©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

MOCK TEST 4

1. Excess of pressure inside a soap bubble is
A. inversely proportional to its radius
B. directly proportional to its radius
C. directly proportional to square root of
its radius
D. independent of its radius

Answer: A

D Watch Video Solution

2. Point A and B are situated along the extended axis of 2 cm long bar magnet at a distance x and $2 x \mathrm{~cm}$ respectively. From the pole nearer to the points, the ratio of the magnetic field at A and B will be
A. 4: 1 exactly
B. 4:1 approximately
C. 8:1 exactly
D. 8:1 approximately

Answer: D

- Watch Video Solution

3. A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_{c} is varying with time t as $a_{c}=k^{2} r t^{2}$, where k is a constant. The power delivered to the particle by the forces acting on it is :
A. $2 \pi m k^{2} r^{2} t$
B. $m k^{2} r^{2} t$
C. $\frac{\left(m k^{4} r^{2} t^{5}\right)}{3}$

D. zero

Answer: B

D Watch Video Solution

4. One end of uniform wire of length L and of
weight W is attached rigidly to a point in the roof and a weight W_{1} is suspended from its lower end. If s is the area of cross section of
the wire, the stress in the wire at a height (
$3 L / 4)$ from its lower end is
A. $\frac{w_{1}}{S}$
B. $\left(w_{1}+\frac{w}{4}\right) \mathrm{S}$
C. $\left(w_{1}+\frac{3 w}{4}\right) S$
D. $\left(w_{1}+w\right) / S$

Answer: C

D Watch Video Solution

5. In the relation, $P=\frac{\alpha}{\beta} e^{\frac{\alpha Z}{k \theta}} P$ is pressure, Z is distance, k is Boltzmann constant and θ is the
temperature. The dimensional formula of β
will be-
A. $\left[M^{0} L^{2} T^{0}\right]$
B. $\left[M L^{2} T\right]$
C. $\left[M L^{0} T^{-1}\right]$
D. $\left[M L^{2} T^{-1}\right]$

Answer: A

D Watch Video Solution
6. A particle executes $S H M$ with an amplitude
of 10 cm and frequency $2 H z$. At $t=0$, the particle is at a point where potential energy and kinetic energy are same. The equation for its displacement is
A. $0.1 \sin \left(4 \pi t+\frac{\pi}{4}\right)$
B. $0.1 \sin 4 \pi t$
C. $0.1 \cos \left(4 \pi t+\frac{\pi}{4}\right)$
D. none of these

Answer: A
7. The wave travels along a string whose equation is $y=\frac{p^{3}}{p^{2}+(p x-q t)^{2}}$, where $\mathrm{p}=2$ unit and $\mathrm{q}=0.5$ units.

Find the direction of propagation of wave.
A. along +Y -axis
B. along-X-axis
C. along+X-axis
D. none of these

Answer: C

D Watch Video Solution

8. A glass slab $(\mu=1.5)$ of thickness 6 cm is
placed over a paper. What is the shift in the letters?
A. 4 cm
B. 2 cm
C. 1 cm
D. none of these

Answer: B

- Watch Video Solution

9. Image of an object approaching a convex
mirror of radius of curvature 20 m slong its
optical axis is observed to move from $\frac{25}{3} \mathrm{~m}$ to 50 $\frac{50}{7} \mathrm{~m}$ in 30 seconds. What is the speed of the object in km per hour?
A. 3
B. 4
C. 5
D. 6

Answer: A

D Watch Video Solution

10. At what angle must the two forces $(x+y)$
and $(x-y)$ act so that the resultant may be
$\sqrt{\left(x^{2}+y^{2}\right)}:-$

$$
\text { A. } \cos ^{-1}\left[-\frac{\left(x^{2}+y^{2}\right)}{2\left(x^{2}-y^{2}\right)}\right]
$$

B. $\cos ^{-1}\left[\frac{-2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)}\right]$
C. $\cos ^{-1}\left[-\frac{\left(x^{2}+y^{2}\right)}{\left(x^{2}-y^{2}\right)}\right]$
D. $\cos ^{-1}\left[-\frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)}\right]$

Answer: A

D Watch Video Solution

11. In the givenn figure $A B$ is a potentiometer wire of length 10 m and resistance 1Ω with key

K open the balancing length is 5.5 m . however
on closing key K the balancing length reduces
to 5 m . The initial resistance of the cell E_{1} is

A. 0.01Ω
B. 0.1Ω
C. 0.2Ω
D. 1Ω

Answer: B

- Watch Video Solution

12. At a given place where acceleration due to gravity is $g m / \mathrm{sec}^{2}$, a sphere of lead of density $d \mathrm{~kg} / \mathrm{m}^{3}$ is gently released in a column of liquid of density ' ρ ' $k g / \mathrm{m}^{3}$. If $d>\rho$, the sphere will
A. fall vertically with an acceleration

$$
g m s^{-2}
$$

B. fall vertically with no acceleration
C. fall vertically with an acceleration

$$
g\left(\frac{d-\rho}{d}\right)
$$

D. fall vertically with an acceleration $g\left(\frac{\rho}{d}\right)$

Answer: C

D Watch Video Solution

13. The magnitude off magnetic moment of the current loop in the figure is

A. $l a^{1}$
B. $\sqrt{2} l a^{2}$
C. zero
D. none of these

Answer: B

D Watch Video Solution

14. The 90 pF capacitor is connected to a 12 V
battery. How many electrons a transferred
from one plate to another?
A. 1.1×10^{9}
B. 6.9×10^{9}
C. 4×10^{19}
D. 5×10^{19}

Answer: B

D Watch Video Solution

15. Let E_{k} and E_{p} represent kinetic energy
and potential energy respectively of the electron in a hydrogen atom. If the electron transits from the orbit $n=2$ to the orbit $n=1$ and the value of kinetic energy is E_{k}^{\prime} and that of potential energy is $E_{p}{ }^{\prime}$, then

$$
\text { A. } E_{k}^{\prime}=\frac{E_{k}}{2}, E_{p}^{\prime}=2 E_{p}
$$

B. $E_{k}{ }^{\prime}=4 E_{k}, E_{p}{ }^{\prime}=\frac{E_{p}}{4}$
C. $E_{k}{ }^{\prime}=2 E_{k}, E_{p}{ }^{\prime}=\frac{E_{p}}{2}$

$$
\text { D. } E_{k}^{\prime}=\frac{E_{k}}{4}, E_{p}^{\prime}=4 E_{p}
$$

Answer: B

D View Text Solution

16. Light of wavelength λ is incident on a slit of width d. the resulting diffraction pattern is observed on a screen at a distance D. the
linear width of the principal maximum is, then equal to the width of the slit if D equals
A. $\frac{d}{\lambda}$
B. $\frac{2 \lambda}{d}$
C. $\frac{d^{2}}{2 \lambda}$
D. $\frac{2 \lambda^{2}}{d}$

Answer: C
(Watch Video Solution
17. Four molecules of ags have speeds $1,2,3$ and
$4 \mathrm{~km} / \mathrm{s}$. The volue of the root mean square
speed of the gas molecules is

> A. $\frac{1}{2} \sqrt{15} k m s^{-1}$
> B. $\frac{1}{2} \sqrt{10} k m s^{-1}$
> C. $2.5 k m s^{-1}$
> D. $\sqrt{\left(\frac{15}{2}\right)} k m s^{-1}$

Answer: D

18. An elastic string of length 2 m is fixed at its

end. The string starts to vibrate in third overtone with a frequency 1200 Hz . The ratio
of frequency of lower overtone and fundamental is
A. 1
B. 2
C. 3
D. 4

Answer: B
19. A spring of force constant k is cut into two
pieces such that one piece is double the
length of the other. Then the long piece will have a force constant of:
A. $\frac{2}{3} k$
B. $\frac{3}{2} k$
C. $3 k$
D. 6 k

Answer: B

D Watch Video Solution

20. The graph between objecct distance u and
image distance v for lens is givenn beow. The
focal length of the lens is

A. 5 ± 0.1
B. 5 ± 0.05
C. 0.5 ± 0.1
D. 0.5 ± 0.05

Answer: B

D Watch Video Solution
21. A particle moves in the $x y$ plane under the influence of a force such that its linear
$\vec{P}(t)=A[\hat{i} \cos (k t)-\hat{j} \sin (k t)]$, where A
and k are constants. The angle between the
force and momentum is
A. 0°
B. 30°
C. 45°
D. 90°

Answer: D

- Watch Video Solution

22. An infinitely long hollow conducting cylinder with inner radius $\frac{r}{2}$ and outer radius
R carries a uniform current ra density along its length. The magnitude of the magnetic field, $|\vec{B}|$ as a function of the radial distance r from the axis is best represented by
A.

B.

C.

Answer: D

- Watch Video Solution

23. The gravitational force between two
objects is proportional to $1 / R$ (and not as
$1 / R^{2}$) where R is separation between them,
then a particle in circular orbit under such a
force would have its orbital speed v proportional to
A. $\frac{1}{R^{2}}$
B. R^{0}
C. R^{1}
D. $\frac{1}{R}$

Answer: B

D Watch Video Solution
24. A steel wire of length 20 cm and uniform
cross-section $1 \mathrm{~mm}^{2}$ is tied rigidly at both the
ends. If the temperature of the wire is altered
from $40^{\circ} C$ to $20^{\circ} C$, the change in tension.
[Given coefficient of linear expansion of steel
is $1.1 \times 10^{5} .{ }^{\circ} C^{-1}$ and Young's modulus for steel is $2.0 \times 10^{11} \mathrm{Nm}^{-2}$]
A. $2.2 \times 10^{6} N$
B. $16 N$
C. 8 N
D. 44 N

Answer: D

25. If a string is stretched with a weight 4 kg
then the fundamental frequency is equal to

256 Hz . What weight is needed to produce its octave?
A. 4 kg-wt
B. $12 \mathrm{~kg}-\mathrm{wt}$
C. 16 kt-wt
D. $24 \mathrm{~kg}-\mathrm{wt}$
26. Figures shows the vibrations of four air column. The ratio of frequencies $n_{p}: n_{q}: n_{r}: n_{s}$ is

A. $12: 6: 3: 4$
B. $1: 2: 4: 3$
C. $4: 2: 3: 1$
D. $4: 3: 2: 1$

Answer: B

D Watch Video Solution
27. During an isothermal expansion of an ideal
gas
A. its internal energy decreases
B. its internal energy does not change
C. the work done by the gas is equal to the quantity of heat absorbed by it
D. both b. and (c) are correct.

Answer: D

D Watch Video Solution

28. When unpolarised light is incident on a plane glass plate at Brewster's angle, then which of the following statements is correct?
A. Reflected and refracted rays are
completely polarised with their planes of
polarisation parallel to each other
B. Reflected and refracted rays are
completely polarised with their planes of
polarisation perpendicular to each other
C. The reflected light is plane polarised but transmitted light is partially polarised annd are perpendicular to each other

D. the reflected light is partially polarised

 but refracted light is plane polarised.
Answer: C

- Watch Video Solution

29. A particle of mass $4 m$ at rest decays into two particles of masses m and $3 m$ having nonzero velocities. The ratio of the de Broglie wavelengths of the particles 1 and 2 is
A. $\frac{m_{1}}{m_{2}}$
B. $\frac{m_{2}}{m_{1}}$
C. 1
D. $\frac{\sqrt{m_{2}}}{\sqrt{m_{1}}}$

Answer: C

- Watch Video Solution

30. What is the electric potential at a point distance 100 cm from the centre of an electric
dipole of moment $2 \times 10^{-4} C-m$ on a line laking an angle of 60° ?

A. $7 \times 10^{5} \mathrm{~V}$
B. $8 \times 10^{5} \mathrm{~V}$
C. $9 \times 10^{5} \mathrm{~V}$
D. $10 \times 10^{5} \mathrm{~V}$

Answer: C

D Watch Video Solution
31. A charged particle of mass m and charge q is accelerated through a potential difference of V volts. It enters a region of uniform magnetic field which is directed perpendicular to the direction of motion of the particle. Find the radius of circular path moved by the particle in magnetic field.
A. $\sqrt{\left(\frac{V m}{q B^{2}}\right)}$
B. $\frac{2 V m}{q B^{2}}$
C. $\sqrt{2 q V_{m}}\left(\frac{1}{B}\right)$

$$
\text { D. } \sqrt{\left(\frac{V m}{q}\right)}\left(\frac{1}{B}\right)
$$

Answer: C

D Watch Video Solution

32. A charge Q is uniformly distributed over the surface of two conducting concentric spheres of radii R and r (Rgtr). Then, potential at common centre of these spheres is

$$
\text { A. } \frac{k Q(R+r)}{R r}
$$

B. $\frac{k Q(R+r)}{\left(R^{2}+r^{2}\right)}$
C. $\frac{k Q}{\sqrt{R^{2}+r^{2}}}$
D. $k Q\left(\frac{1}{R}-\frac{1}{r}\right)$

Answer: B

D Watch Video Solution

33. The axes of the polariser and analyser are inclined to each other at 60°. If the amplitude of polarised light emergent through analyser
is A. The amplitude of unpolarised light incident polariser is
A. $\frac{a}{2}$
B. $\frac{a}{\sqrt{2}}$
C. $\left(\frac{\sqrt{\sqrt{3}}}{2}\right)$ a
D. $\left(\frac{3}{4}\right) a$

Answer: A

- Watch Video Solution

34. A car is fitted with a convex side-view mirror of focal length 20 cm . A second car
2.8 m behind the first car is overtaking the first
car at a relative speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$. The speed of
the image of the second car as seen in the mrror of the first one is:

$$
\begin{aligned}
& \text { A. } \frac{1}{15} \mathrm{~m} / \mathrm{s} \\
& \text { B. } 10 \mathrm{~m} / \mathrm{s} \\
& \text { C. } 15 \mathrm{~m} / \mathrm{s} \\
& \text { D. } \frac{1}{10} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: A

D Watch Video Solution

35. A closed organ pipe and an open organ
pipe of same length produce 4 beats when
they are set into vibrations simultaneously. If
the length of each of them were twice their initial lengths, the number of beats produced will be
A. 2
B. 4
C. 1
D. 8

Answer: A

D Watch Video Solution

36. A metal bar of length L and area of crosssection A is clamped between two rigid supports. For the material of the rod. It

Young's modulus is Y and Coefficient if linear
expansion is α. If the temperature of the rod is
increased by $\Delta t^{\circ} C$, the force exerted by the rod on the supports is
A. $\mathrm{Y} \mathrm{A} \alpha \mathrm{t}$
B. Y A L t
C. YA $\alpha \mathrm{Lt}$
D. T $\alpha \mathrm{Lt} / \mathrm{A}$

Answer: A

D Watch Video Solution
37. If M be the mass of the earth, R its radius
(assumed spherical) and G gravitational constant, then the amount of work that must be done on a body of mass m, so that it completely escapes from the gravity of the earth of the earth is given by
A. $\frac{G m M}{R}$
B. $\frac{G m M}{2 R}$
C. $\frac{3 G m M}{2 R}$
D. $\frac{4 G m M}{3 R}$

Answer: A

- Watch Video Solution

38. The needle of a deflection galvanometer shows a deflection of 60° due to a short bar magnet at a certain distance in \tan A position.

If the distance is doubled, the deflection is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left[\frac{\sqrt{3}}{2}\right] \\
& \text { B. } \cos ^{-1}\left[\frac{\sqrt{3}}{8}\right]
\end{aligned}
$$

C. $\tan ^{-1}\left[\frac{\sqrt{3}}{8}\right]$
D. $\cot ^{-1}\left[\frac{\sqrt{3}}{8}\right]$

Answer: C

D Watch Video Solution

39. Two bodies A and B initially at rest are attrached towards each other due to gravitation. Given that A is much heavier than
B. Which of the followings correctly describes
the relative motion of the centre of mass of the bodies ?
A. It moves towards A
B. It moves towards B
C. It moves perpendicular to the line joining the particles
D. It remains at rest w.r.t A as well as B.

Answer: D

40. In an ac circuit $l=100 \sin 200 \pi t$. The time

 required for the current to achieve its peak value will be$$
\begin{aligned}
& \text { A. } \frac{1}{300} s \\
& \text { B. } \frac{1}{400} s \\
& \text { C. } \frac{1}{100} s \\
& \text { D. } \frac{1}{200} s
\end{aligned}
$$

Answer: B
41. The combination of the gates shown in the
figure results in

A. OR gate
B. AND gate
C. NOR gate
D. XOR gate

- Watch Video Solution

42. Huygen's principle of secondary waves
A. allows us to find the focal length of a
thick lens
B. is a geometrical method to find a
wavelength
C. is used to determine the velocity of light
D. is used to explain polarisation

Answer: B

D Watch Video Solution

43. A modulated carrier wave has maximum
and minimum amplitudes of $800 \mathrm{~m} v$ and 200
m V. What is the percentage modulation?
A. 0.2
B. 0.8
C. 1
D. 1.25

Answer: B

D Watch Video Solution

44. A positively charged ball hangs from a long
silk thread. Electric filed at a certain point (at
the same horizontal level of ball) due to this
charge is E . Let us put a positive test charge q_{0}
at this point and measure F / q_{0} on this
charges. then E
A. $>\frac{F}{q_{0}}$
B. $=\frac{F}{q_{0}}$
C. $<\frac{F}{q_{0}}$
D. none of these

Answer: A

D Watch Video Solution

45. A frame made of metalic wire enclosing a surface area A is covered with a soap film. If the area of the frame of metallic wire is
reduced by 50% the energy of the soap film
will be changed by:
A. 1
B. 0.75
C. 0.5
D. 0.25

Answer: C
(Watch Video Solution

