đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MOCK TEST 3

Mcqs

1. The position vector of a point is
$R=x \hat{i}+y \hat{i}+z \hat{k}$ and another vector is
$A=3 \hat{i}+2 \hat{j}+5^{\wedge} . \quad$ Which of the mathematical relationns is correct?
A. $\nabla(A \cdot R)=0$
B. $\nabla(A \cdot R)=A$
C. $\nabla(A \cdot R)=R$
D. none of these

Answer: B
(Watch Video Solution
2. Inside a bar magnetic the magnetic field lines
A. do not exist
B. depend upon area of cross-section of
the magnetic
C. are from S pole to N pole of the magnet
D. are from N pole to S pole of the magnet

Answer: C

3. A spherical liquid drop of radius R is divided

 into eight equal droplets. If the surface tension is T, then the work done in this process will beA. $2 \pi R^{2} T$
B. $3 \pi R^{2} T$
C. $4 \pi R^{2} T$
D. $2 \pi R T^{2}$

- Watch Video Solution

4. A small bar magnet has a magnetic moment $1.2 A-m^{2}$. The magnetic field at a distance $0.1 m$ on its axis will be:
$\left(\mu_{0}=4 \pi \times 10^{-7} T-m / A\right)$
A. $2.4 \times 10^{5} T$
B. $1.2 \times 10^{4} T$
C. $2.4 \times 10^{-5} \mathrm{~T}$
D. $2.4 \times 10^{-4} T$

Answer: D

D Watch Video Solution

5. A radio can tune into any station in the
7.5 MHz to 12 MHz band. What is the corresponding wavelength of band?
A. $7.5 m-12 m$
B. $25 m-40 m$
C. $75 \mathrm{~m}-120 \mathrm{~m}$
D. $250 \mathrm{~m}-400 \mathrm{~m}$

Answer: B

D Watch Video Solution

6. In Huygen's wave theory, the locus of all points in the same state of vibration is called :
A. a half period zone
B. a wavefront
C. a ray
D. vibrator

Answer: B

D Watch Video Solution

7. In a adiabatic process pressure is increased
by $2 / 3 \%$ if $C_{P} / C_{V}=3 / 2$. Then the volume decreases by about
A. $\frac{4}{9} \%$
B. $\frac{2}{3} \%$
C. 4%
D. $\frac{9}{4} \%$

Answer: A

D Watch Video Solution

8. Two organ pipes are emitting their fundamental notes, when each closed at end, give 5 beat/s if their foundamental frequencies are 250 Hz and 255 Hz . Then find the ratio of their lenghts.

$$
\begin{aligned}
& \text { А. } \frac{49}{50} \\
& \text { B. } \frac{49}{51}
\end{aligned}
$$

c. $\frac{50}{51}$
D. $\frac{51}{50}$

Answer: C

D Watch Video Solution

9. A simple harmonic oscillator has amplitude

A, angular velocity ω, and mass m. Then, average energy in one time period will be

$$
\text { A. } \frac{1}{4} m \omega^{2} A^{2}
$$

B. $\frac{1}{2} m \omega^{2} A^{2}$
C. $m \omega^{2} A$
D. zero

Answer: A

D Watch Video Solution

10. A wire of length L and radius r is fixed at one end. When a stretching force F is applied at free end, the elongation in the wire is l.

When another wire of same material but of
length $2 L$ and radius $2 r$, also fixed at one end
is stretched by a force $2 F$ applied at free end,
then elongation in the second wire will be
A. l
B. $2 l$
C. $l / 2$
D. $4 l$

Answer: A

D Watch Video Solution
11. Three identical balls each of radius 10 cm
and mass 1 kg each are placed touching one another on a horizontal surface. Where is their centre of mass located?
A. On the horizontal surface
B. At the point of contact of any two
spheres
C. At the centre of one ball
D. none of these

- Watch Video Solution

12. A alternating voltage varies with time (t) as
$V=100 \sin (50 \pi t)$. The rms voltage and the frequency respectively, are

$$
\text { A. } \frac{100}{\sqrt{2}} V, 50 H z
$$

B. $100 \mathrm{~V}, 25 \mathrm{~Hz}$
C. $100 \sqrt{2} V, 50 H z$

$$
\text { D. } \frac{100}{\sqrt{2}} V, 25 H z
$$

13. Two satellites are revolving around the earth in circular orbits of same radii. Mass of one satellite is 100 times that of the other.

Then their periods of revolutions are in the ratio
A. $100: 1$
B. 1:100
C. 10:1

D. 1:1

Answer: D

D Watch Video Solution

14. Two rods of different materials having coefficient of thermal expansion α_{1}, α_{2} and
young's modulii Y_{1}, Y_{2} respectively are fixed between two rigid massive walls. The rods are heated such that they undergo the same increase in temperature. There is no bending
of rods. If $\alpha_{1}: \alpha_{2}=2: 3$, the thermal stresses
developed in the two rods are equal provided
$Y_{1}: Y_{2}$ is equal to
A. $2: 3$
B. $1: 1$
C. $3: 2$
D. $4: 9$

Answer: C

D Watch Video Solution
15. A point mass of 1 kg collides elastically with
a stationary point mass of 5 kg . After their collision, the 1 kg , mass reverses its direction and moves with a speed of $2 m s^{-1}$. Which of the following statement(s) is (are) correct for the system of these two masses?
A. Total momentum of the system is 3

$$
k g-m s^{-1}
$$

B. momentum of 5 kg mass after collision is

$$
4 k g-m s^{-1}
$$

C. Kinetic energy of the centre of mass is

 0.75 J
D. Total kinetic energy of the system is 4 J .

Answer: B

D Watch Video Solution

16. An organ pipe closed at one end restonates
with a tuning fork of frequencies 180 Hz and
300 Hz it will also resonate with tuning fork of frequencies
A. 360 Hz
B. 420 Hz
C. 480 Hz
D. 540 Hz

Answer: B

D Watch Video Solution
17. If a gas is compressed adiabatically
A. the internal energy of gas increases
B. the internal energy of gas decreases
C. the internal energy of gas does not change
D. the work done is positive

Answer: A

D Watch Video Solution

18. A metallic surface is irradiated by a monochromatic light of frequency v_{1} and stopping potential is found to be V_{1}. If the
light of frequency v_{2} irradiates the surface, the stopping potential will be

$$
\begin{aligned}
& \text { A. } V_{1}-\frac{h}{e}\left(v_{2}+v_{1}\right) \\
& \text { B. } V_{1}+\frac{h}{e}\left(v_{1}-v_{2}\right) \\
& \text { C. } V_{1}+\frac{h}{e}\left(v_{2}-v_{1}\right) \\
& \text { D. } V_{1}-\frac{h}{2 e}\left(v_{1}-v_{2}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

19. A semicirxular wire of radius a having λ as
charge per unit length Is shown in the figure.

Find the electric potential at the centre of the semicircular
wire.

A. $\frac{\lambda}{\varepsilon_{0}}$
B. $\frac{\lambda}{4 \pi \varepsilon_{0} R}$
C. $\frac{\lambda}{4 \varepsilon_{0}}$

D. none of these

Answer: C

D Watch Video Solution

20. A ray $O P$ of monochromatic light is
incident on the face $A B$ of prism $A B C D$ mear
vertex B at an incident angle of 60degree (see
figure). If the refractive index of the material of
the prism is $\sqrt{3}$, which of the following is (are)
are correct?`

A. The ray gets totally internally reflected
at face CD
B. the ray comes out through face $A D$
C. The angle between the incident ray and
the emergent ray is 90°

D. the angle between the incident ray and

 the emergent ray is 120°.
Answer: D

D Watch Video Solution

21. The kinetic energy K of a particle moving along a circle of radius R depends on the distance covered a as $K=a s^{2}$. The force acting on the particle is
A. $2 a s^{2} / R$
B. $2 a s\left[1+\left(s^{2} / R^{2}\right)\right]^{1 / 2}$
C. $2 a s$
D. $2 a R^{2} / s$

Answer: B

D Watch Video Solution
22. The motion of a particle varies with time according to the relation
$y=a(\sin \omega t+\cos \omega t)$,then
A. the motion is oscillatory but not SHM
B. the motion is SHM with amplitude a
C. the motion is SHM with amplitude $\sqrt{2 a}$
D. none of these

Answer: C

D Watch Video Solution
23. The equation of a wave travelling on a stretched string is $y=4 \quad \sin$
$2 \pi\left(\frac{t}{0.02}-\frac{x}{100}\right)$
Here, x and y are in cm and t is in second. The speed of wave is
A. $50 \mathrm{~m} / \mathrm{s}$
B. $40 \mathrm{~m} / \mathrm{s}$
C. $50 \mathrm{~cm} / \mathrm{s}$
D. $40 \mathrm{~cm} / \mathrm{s}$

Answer: A

D Watch Video Solution
24. If two slightly, different wavelengths are present in the light used in Young's double-slit experiment, then
A. the sharpness of fringes will increase everywhere (compared to the case when monochromatic light is used)
B. there will be no fringes at all
C. the sharpness of fringes will decrease as
we move away from central fringe
D. the central fringe will be white

Answer: C

D Watch Video Solution

25. A student performed the experiment of
determination of focal length of a concave
mirror by $u-v$ method using an optical bench of length 1.5 meter. The focal length of
the mirror used is 24 cm . The maximum error in the location of the image can be 0.2 cm . The 5 sets of (u, v) values recorded by the student
(in
$(42,56),(48,48),(60,40),(66,33),(78,39)$
The data set (s) that cannot come from experiment and is (are) incorrectly recorded, is (are)
A. $(42,56)$
B. $(48,48)$
C. $(66,32)$
D. $(78,39)$

Answer: D

26. A thin wire of length L is connected to two
adjacent fixed points and carries a current I in
the clockwise direction, as shown in the
figure. When the system is put in a uniform magnetic field of strength B going into the plane of the paper, the wire takes the shape of a circle. The tension in the wire is

$$
\square
$$

$$
\begin{aligned}
& \times \times \times \times \times \times \times \times \\
& \times \times \times \times \times \times \times \times \\
& \times \times \times \times \times \times \times \times \times \\
& \times \times \times \times \times \times \times \times \\
& \times \times \times \times \times \times \times \times
\end{aligned}
$$

A. $I B L$
B. $\frac{l B L}{\pi}$
C. $\frac{I B L}{2 \pi}$
D. $\frac{I B L}{4 \pi}$

Answer: C

D Watch Video Solution

27. An (α)-particle and a proton are both simultaneously projected in opposite direction
into a region of constant magnetic field
perpendicular to the direction of the field.

After some time it is found that the velocity of the (α)-particle has changed in a direction by
45°. Then at this time, the angle between velocity vectors of (α)-particle and proton is
A. 90°
B. 45°
C. $45^{\circ}+90^{\circ}$
D. $\frac{\left(45^{\circ}+90^{\circ}\right)}{2}$

Answer: C
28. What is the electric potential at a point P, distance r from the mid-point of ann electric
dipole of moment $p(=2 a q)$?

A. $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{P \cos \theta}{r^{2}}$
B. $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 P \cos \theta}{r^{3}}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 P \cos \theta}{r^{2}}$

D. none of these

Answer: A

D Watch Video Solution

29. A ball is dropped from a height of 20 m
above the surface of water in a lake. The refractive index of water is $4 / 3$. A fish inside the lake, in the line of fall of the ball, is looking at the ball. At an instant, when the ball is
$12.8 m$ above the water surface, the fish sees
the speed of ball as $\left(g=10 \mathrm{~m} / \mathrm{sec}^{2}\right)$

A. $9 m s^{-1}$
B. $12 m s^{-1}$
C. $16 m s^{-1}$
D. $21.33 m s^{-1}$

Answer: C
(Watch Video Solution
30. Choose the correct statement.
A. The Brewster's angle is independent of
wavelength of light
B. The Brewster's angle is independent
nature of reflecting surface.
C. The Brewster's angle is different for
different wavelengths.
D. Brewster's angle depends on wavelength
but not on the nature of reflected

Answer: C

D Watch Video Solution

31. The real angle of dip, if a magnet is suspended at an angle of 30° to the magnetic meridian and the dip needle makes an angle of 45° with horizontal, is:
A. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. $\tan ^{-1}(\sqrt{3})$
C. $\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right)$
D. $\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$.

Answer: A

D Watch Video Solution

32. A tank is filled with water of density $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and oil of density $9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
.The height of water layer is $1 m$ and that of
the oil layer is $4 m$. The velocity of efflux front an opening in the bottom of the tank is
A. $\sqrt{900 \times 980} \mathrm{~cm} \quad s^{-1}$
B. $\sqrt{1000 \times 980} \mathrm{~cm} s^{-1}$
C. $\sqrt{920 \times 980} \mathrm{~cm} s^{-1}$
D. $\sqrt{950 \times 980} \mathrm{~cm} \mathrm{~s} s^{-1}$

Answer: C

D Watch Video Solution

33. The graph between angle of deviation (δ)
and angle of incidence (i) for a triangular
prism is represented by
A. ${ }_{i \rightarrow}^{\overbrace{i}}$

Answer: C

D Watch Video Solution

34. Two satellites of same are orbiting round the earthh at heights of r_{1} and r_{2} from the centre of earth. Their potential energies are in
the ratio of

$$
\text { A. } r_{2} / r_{1}
$$

B. r_{1} / r_{2}
C. $r_{1} /\left(r_{1}+r_{2}\right)$
D. $r_{2} /\left(r_{1}+r_{2}\right)$

Answer: A

D View Text Solution

35. A body of mass m is movinng in a circlee off radius r with a constant speed v. the work done by the centripetal force in moving the
body over half the circumference of the circle
is
A. $m v^{2} / r$
B. zero
C. $m v^{2} / r$
D. $r^{2} / m v^{2}$

Answer: B
(D) Watch Video Solution
36. A thin circular ring of mass M and radius
R is rotating in a horizontal plane about an
axis vertical to its plane with a constant angular velocity ω. If two objects each of mass
m be attached gently to the opposite ends of
a diameter of the ring, the ring will then rotate with an angular velocity

$$
\begin{aligned}
& \text { A. } \frac{\omega(M-2 m)}{M+2 m} \\
& \text { B. } \omega M(M-m) \\
& \text { C. } \frac{\omega(M+2 m)}{M}
\end{aligned}
$$

D. $\frac{\omega M}{M+2 m}$

Answer: D

D Watch Video Solution

37. A thin rectangular magnet suspended freely has a period of oscillation equal to T.

Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same
field. If its period of oscillation is T^{\prime}, then
ratio $\frac{T^{\prime}}{T}$ is
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{4}$
D. $(1)(2 \sqrt{2})$

Answer: A
38. The plane face of a plano convex lens is
silvered.If μ be the refrative index and R, the radius of curvature of curved suraface, then
system will behave like a concave mirror of curvature
A. μR
B. $\frac{R}{(\mu-1)}$
C. $\frac{R^{2}}{\mu}$
μ
D. $\left[\frac{(\mu+1)}{(\mu-1)}\right] R$

Answer: B

- Watch Video Solution

39. A $6 \times 10^{-4} \mathrm{~F}$ parallel plate air capacitor is
connected to a 500 V battery. When air is
replaced by another dielectric material,
$7.5 \times 10^{-4} \mathrm{C}$ charge flows into the capacitor.
The value of the dielectric constant of the material is
A. 1.5
B. 2
C. 1.0025
D. 3.5

Answer: C

- Watch Video Solution

40. The graph obtained by plotting $\log _{e}(A)$ [A
is the activity of a radioactive sample] against
t (time) out of the following

Answer: B

- Watch Video Solution

41. Water rises in a capillary tube through a
height l. If the tube is inclined to the liquid
surface at 30° the liquid will rise in the tube upto it's length equal to
A. $h / \sqrt{2}$
B. h
C. $\sqrt{2} h$
D. 2 h

Answer: C

