©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 01

Paper 1 Physics Chemistry

1. The physical quantity for which magnitude and direction remains constant in unifrom

circlar motion is

A. tangential velcoity
B. angular momentum
C. liner momentum
D. centrifugal force

Answer: B
2. The tension in the string revolving in a vertical circle with a mass m at the end which is at the lowest position

$$
\begin{aligned}
& \text { A. } \frac{m v^{2}}{r} \\
& \text { B. } \frac{m v^{2}}{r}-m g \\
& \text { C. } \frac{m v^{2}}{r}+m g \\
& \text { D. } m g
\end{aligned}
$$

Answer: C

- Watch Video Solution

3. Scaler quantities have
A. only magnitude
B. only direction
C. Both magnitude and direction

D. none of these

Answer: A
4. A satellite moves around the earth in a circular orbit with speed v. If m is the mass of the satellite, its total energy is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m v^{2} \\
& \text { B. }-\frac{1}{2} m v^{2} \\
& \text { C. } \frac{3}{2} m v^{2} \\
& \text { D. } \frac{1}{2}(P E)
\end{aligned}
$$

Answer: D

D Watch Video Solution
5. Elastic limit of a particular steel wire is
$2.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ maximum strain to which
the wire be subjected without losing elasticity
is $\left(Y_{\text {steel }}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)$
A. 0.5
B. 0.25
C. 0.125
D. 1.25

Answer: C

6. Vector quantities have

A. only magnitude
B. only direction
C. Both magnitude and direction
D. none of these

Answer: C

7. Consider a vector $\vec{F}=4 \hat{i}-3 \hat{j}$. Another vector that is perpendicular to \vec{F} is
A. $4 \hat{i}+3 \hat{j}$
B. $6 \hat{i}$
C. $7 \hat{k}$

$$
\text { D. } 3 \hat{i}-4 \hat{j}
$$

Answer: C

- Watch Video Solution

8. Equation of displacement of a harmonic oscillator is $x=15 \sin 20 \pi t$, amplitude and angular velocity are respectively
A. 15 m and $20 \pi \mathrm{rad} / \mathrm{s}$
B. $20 \pi \mathrm{rad} / \mathrm{s}$ and 15 m
C. 15 m and $10 \pi \mathrm{rad} / \mathrm{s}$
D. 15 m and $20 \mathrm{rad} / \mathrm{s}$

Answer: A

- Watch Video Solution

9. The radius of gyration of a body depends

upon

A. mass of the body
B. nature of distribution of mass
C. axis of rotation
D. none of the above

Answer: A
(D) Watch Video Solution
10. The length of a simple pendulum is increased by 1%. Its time period will
A. increased by 1%
B. decreased by 1%
C. increased by 0.5\%
D. decreased by 0.5\%

Answer: C

D Watch Video Solution
11. The formula for height of a liquid column
(h) in a capillary tube is

$$
\begin{aligned}
& \text { A. } h=\frac{2 T}{r p g} \\
& \text { B. } h=\frac{2 T \cos \theta}{r p g} \\
& \text { C. } h=\frac{2 T \sin \theta}{r p g} \\
& \text { D. } h=\frac{T^{2} \cos \theta}{r p g}
\end{aligned}
$$

Answer: B

D Watch Video Solution

12. The period of oscillation of a simple pendulum in the experiment is recorded as $2.63 s, 2.56 s, 2.42 s, 2.71 s$, and $2.80 s$.

Find
the average absolute error.
A. 0.1 s
B. 0.11 s
C. 0.01 s
D. 1.0 s

Answer: B
13. What will be the speed of sound in a perfectly rigid rod?
A. zero
B. infinite
C. $332 \mathrm{~m} / \mathrm{s}$
D. $664 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution
14. In stationary waves, antinodes are the points where there is
A. zero displacement and maximum change in pressure
B. maximum displacement and minimum
change in pressure
C. maximum displacement and maximum
change in pressue
D. none of the above

Answer: A

D Watch Video Solution

15. A uniform wire of linear density 0.004 per
$\mathrm{kg}-\mathrm{m}$, when stretched between two rigid supports, with a tension $3.6 \times 10^{2} \mathrm{~N}$, resonates with a frequency of 420 hz . The next
harmonic frequency with which the wire resonates is 490 Hz . The length of the wire in metre is
A. 1.41
B. 2.41
C. 2.14
D. 3.14

Answer: C

D Watch Video Solution

16. The temperature at which the average speed of the gas molecules is double to that at a temperature of $27^{\circ} \mathrm{C}$ is
A. $54^{\circ} C$
B. $108^{\circ} C$
C. $300^{\circ} C$
D. $327^{\circ} C$

Answer: D

D Watch Video Solution

17. A rope of length 5 m is kept on frictionless
surface and a force of 5 N is applied to one of
its end. Find the tension in the rope at 1 m
from this end
A. 1 N
B. 3 N
C. 4 N
D. 5 N

Answer: C
(Watch Video Solution
18. If distance between the two bodies is
doubled.then the gravitational force between
them will become
A. one-fourth
B. half
C. remains the same
D. double

Answer: A

D Watch Video Solution
19. The simple harmonic vibrations of two
particles
are
$y_{1}=5 \sin (100 t)$ and $y_{2}=4 \cos \left(100 t+\frac{\pi}{4}\right)$.
The phase difference between both particles is

> A. $\frac{\pi}{4}$
> B. $\frac{\pi}{2}$
> C. π
> D. $\frac{3 \pi}{4}$

Answer: D

20. A body initially at $80^{\circ} \mathrm{C}$ cools to $64^{\circ} \mathrm{C}$ in 5
minutes and to $52^{\circ} \mathrm{C}$ in 10 minutes. What is
the temperature of the surroundings?
A. 24°
B. 28°
C. 22°
D. 25°

Answer: A
21. Two spherical bodies A (radius 6 cm) and B (radius 18 cm) are at temperature T_{1} and T_{2} respectively The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to that of B ?
A. 9
B. 9.5
C. 8
D. 8.5

Answer: A

D Watch Video Solution

22. A pulley 1 metre in diameter rotating at 600 rpm is brought to rest in 80 s by a constant force of frication on its shaft. How
many revolutions does it make before coming to rest?
A. 200
B. 400
C. 300
D. 500

Answer: B
(Watch Video Solution
23. At 20. C, to attain the terminal velocity how
fast willan aluminium sphre of radii 1 mm fall
though water. Assume flow to be laminar flow
and specific
gravity

$$
=2.7 \eta_{\text {water }}=8 \times 10^{-4} P a
$$

A. $9.2 \mathrm{~m} / \mathrm{s}$
B. $6.1 \mathrm{~m} / \mathrm{s}$
C. $4.6 \mathrm{~m} / \mathrm{s}$
D. $2.3 \mathrm{~m} / \mathrm{s}$ \}

Answer: C
24. An organ pipe closed at one end restonates with a tuning fork of frequencies

180 Hz and 300 Hz it will also resonate with tuning fork of frequencies
A. 360 Hz
B. 420 Hz
C. 480 Hz
D. 600 Hz

Answer: B

D Watch Video Solution

25. In a single slit diffraction patternm, the
distance between the first minimum on the
left and the first minimum on the right is 5 mm . The screen on which the diffraction pattern is displayed is at a distance of 8 cm
friom the silt. The wavelength is $6000 \AA$. The slit width (in mm) is about.
A. 0.576
B. 0.348
C. 0.192
D. 0.096

Answer: C

D Watch Video Solution
26. If T is the surface tension of a liquid, the energy needed to break a liquid drop of radius
R into 64 drops is :-
A. $6 \pi R^{2} T$
B. $\pi R^{2} T$
C. $12 \pi R^{2} T$
D. $8 \pi R^{2} T$

Answer: C

D Watch Video Solution

27. A force of 20 N is applied on a body of mass

5 kg resting on a horizontal plane. The body
gains a kinetic energy of 10 after is moves a distance 2 m . The fricitional force is
A. 10 N
B. 15 N
C. 20 N
D. 30 N

Answer: B
(Watch Video Solution
28. The distance travelled by light in glass
(refractive index $=1.5$) in a nanosecond will be
A. 45 cm
B. 40 cm
C. 30 cm
D. 20 cm

Answer: D

D Watch Video Solution
29. The sources of monochromatic and choherent light beam should be narrow to produce stable interference, because narrow sources can have
A. approximately equal intesities
B. approximately equal and small
intensities
C. approximately equal and long intensities
D. small number of point sources to maintain coherency

Answer: D

D Watch Video Solution

30. The wavelength of sodium light in air is
$5890 \AA$. The velocity of light in air is
$3 \times 10^{8} \mathrm{~ms}^{-1}$. The wavelength of light in a glass of refractive index 1.6 would be close to
A. $5890 \AA$
B. $3681 \AA$
C. $9424 \AA$

D. $15078 \AA$

Answer: B

D Watch Video Solution

31. The number of electric lines of force passing normally through unit area is called
A. electric intensity
B. flux density
C. surface charge density

D. None of these

Answer: B

D Watch Video Solution

32. Three capacitors C_{1}, C_{2} and C_{3} are connected as show in the figure to a battery of

V volt. If the capacitor C_{3} breaks down electrically, the change in total charge on the
combination of capacitors is

$$
\begin{aligned}
& \text { A. }\left(C_{1}+C_{2}\right) V\left[1-\left(\frac{C_{3}}{C_{1}+C_{2}+C_{3}}\right)\right] \\
& \text { B. }\left(C_{1}+C_{2}\right) V\left[1-\left(\frac{C_{1}+C_{2}}{C_{1}+C_{2}+C_{3}}\right)\right] \\
& \text { C. }\left(C_{1}+C_{2}\right) V\left[1+\left(\frac{C_{3}}{C_{1}+C_{2}+C_{3}}\right)\right] \\
& \text { D. }\left(C_{1}+C_{2}\right) V\left[1+\left(\frac{C_{2}}{C_{1}+C_{2}+C_{3}}\right)\right]
\end{aligned}
$$

- Watch Video Solution

33. An electron eneters the space between the
plates of charged capacitor as shown. The carge density on the plate is σ, electric intensity in the space between the plates is E ,
A unifrom magnetic field B aslo exists B also
exists in the spae perpendicular to the direction of E .

The electron moves perpendicular to both E and B without any change in direction. The time taken by the electron to travel a distance

I in the space is

\otimes
Θ
\otimes
\otimes
A. $\frac{\sigma l}{e_{0} B}$
B. $\frac{\sigma B}{e_{0} l}$
C. $\frac{e_{0} l B}{\sigma}$
D. $\frac{e_{0} l}{\sigma B}$

Answer: C
34. The turn ratio of a transformers is given as
$2: 3$. If the current through the primary coil is
$3 A$, thus calculate the current through load resistance
A. 1A
B. 4.5 A
C. $2 A$
D. 1.5 A

D Watch Video Solution

35. Wheaststone bridge is most sensitive when
the resistance of all four arms are
A. greater than 10Ω
B. less than 10Ω
C. same
D. none of the above

Answer: C

- Watch Video Solution

36. A light beam is incident on a rectangular glass plate ($\mu=1.54$) The reflected light OB passes through a nicol prism.

On observing the transmitted light while
rotating the prism, it is seen that

A. intensity of light reduces to zero
B. intensity of light decreases and then increases
C. there is no change of intensity of light
D. intensity of light reduces to zero slowly
and then starts to increase

Answer: B

D Watch Video Solution

37. Two unknown resistance X and Y are connected to left and right gaps of a meter bridge and the balancing point is obtained at 80 cm from left. When a 10Ω resisance is connected in parallel to x, balance point is 50 cm from left. The values of X and Y respectively are
А. $4 \Omega, 9 \Omega$
В. $30 \Omega, 7.5 \Omega$
C. $20 \Omega, 6 \Omega$
D. $10 \Omega, 3 \Omega$

Answer: B

D Watch Video Solution

38. The scale of a galvanometer of resistance

100 ohms contains 25 divisions. It gives a defelction of one division on passing a current
of 4×10^{-4} amperes. The resistance in ohms
to be added to it, so that it may become a
voltmeter of range 2.5 volts is
A. 150
B. 170
C. 110
D. 220

Answer: A

D Watch Video Solution
39. A hydrogen atom emits a photon corresponding to an electron transition from $n=5$ to $n=1$. The recoil speed of hydrogen
atom is almost (mass of proton $\left.\approx 1.6 \times 10^{-27} \mathrm{~kg}\right)$.
A. $10 \mathrm{~m} / \mathrm{s}$
B. $2 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. $8 \times 10^{2} \mathrm{~m} / \mathrm{s}$

40. Which one is ferromagnetic substance?

A. Cu
B. Na
C. Ni
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

41. Resonant frequency is given by (for a series

L-C-R circuit)

A. $2 \pi \sqrt{\frac{L}{C}}$
B. $\frac{1}{2 \pi} \sqrt{\frac{L}{C}}$
C. $\frac{2 \pi}{\sqrt{L C}}$
D. $\frac{1}{2 \pi \sqrt{L C}}$

Answer: D

D Watch Video Solution

42. What will be the height of image when an object of 2 mm is placed on the axis of a convex mirror at a distance 20 cm of radius of curvature 40 cm
A. 20 mm
B. 10 mm
C. 6 mm
D. 1 mm

Answer: D

43. A beam of ions with velocity $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters normally into a uniform magnetic field of 4×10^{-2} T. if the specific charge to the ions is $5 \times 10^{7} \mathrm{C} / \mathrm{kg}$, the radius of the circular path described will be
A. 0.10 m
B. 0.16 m
C. 0.20 m
D. 0.25 m

Answer: A

- Watch Video Solution

44. An object moving at a speed of $5 \mathrm{~m} / \mathrm{s}$ towards a concave mirror of focal length $f=1 \mathrm{~m}$
is at a distance of 9 m . The average speed of the image is
A. $1 / 5 \mathrm{~m} / \mathrm{s}$
B. $1 / 10 \mathrm{~m} / \mathrm{s}$
C. $5 / 9 \mathrm{~m} / \mathrm{s}$

D. $2 / 8 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

45. Binding energy per nucleon plot against
the mass number for stable nuclei is show in
the figure. Which curve is correct ?

A. A
B. B
C. C
D. D

Answer: C

- Watch Video Solution

46. de-Broglie wavelength λ is
A. proportional to mass
B. proportional to impulse
C. inversely proportional to impulse
D. independent to impulse
47. For a transistor is common base configuration if β is 100 , the value of current gain is is
A. 1
B. 0.99
C. 0.1
D. 0.01
48. The depletion layer in $P-N$ junction region is caused by
A. difit of electrons
B. migration of impurity ions
C. drift of holes
D. diffusion of charge carriers

Answer: D
49. Magnetic field induction at the centre O of a square loop of side a carrying current I as shown in figure.

A. $\frac{\mu_{0} l}{\sqrt{2} \pi a}$
B. $2 \sqrt{2} \frac{\mu_{0} l}{\pi a}$
C. zero
D. $\frac{\mu_{0} l}{2 \pi a}$

Answer: C

D Watch Video Solution

50. If the maximum amplitude of an amoplitude modulated wave is 25 V and the minimum amplitude is 5 V , the modulation index is

1
A. $\frac{1}{5}$
B. $\frac{1}{3}$
C. $\frac{3}{2}$
D. $\frac{2}{3}$

Answer: D

- Watch Video Solution

