be of frequency
A. n
B. 2 n
C. slightly greater than $2 n$
D. slightly less than $2 n$

Answer: d

D View Text Solution
55. A particle performs SHM with amplitude 25
cm and period 3 s the minimu time required
for it to move between two points 12.5 cm on either side of the mean position is
A. 0.6 s
B. 0.5 s
C. 0.4 s
D. 0.2 s

Answer: d

- View Text Solution

56. The Pitch of the whistle of an engine appears to drop to $\frac{5}{6}$ th of original value when it passes a stationary observer if the speed of sound in air is $350 \mathrm{~m} / \mathrm{s}$ then the speed of engine is
A. $35 \mathrm{~m} / \mathrm{s}$
B. $70 \mathrm{~m} / \mathrm{s}$
C. $105 \mathrm{~m} / \mathrm{s}$
D. $140 \mathrm{~m} / \mathrm{s}$

Answer: a

D View Text Solution

57. A solid cylinder has mass M radius R and length / its moment of inertia about an axis passing through its centre and perpendicular to its own axis is

$$
\begin{aligned}
& \text { A. } \frac{2 M R^{2}}{3}+\frac{M I^{2}}{12} \\
& \text { B. } \frac{M R^{2}}{3}+\frac{M I^{2}}{12} \\
& \text { C. } \frac{3 M R^{2}}{3}+\frac{M I^{2}}{12}
\end{aligned}
$$

D. $\frac{M R^{2}}{4}+\frac{M I^{2}}{12}$

Answer: b

D View Text Solution

58. A particle is executing SHM of periodic time

T the time taken by a particle in moving from mean position to half the maximum displacement is $\left(\sin 30^{\circ}=0.5\right)$
A. $\frac{T}{2}$
B. $\frac{T}{4}$
C. $\frac{T}{8}$
D. $\frac{T}{12}$

Answer: d

D View Text Solution
59. The dimensions of stefan 's constant are
A. $\left[M^{0} L T^{-3} K^{-4}\right]$
B. $\left[M L T^{-3} K^{-3}\right]$

$$
\begin{aligned}
& \text { C. }\left[M L^{2} T^{-3} K^{-4}\right] \\
& \text { D. }\left[M L^{0} T^{-3} K^{-4}\right]
\end{aligned}
$$

Answer: a

D View Text Solution

60. An open and closed organ pipe have the
same length the ratio pth mode of frequency of vibration of air in two pipe is
A. $P(2 p+1)$
B. $\frac{2 p}{2 p-1}$
C. p
D. 1

Answer: c

D View Text Solution

61. A cord is wound around the circumference
of wheel of radius r the axis of the wheel is
horizontal and moment of inerita about it is /

The weight mg is attached to the end of the
cord and falls from rest after falling throgh a
distance h the angular velocity of the wheel will be
A. $[m g h]^{1 / 2}$
B. $\left[\frac{2 m g h}{I+2 m r^{2}}\right]^{1 / 2}$
C. $\left[\frac{2 m g h}{I+m r^{2}}\right]^{1 / 2}$
D. $\left[\frac{m g h}{I+2 m r^{2}}\right]^{1 / 2}$

Answer: b

D View Text Solution

62. A toy cart is tied to the end of an unstretched string of length / when revolved the toy cart moves in horizontal circle with radius 2 / and time period T if it is speeded unitl it moves in horizontal circle of radius 3/ with period T_{1} relation between T and T_{1} is (Hooke 's law is obeyed)

$$
\begin{aligned}
& \text { A. } T_{1}=(2) \sqrt{3} T \\
& \text { B. } T_{1}=\frac{\sqrt{3}}{2} T \\
& \text { C. } T_{1}=\frac{\sqrt{2}}{3} T \\
& \text { D. } T_{1}=\frac{\sqrt{3}}{2} T
\end{aligned}
$$

Answer: d

D View Text Solution

63. In a pipe opened at both ends n_{1} and n_{2}
be the frequencies corresponding to vibrating
lengths L_{1} and L_{2} respectively .The end correction is

$$
\begin{aligned}
& \text { A. } \frac{n_{1} I_{2}-n_{2} I_{2}}{2\left(n_{1}-n_{2}\right)} \\
& \text { B. } \frac{n_{2} I_{2}-n_{1} I_{1}}{2\left(n_{2}-n_{1}\right)} \\
& \text { C. } \frac{n_{2} I_{2}-n_{1} I_{1}}{2\left(n_{1}-n_{2}\right)}
\end{aligned}
$$

$$
\text { D. } \frac{n_{2} I_{2}-n_{1} I_{1}}{n_{1}-n_{2}}
$$

Answer: d

D View Text Solution

64. A mass is suspended from a spring have spring constant k is displaced veritcally and relased it oscillates with period T the weight of the mass suspended is ($\mathrm{g}=$ gravitatioanal acceleration)

$$
\text { A. } \frac{k T g}{4 \pi^{2}}
$$

B. $\frac{k T^{2} g}{4 \pi^{2}}$
C. $\frac{k T g}{2 \pi^{2}}$
D. $\frac{k T^{2} g}{2 \pi^{2}}$

Answer: c

D View Text Solution

65. A satellite of mass $\mathrm{m} s$ revolving in circlular orbit of radius r aroiund the earth its angular momentum w.r.t the centre of its orbit is
($M=$ mass of earth $G=$ universal gravitational constant)
A. $(G M m r)^{1 / 2}$
B. $\left(G M^{2} m r\right)^{1 / 2}$
C. $\left(G M m^{2} r^{2}\right)^{1 / 2}$
D. $\left(G M^{2} m^{2} r\right)^{1 / 2}$

Answer: b

D View Text Solution
66. A liquid rises to a height of 1.8 cm in a glass
capillary A another glass capillary B having diameter 90% of capillary A is immersed in the same liquid the rise of liquid in capillary B is
A. 1.4 cm
B. 1.8 cm
C. 2.0 cm
D. 2.2 cm

Answer: a

67. A particle of mass m is moving in circular path of constant radius r such that centripetal acceleration is varying with time t as $k^{2} r t^{2}$
where k is a constant the power deleivered to
the particle by the force acting on its is
A. $m^{2} k^{2} r^{2} t^{2}$
B. $m k^{2} r^{2} t$
C. $m k^{2} r t^{2}$
D. $m k r^{2} t$

Answer: b

D View Text Solution

68. A simple pendulum is oscillating with amplitue A and angular frequency ω At ratio of kinetic energy to potential energy is
A. $\frac{x^{2}}{A^{2}-x^{2}}$
B. $\frac{X^{2}-a^{2}}{x^{2}}$
C. $\frac{A^{2}-x^{2}}{x^{2}}$
D. $\frac{A-x}{x}$

Answer: a

D View Text Solution

69. The equation of the progressive wave is y
$=$ a $\sin \pi\left(n t-\frac{x}{5}\right)$ the ratio maximum paritcle
velocity to wave velocity is
A. $\frac{\pi a}{5}$
B. $\frac{2 \pi a}{5}$
C. $\frac{3 \pi a}{5}$
D. $\frac{4 \pi a}{5}$

Answer: c

D View Text Solution

70. Let g_{h} and g_{d} be the acceleartion due to gravity at height h above the earth s surface and at depth d below the earth 's surface respectively if $g_{h}=g_{d}$ then the relation between h and d is
A. $d=h$
B. $d=\frac{h}{2}$
C. $d=\frac{h}{4}$
D. $d=2 h$

Answer: a

D View Text Solution

71. A rope of 1 cm in diameter breaks if tension
in it exceeds 500 N the maxmum tension that
may be given to a smilar rope of diameter 2
cm is
A. 2000 N
B. 1000 N
C. 500 N
D. 250 N

Answer: a

D View Text Solution
72. The length and diameter of a metal wire is doubled the fundamental frequency of vibration will change from n to (tension being
kept constant and material of both the wires
is same)

$$
\begin{aligned}
& \text { A. } \frac{n}{4} \\
& \text { B. } \frac{n}{8} \\
& \text { C. } \frac{n}{12} \\
& \text { D. } \frac{n}{16}
\end{aligned}
$$

Answer: a

D View Text Solution
73. A hollow spere of mass M and radius R is
rotating with angular frequency ω it suddenly
stops rotating and 75% of kinetic energy is
converted to heat if s is the speicific heat of
the material in j / kg k then rise in temperature of the spere is (MI of hollow sphere $=\frac{2}{3} M R^{2}$

$$
\begin{aligned}
& \text { A. } \frac{R \omega}{4 s} \\
& \text { B. } \frac{R^{2} \omega^{2}}{4 s} \\
& \text { C. } \frac{R \omega}{2 s}
\end{aligned}
$$

D. $\frac{R^{2} \omega^{2}}{2 s}$

Answer: b

D View Text Solution

74. A large number of liquid drops each of radius a are merged to form a single sperical drop of radius b the energy released in the process is converted into kinetic energy of the
bigh drop formed the speed of the bigh drop is
[p density of liquid $\mathrm{T}=$ surface tension of
liquid]

$$
\begin{aligned}
& \text { A. }\left[\frac{6 T}{\rho}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{1 / 2} \\
& \text { B. }\left[\frac{6 T}{\rho}\left(\frac{1}{b}-\frac{1}{a}\right)\right]^{1 / 2} \\
& \text { C. }\left[\frac{\rho}{6 T}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{1 / 2} \\
& \text { D. }\left[\frac{\rho}{6 T}\left(\frac{1}{b}-\frac{1}{a}\right)\right]^{-1 / 2}
\end{aligned}
$$

Answer: a

D View Text Solution

75. A black body radiates heat at temperatures
$T_{1} \quad$ and $\quad T_{2}\left(T_{2}>T_{1} \quad\right.$ the \quad frequency corresponding to maxium energy is
A. more at T_{1}
B. more at T_{2}
C. equal for T_{1} and T_{2}
D. independent of T_{1} and T_{2}

Answer: b

D View Text Solution
76. For dimgnetic materials magnetic susceptibility is
A. small and negative
B. small and positive
C. large and negative
D. large and positive

Answer: b

D View Text Solution
77. For balmer series wavelength of first line is
λ_{1} and for brackett series wavelength of first
line is λ_{2} then $\frac{\lambda_{1}}{\lambda_{2}}$ is
A. 0.81
B. 0.162
C. 0.198
D. 0.238

Answer: c

78. The distances of a point on the screen from

 two slits in biprism experiment is $1.8 \times 10^{5} \mathrm{~m}$ and $1.23 \times 10^{5} \mathrm{~m}$ if wavelength of light used is $6000 \AA \AA$ then fringe formed at that point isA. 10th bright
B. 10 th dark
C. 9th bright
D. 9th dark

Answer: c

79. Same current is flowing in two AC circuits
first contains only inductance and second
contains only capacitance if frequency of AC is
increased for both the current will
A. increase in first circuit and decrease in
second
B. increase in both circuits
C. decrease in both circuits

D. decrease in first circuit and increase in

second

Answer: c

D View Text Solution

80. The differeence in the effective capacity of
two similar capacitor when joined in series
and then in parallel is $6 \mu \mathrm{~F}$ the capacity of each capacitor is
A. $2 \mu F$
B. $4 \mu F$
C. $8 \mu F$
D. $16 \mu F$

Answer: a

D View Text Solution
81. Which logic gate produces LOW output when any of the inputs in HIGH
A. AND
B. OR

C. NAND

D. NOR

Answer: b

D View Text Solution

82. An electron of mass m and charge q is accelerated from rest in a uniform electric field
of strength E the velocity acquired by it as it travels a distance I is
A. $\left[\frac{2 E q l}{m}\right]^{1 / 2}$
B. $\left[\frac{2 E q}{m I}\right]^{1 / 2}$
C. $\left[\frac{2 E m}{q l}\right]^{1 / 2}$
D. $\left[\frac{E q}{m I}\right]^{1 / 2}$

Answer: a
83. A light is travelling from air a medium the
velocity of light in a medium is reduced to to
0.75 times the velocity n air assume that angle of incidence I is very small the deviation of the ray is
A. i
B. $\frac{i}{3}$
C. $\frac{i}{4}$
D. $\frac{3 i}{4}$

- View Text Solution

84. The electric field intensity at point near and outside the surface of a charged conductor of any shate is E_{1} the elecric field intensity due to uniformly charged conductor of any shape is E_{1} the electric field intensity due ot uniformly charged infinite thin plane sheet is E_{2} the relation between E_{1} and E_{2} is

$$
\text { A. } 2 E_{1}=E_{2}
$$

$$
\text { B. } E_{1}=E_{2}
$$

C. $E_{1}=2 E_{2}$

$$
\text { D. } E_{1}=4 E_{1}
$$

Answer: b

D View Text Solution

85. Sensivitivity of a moving coil galvanometer
can be increased by
A. decreasing the number of turns of coil
B. increasing the number of turns of coil
C. decreasing the area of a coil
D. by using a weak magnet

Answer: c

D View Text Solution

86. For the hydrogen atom the energy of radiation emitted in the transitation from 4th excited state
to 2nd exicited state according to Bohr 's theory is
A. 0.57 eV
B. 0.667 eV
C. 0.967 eV
D. 1.267 eV

Answer: d

D View Text Solution

87. Two coherent monochromatic light beams
of intensities 4/ and 9/ are superimosed the
maxmum and minimum possible intenties in
the resulting beam are
A. 31 and 21
B. 9l and 5I
C. 16 and 31
D. 25 I and I

Answer: a
(D) View Text Solution
88. The resistances in left and right gap of a meter brigdge are 20ω and 30ω respecitively when the resistance in the left gap is reduced to half its value then balance point shifts by
A. 15 cm to the right
B. 15 cm to the left
C. 20 cm to the right
D. 20 cm to the left

Answer: a

89. For the same angle of incidence the angles
fo refreaction in media P, Q, R and S are
$50^{\circ}, 40^{\circ}, 30^{\circ}, 20^{\circ}$ respectively the speed of
lights is minimum in medium
A. P
B. Q
C. R
D. S

Answer: c

D View Text Solution

90. The process of regaining of information
from carrier wave at the receiver is termed as
A. demodulation
B. modulation
C. attenuation
D. amplification

Answer: c

D View Text Solution

91. A potentiometer wire of length 10 m is
connected in series with a battery the emf of a
cell balances against 250 cm length of wire if
length of potentiometer wire is increased by 1
m then new balancing length of wire will be
A. 2.00 m
B. 2.25 m

C. 2.50 m

D. 2.75 m

Answer: a

D View Text Solution

92. Two coils A and B have mutual inductance
2×10^{2} henry if the current in he primary is
$\mathrm{i}=5 \sin 10^{\pi} \mathrm{t}$ then the maximum value of emf
induced in coil B is
A. π volt
B. $\frac{\pi}{2}$ volt
C. $\frac{\pi}{3}$ volt
D. $\frac{\pi}{4}$ volt

Answer: c

D View Text Solution
93. For a transitor the current ratio $\alpha_{D C}$ is $69 / 70$ the current gain $\beta_{D C}$ is
A. 66
B. 67
C. 69
D. 71

Answer: d

D View Text Solution

94. In young double slit experiment the ratio
of intentsities of bright and dark bands is 16
A. the ratio of their amplitudes is 5
B. intensities of individual sources are 25
and 9 units respiectively
C. the ratio of their amplitudes is 4
D. intensities of individual sources are 4 and 3 units respectively

Answer: a

D View Text Solution

95. A range of galvanometer is V when 50Ω
resistance is connected is connected in series
its range gets doubled when 500Ω resistance is connected in series galvanometer resistance is
A. 100ω
B. 200ω
C. 300ω
D. 400ω
96. The capacity of a parallel plate air capacitor is $2 \mu F$ and voltage beteen the plates is changing at the rate of $3 \mathrm{v} / \mathrm{s}$ the displacement current in the capacitor is
A. $2 \mu \mathrm{~A}$
B. $3 \mu \mathrm{~A}$
C. $5 \mu A$
D. $6 \mu \mathrm{~A}$

Answer: a

D View Text Solution

97. A capacitor $C_{1}=4 \mu \mathrm{~F}$ is connected is series with another capacitor $C_{2}=1 \mu \mathrm{~F}$ the combination is connected across DC source of 200 V the ratio of potential across C_{2} to C_{1} is
A. $2: 1$
B. $4: 1$
C. $8: 1$

D. $16: 1$

Answer: a

D View Text Solution

98. When monochromatic light of wavelength
λ is incident on a metallic surface the stopping potential for photoelectric current is $3 V_{0}$ when same surface is illuminated with
light of waelength 2λ the stopping potential is V_{0}

The threshold wavelength for this surface when photoelectric effect takes place is
A. λ
B. 2λ
C. 3λ
D. 4λ

Answer: d

D View Text Solution
99. A coil carrying current I has radius r and
number of turns n it is rewound so that radis
of new coil is $\frac{r}{4}$ and it carries current I the ratio fo magenic moment of new coil to that of original coil is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$
100. The de Broglie wavelength λ of a particle
A. is proportional to mass
B. is proportional to impluse
C. is inversely proportional to impulse
D. does not depend on impulse

Answer: a

Chemistry

1. If average velocity of a sample of gas molecules at 300 K is $5 \mathrm{cms}^{-1}$, what is RMS
velocity of same sample of gas molecules at the same temperatu
$\alpha: u: v=1: 1.224: 1.127)$
A. $6.112 \mathrm{~cm} / \mathrm{s}$
B. $4.605 \mathrm{~cm} / \mathrm{s}$
C. $4.085 \mathrm{~cm} / \mathrm{s}$
D. $5.430 \mathrm{~cm} / \mathrm{s}$

Answer: D

D View Text Solution

