©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MOCK TEST 1

Mcqs

1. An iron rod of $0 \cdot 2 \mathrm{~cm}^{2}$ cross-sectional area
is subjected to a magnetising field of
$1200 \mathrm{Am}^{-1}$. The suscaptibility of iron is 599 .
Find the permeability and the magnetic flux produced.

A. $0.904 \times 10^{-5} W b$
B. $1.81 \times 10^{-5} \mathrm{~Wb}$
C. $2.34 \times 10^{-5} W b$
D. $5.43 \times 10^{-5} \mathrm{~Wb}$

Answer: B

- Watch Video Solution

2. IN a new system of units called star units, 1
$\mathrm{kg}^{*}=10 \mathrm{~kg}, 1 \mathrm{~m}^{*}=1 \mathrm{~km}$ and $1 \mathrm{~s}^{*}=1$ minute, what
will be the value of $1 J$ of energy in the new system?
A. $2.4 \times 10^{-5} J^{*}$
B. $3.6 \times 10^{-4} J^{*}$
C. $4.2 \times 10^{-3} J^{*}$
D. $4.2 \times 10^{2} J^{*}$

Answer: B

D Watch Video Solution
3. The photoelectric threshold for a certain metal surface is $3600 \AA$. If themeal surface is irradiated by a wavelength of $1100 \AA$, the kinetic energy of the emitted photoelectrons is
A. 1.1 eV
B. 2 eV
C. 2.3 eV
D. 7.8 eV

Answer: D

D Watch Video Solution

4. According to Bohr's theory, the radius of the nth Bohr orbit of a hydrogen like atom of atomic number Z is proportional to
A. $\frac{Z^{2}}{n^{2}}$
B. $\frac{Z}{n}$
C. $\frac{n}{Z}$
D. $\frac{n^{2}}{Z}$

Answer: D

- Watch Video Solution

5. 1 Curie is equal to.
A. 10^{6} disintegrations per second
B. 1 disintegration per second
C. 3.7×10^{7} disintegrations per second
D. 3.7×10^{10} disintegrations per second
6. If the area to be covered for TV telecast is doubles then height of transmitting antenna
(TV tower) will have to be:
A. doubled
B. halved
C. quadrupled
D. kept unchanged
7. A car turns a corner on a slippery road at a speed of $12 \mathrm{~ms}^{-1}$. If the coefficient of friction is 0.4 , the (in m) in which the car turns is
A. 72
B. 36
C. 18
D. 9
8. The acceleration due to gravity on the earth of radius R_{e} is g_{e} and that on moon of radius
R_{m} is g_{m}. The ratio of the masses of the earth and moon is given by
A. $\frac{g_{e}}{g_{m}} \sqrt{\left(\frac{R_{e}}{R_{m}}\right)}$
B. $\frac{g_{e}}{g_{m}} \cdot \frac{R_{e}}{R_{m}}$
C. $\frac{g_{e}^{2}}{g_{m}^{2}} \times \frac{R_{e}}{R_{m}}$
D. $\frac{g_{e}}{g_{m}} \times \frac{R_{e}^{2}}{R_{m}^{2}}$

Answer: D

D Watch Video Solution

9. A wheel is rotating at 900 rpm about its
axis. When the power is cut off, it comes to
rest in 1 min . The angular retardation (in rad

$$
\left.s^{-2}\right) \text { is }
$$

A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$

D. $\frac{\pi}{8}$

Answer: A

D Watch Video Solution

10. The total energy of the body executing

SHM is E. the, the kinetic energy when the displacement is half of the amplitude is
A. $\frac{E}{2}$
B. $\frac{E}{4}$
C. $3 \frac{E}{4}$
D. $\frac{\sqrt{4}}{4} E$

Answer: C

D Watch Video Solution

11. The component of vector $A=2 \hat{i}+3 \hat{j}$ along the vector $\hat{i}+\hat{j}$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{3}{\sqrt{2}}
\end{aligned}
$$

> C. $\frac{5}{\sqrt{2}}$
> D. $\frac{7}{\sqrt{2}}$

Answer: C

- Watch Video Solution

12. A ball of mass 0.2 kg rests on a vertical post of height 5 m . A bullet of mass 0.01 kg , travelling with a velocity $\mathrm{v} \mathrm{m} / \mathrm{s}$ in a horizontal direction, hits the centre of the ball. After the collision, the ball and ullet travel
independently. The ball hits the ground at a distance of 20 m and the bullet at a distance of 100 m from the foot of the post. the initial velocity v of the bullet is

A. $250 \mathrm{~m} / \mathrm{s}$
B. $250 \sqrt{2} m / s$

C. $400 \mathrm{~m} / \mathrm{s}$

D. $500 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

13. A stress of $3.18 \times 10^{8} \mathrm{Nm}^{-2}$ is applied to
a steel rod of length 1 m along its length, its
Young's modulus is $2 \times 10^{11} \mathrm{Nm}^{-2}$. Then the elongation in mm produced in the rod, is
A. 3.18
B. 6.36
C. 5.18
D. 1.59

Answer: D

D Watch Video Solution

14. Prove that if two bubbles of radii r_{1} and r_{2} coalesce isothermally in vacuum then the radius of new bubble will be $r=\sqrt{r_{1}^{2}+r_{2}^{2}}$
A. $R=\left(r_{1}+r_{2}\right) / 2$
B. $R=\left[r_{1} r_{2} /\left(r_{1}-r_{2}\right)\right]$
C. $R=\sqrt{\left(r_{1}^{2}+r_{2}^{2}\right)}$
D. $R=r_{1}+r_{2}$

Answer: B

D Watch Video Solution

15. A transverse wave is derscried by the equation $\quad y=y_{0} \sin 2 \pi\left(f t-\frac{x}{\lambda}\right) . \quad$ The
maximum particle velocity is equal to four times the wave velocity if :-
A. $y_{0} \pi$
B. $\frac{y_{0} \pi}{2}$
C. $2 y_{0} \pi$
D. $15 y_{0} \pi$

Answer: B
(Watch Video Solution
16. The extension in a string, obeying Hooke's
law, is x. The speed of sound in the stretched
string is v. If the extension in the string is increased to $1.5 x$, the speed of sound will be :-
A. 15 x
B. 1 x
C. 0.5 x
D. $2 x$

Answer: A

17. Which of the following quantities is zero on an average for the molecules of an ideal gas in equilibrium?
A. Kinetic energy
B. Momentum
C. Density
D. Speed

Answer: B
18. What work will be done, when 3 moles of an
ideal gas are compreseed to half the initial
volume at a constant temperature of 300 K ?
A. $-5177 J$
B. 5000 J
C. $5177 J$
D. $-5000 J$

Answer: A

- Watch Video Solution

19. Two coherent monochromatic light beams
of intensities I and 4 I are superposed. The maximum and minimum possible intensities in the resulting beam are
A. 51 and 41
B. 51 and 31
C. 9 I and I
D. 91 and 31

Answer: C

D Watch Video Solution

20. The sodium yellow doubled has
wavelength $5890 \AA$ and $\lambda \AA(\lambda \gg 5890 \AA)$
and resolving power of a grating to resolve
these lines is 982 , then value of λ is
A. $5896 \AA$
B. $5880 \AA$
C. $5869 \AA$

D. $5876 \AA$

Answer: A

D Watch Video Solution

21. A cylinderical cavity of diameter a exists inside a cylinder of diameter 2 a as shown in
the figure. Both the cylinder and the cavity are infinitely long. A uniform current density J
flows along the length. If the magnitude of the magnetic field at the point P is given by
$\frac{N}{12} \mu_{0} a J$, then the value of N is

A. 5
B. 6
C. 7
D. 4

Answer: A

- Watch Video Solution

22. What work must be done to rotate an electricdipole thurgh an angle θ with the electric field, if an electric dipole of moment P is placed in an uniform electric field E with P parallel to E ?
A. $W=p E(1-\cos \theta)$

$$
\text { B. } W=p E(1+\cos \theta)
$$

C. $W=2 p E(1-\cos \theta)$

D. none of these

Answer: A

D Watch Video Solution

23. Angle between equipotential surface and
lines of force is
A. 45°
B. 90°
C. 0°
D. 180°

Answer: B

D Watch Video Solution

24. A $5^{\circ} \mathrm{C}$ rise in the temperature is observed
in a conductor by passing some current. When
the current is doubled, then rise in
temperature will be equal to
A. 20°
B. $16^{\circ} \mathrm{C}$
C. $12^{\circ} C$
D. $10^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

25.

There is a circular tube in a vertical plane. Two
liquids which do not mix and of densiities
d_{1} and d_{2} are filled I the tube. Each liquid subtends 90° angle at centre. Radius joining
their interface makes an angle α with vertical.

Ratio d_{1} / d_{2} is
A. $\frac{1+\sin \alpha}{1-\sin \alpha}$
B. $\frac{1+\cos \alpha}{1-\cos \alpha}$
C. $\frac{1+\tan \alpha}{1-\tan \alpha}$
D. $\frac{1+\sin \alpha}{1-\cos \alpha}$

Answer: C

D Watch Video Solution

26. Which of the following expression represents the relation between orbital magnetic moment and orbital angular momentum of an electron?

$$
\begin{aligned}
& \text { A. } \mu_{\mathrm{orb}}=-\frac{2 m_{e}}{e} L_{\mathrm{orb}} \\
& \text { B. } \mu_{\mathrm{orb}}=-2 m_{e} L_{\mathrm{orb}} \\
& \text { C. } \mu_{\mathrm{orb}}=\frac{e}{2 m_{e}} L_{\mathrm{orb}} \\
& \text { D. } \mu_{\mathrm{orb}}=\frac{e}{2 m_{e}} L_{\mathrm{orb}}
\end{aligned}
$$

Answer: C

27. An idduced emf is produced when a magnet is plunged into a coil. The magnitude of the induced emf is independent of
A. the strength of the magnetic
B. the speed of the magnetic
C. the resistance of the coil
D. the number of turns in the coil
28. The total energy of an electron in the nth orbit of the hydrogen atom is proportional to
A. n
B. $1 / \mathrm{n}$
C. $-1 / n^{2}$
D. $1 / n^{2}$

Answer: C

29. At some instant, a radioactive sample S_{1}
having an activity $5 \mu C i$ has twice the number
of nuclei as another sample S_{2} which has an
activity of $10 \mu \mathrm{Ci}$. The half lives of S_{1} and S_{2}
are :
A. 0.25
B. 0.75
C. 4
D. 2

Answer: C

D Watch Video Solution

30. The output of the combination of the gates shown is

A. $(\overline{A+(\overline{(A . B})}))$
B. $(A . B)+(\bar{A} \cdot \bar{B})$

C. $(A+B) \cdot(\overline{A . B})$
 D. $(A+B)(\bar{A}+\bar{B})$

Answer: A

D Watch Video Solution

31. A 1000 kHz carrier wave is modulated by an audio signal of frequency range $100-5000 \mathrm{~Hz}$.

Then, the width of channel (in kHz) is
A. 5
B. 10
C. 20
D. 50

Answer: B

D Watch Video Solution

32. A light ray travelling in glass medium is incident of glass- air interface at an angle of incidence θ. The reflected (R) and transmitted
(T) intensities, both as function of θ, are plotted The correct sketch is

Answer: C

- Watch Video Solution

33. If the change in the value of g at a height h above the surface of the earth is the same as at a depth x below it, then (both x and h being much smaller than the radius of the earth)
A. $x=h$
B. $x=2 h$
C. $x=h / 2$
D. $x=h^{2}$.

Answer: B

D Watch Video Solution

34. The moment of inertia of a body about a given axis is $1.2 \mathrm{kgm}^{2}$. Initially, the body is at rest. In order to produce a rotational $K E$ of 1500 J , for how much duration, an acceleration of $25 \mathrm{rads}^{-2}$ must be applied about that axis ?
A. 4 s
B. 2s
C. 8 s
D. 10 s

Answer: B

D Watch Video Solution

35. When a particle oscillates simple harmonically, its kinetic energy varies periodically. If frequency of the particle is n, the frequency of the kinetic energy is
A. $4 n$
B. n
C. 2 n
D. $\mathrm{n} / 2$

Answer: C

- Watch Video Solution

36. The following four wires of length L and radius r are made of the same material. Which
of these will have the largest extension, when the same tension is applied?
A. $L=50 \mathrm{~cm}, \mathrm{r}=0.25 \mathrm{~mm}$
B. $L=100 \mathrm{~cm}, r=0.5 \mathrm{~mm}$
C. $L=200 \mathrm{~cm}, r=1 \mathrm{~mm}$
D. $L=300 \mathrm{~cm}, r=1.5 \mathrm{~mm}$

Answer: A
(Watch Video Solution
37. A body subjected to strain a number of times does not obey Hook's law due to
A. yield point
B. permanent state
C. elastic fatigue
D. breaking stress

Answer: A
(Watch Video Solution
38. The work done in blowing a bubble of volume V is W, then what is the work done in blowing a soap bubble of volume $2 V$?
A. $(2)^{1 / 3} W$
B. $2 W$
C. $(4)^{1 / 3} W$
D. $4 W$

Answer: C

39. Along a stretched wire a transverse wave passes with speed $3000 \mathrm{~m} / \mathrm{s}$. If the tension in the wire increased four times, then the velocity of the wave is
A. $1500 m s^{-1}$
B. $3000 \mathrm{~ms}^{-1}$
C. $6000 \mathrm{~ms}^{-1}$
D. $9000 \mathrm{~ms}^{-1}$

Answer: C

40. A boy watches a jet plane flying from north to south. When the jet is just seen above his head, the sound of jet appears to reach him makin some angle with horizontal from north.If the velocity of jet is $v / 2$, then find the angle.
A. 60°
B. 30°
C. 45°

D. 15°

Answer: A

D Watch Video Solution

41. Some gas at 300 K is enclosed in a container. Now the container is placed on a
fast moving train. While the train is in motion, the temperature of the gas
A. rises above 300 K
B. fails below 300 K
C. remains unchanged
D. becomes unsteady

Answer: C

D Watch Video Solution

42. In Young's double slit experiment with monochromatic light of wavelength 600 nm , the distance between slits is $10^{-3} \mathrm{~m}$. For changing fringe width by $3 \times 10^{-5} m$
A. the screen is moved away from the slits
by 5 cm
B. the screen is moved by 5 cm towards the slits
C. the screen is moved by 3 cm towards the slits

D. both (a) and (b) are correct.

Answer: D

43. A transparent solid cylinderical rod has a refractive index of $2 \sqrt{3}$. It is surrounded by air.

A light ray is incident at the mid-point of one end of the rod as shown in the figure. The incident angle θ for which the light ray grazes along the wall of the rod is

A. $\sin ^{-1}\left(\frac{1}{2}\right)$
B. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
C. $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
D. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Answer: D

D Watch Video Solution

44. n identical coherent waves each with the same initial phase arrive at a point with identical path length. The intensity produced at this point is l_{1}. If the waves are all incoherent, the intensity produced is l_{2}. The ratio $\frac{l_{1}}{l_{2}}$ is
A. $n l_{0}$
B. $n^{2} l_{0}$
C. $n^{3} l_{0}$
D. $\frac{l_{n}}{n}$

Answer: B

D Watch Video Solution

45. An electric dipole, made up of a positive and negative charge, each of 1 mC and placed at a distannce 2 cm apat. If the dipole is placed
in an electric field of $10^{5} N C^{-1}$, then calculate
the maximum torque.

$$
\begin{aligned}
& \text { A. } 2 \times 10^{-3} N-m \\
& \text { В. } 3 \times 10^{-3} N-m \\
& \text { C. } 4 \times 10^{-3} N-m \\
& \text { D. } 2.8 \times 10^{-3} N-m
\end{aligned}
$$

Answer: C
(Watch Video Solution
46. A large glass slabe $(\mu=5 / 3)$ of thickness

8 cm is placed over a point source of light on a plane surface. It is seen that light emerges out of th etop surface fo the slab from a circular area of radius $R \mathrm{~cm}$. What is the value of R ?
A. 6 cm
B. 7 cm
C. 8 cm
D. 9 cm

- Watch Video Solution

47. A charge $\mathrm{q}(\mathrm{gt0})$ moves towards the centre of a circular loop of radius R along its axis. The magnitude of B along the periphery of the loop is

A. zero
B. $\frac{\mu_{0}}{4 \pi} \frac{q v R}{\sqrt{\left(R^{2}+x^{2}\right)^{3}}}$
C. $\frac{q v R}{\sqrt{R^{2}+x^{2}}}$
D. none of these

Answer: B

D Watch Video Solution

48. In a 3-phase full-wave rectifier of 50 Hz supply, the ripple frequency is
A. 300 Hz
B. 50 Hz
C. 400 Hz
D. 600 Hz

Answer: A

- Watch Video Solution

