©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 03

Paper 1 Pysics Chemistry

1. In a vertical circle the minimum or critical
velocity at highest point of path will be
A. $\sqrt{2 r g}$
B. $\sqrt{r g}$
C. $r \omega$
D. zero

Answer: B

D Watch Video Solution

2. An object is placed at a distance of 40 cm in
front of a concave mirror of focal length 20
cm . The image produced is
A. real and inverted and of same size
B. virtual and erect and of same size
C. real and erect and of samee size
D. virtual and inverted and of same size

Answer: A

D Watch Video Solution

3. If the ratio of lengths, radii and young's modulii of steel and brass wires in the figure are a, b and c, respectively. Then, the
corresponding ratio of increase in their
lengths would be

A. $\frac{2 c m}{b^{2}}$
B. $\frac{3 a}{2 b^{2} c}$
C. $\frac{3 c}{2 a b^{2}}$
D. $\frac{2 a^{2} c}{b}$

Answer: B

D Watch Video Solution
4. Value of g varies with altitude and rotation
of the earth, it is minimum at
A. poles
B. earth's surface
C. equator
D. depends on height

Answer: C

D Watch Video Solution
5. A diver at a depth of 12 m in water
($\mu=4 / 3)$ sees the sky in a cone of semi-
vertical angle
A. $\sin ^{-1}\left(\frac{4}{3}\right)$
B. $\tan ^{-1}\left(\frac{4}{3}\right)$
C. $\sin ^{-1}\left(\frac{3}{4}\right)$
D. 90°

Answer: C

D Watch Video Solution

6. In a ring of mass 0.5 kg and radius $\sqrt{5} \mathrm{~m}$, to produce angular acceleration of $18 \mathrm{rad} / \mathrm{s}^{2}$ in this body, applied torque (in N-m) should be
A. 7.2
B. 0.14
C. 45
D. 450

Answer: C

D Watch Video Solution
7. When a tap is closed, the manometer attached to the pipe reads $3.5 \times 10^{5} \mathrm{Nm}^{-2}$.

When the tap is opened, the reading of
manometer falls to $3.0 \times 10^{5} \mathrm{Nm}^{-2}$. The velocity of water in the pipe is
A. $100 m s^{-1}$
B. $10 m s^{-1}$
C. $1 m s^{-1}$
D. $10 \sqrt{10} m s^{-1}$

Answer: B
(Watch Video Solution
8. Water rises upto height 2 h in a capillary tube of certain diameter. This capillary tube is replaced by similar tube of half the diameter.

Now, the water will rise to the height of
A. 4 h
B. 3 h
C. 2 h
D. h

Answer: A

9. Vibrations of simple pendulum in air are

A. free vibrations
B. damped vibrations
C. forced vibrations
D. resonant vibrations

Answer: B
10. Which of the following units denotes the dimensions $\left[M L^{2} / Q^{2}\right]$, where Q denotes the electric charge?
A. $W b m^{-2}$
B. Henry (H)
C. $H m^{-2}$
D. Weber (Wb)

Answer: B

D Watch Video Solution
11. The frequencies of two tuning forks A and
B are respectively 1.5% more 2.5% less
than that of tuning fork C. When A and B sounded together, 12 beats are produced in 1 second. The frequency of tuning fork C is
A. 200 Hz
B. 240 Hz
C. 360 Hz
D. 300 Hz
12. What percent of length of a wire will
increses by applying a stress fo

1 kg . $W t / \mathrm{mm}^{2}$ on it.
$\left[Y=1 \times 10^{11} \mathrm{Nm}^{-2}\right.$ and 1 kgwt $\left.=9.8 \mathrm{~N}\right]$
A. 0.0078%
B. 0.0088%
C. 0.0098%
D. 0.0067%

Answer: C

D Watch Video Solution

13. Can displacement be greater than distance?
A. Yes
B. No
C. Data insufficient
D. -

Answer: B

D Watch Video Solution

14. In Melde's experiment, the tuning fork was
arranged in parallel position and the vibrating
length of string was 0.8 m. Upon setting the tuning fork into vibration, four loops were formed along the string. If the linear density of the string is $0.5 \mathrm{mg} / \mathrm{cm}$ and the frequency of the tuning fork is 96 Hz , then tension in the string will be
A. $0.1843 \times 10^{-2} N$
B. $9.215 \times 10^{-2} N$
C. $0.9215 \times 10^{-2} N$
D. $1.843 \times 10^{-2} N$

Answer: D

D Watch Video Solution
15. Waves formed on a string, such that energy
is not carried by it. These waves are
A. transverse progressive waves
B. longitudinal progresive waves
C. stationary waves
D. electromagnetic waves

Answer: C

D Watch Video Solution

16. A magnet $N-S$ is suspened from a spring and when it oscillates, the magnet moves in and out of the ocil C . the coil is connected to a
galvanometer G. then, as the magnetic oscillates
A. G shows no deflection
B. G shows deflection to the left and right
but the amplitude steadily decreases
C. G shows deflection to the left and right with constant amplitude
D. G shows deflection on one side

Answer: B

17. Two cars A and B approach a statinary observer from opposite sides as shown in
figure. Observer hears no beats. If the frequency of the horn of the car B is 504 Hz , the frequency of horn of car A will be

A. 529.2 Hz
B. 295.2 Hz

C. 440.5 Hz

D. 259.2 Hz

Answer: A

- Watch Video Solution

18. If the binding energy per nucleon in ${ }_{.3} L i^{7}$ and ${ }_{2} \mathrm{He}^{4}$ nuclei are respectively 5.60 MeV and 7.06 MeV , then the ebergy of proton in
the reaction ${ }_{.3} L i^{7}+p \rightarrow 2 .{ }_{2} H e^{4}$ is
A. 19.6 MeV
B. -2.4 MeV
C. 8.4 MeV
D. 17.3 MeV

Answer: D

D Watch Video Solution

19. Two charges of equal magnitude q are placed in air at a distance 2a apart and third charge $-2 q$ is placed at mid-point. The
potential energy of the system is $\left(\varepsilon_{0}=\right.$ permittivity of free space)

$$
\begin{aligned}
& \text { A. }-\frac{q^{2}}{8 \pi \varepsilon_{0} a} \\
& \text { B. }-\frac{3 q^{2}}{8 \pi \varepsilon_{0} a} \\
& \text { C. }-\frac{5 q^{2}}{8 \pi \varepsilon_{0} a} \\
& \text { D. }-\frac{7 q^{2}}{8 \pi \varepsilon_{0} a}
\end{aligned}
$$

Answer: D

D Watch Video Solution

20. For a certain gas the ratio of specific heat is given to be $\gamma=1.5$ for this gas
A. $C_{V}=3 R$
B. $C_{p}=3 R$
C. $C_{p}=5 R$
D. $C_{V}=5 R$

Answer: B
(Watch Video Solution
21. A square wire frame of L is dipped in a
liquid, on taking out a membrane is formed. If
the surface tension of liquid is T, force acting
on the frame will be
A. 2 TL
B. 4 TL
C. 8TL
D. 10TL

Answer: C
22. The length of a simple pendulum is about

100 cm known to an accuray of 1 mm . its period of oscillation oscillations using a clock of 0.1 resolution. What is the accuray in the determined value of g ?
A. 0.2%
B. 0.5%
C. 0.1%
D. 2%

Answer: A

- Watch Video Solution

23. Two bodies hae temperatures as $227^{\circ} \mathrm{C}$
and $727^{\circ} \mathrm{C}$ ratio of heat radiated by them will be
A. 1:4
B. $1: 16$
C. 16:1
D. $4: 1$

Answer: B

D Watch Video Solution

24. The acceleration due to gravity at a place is
$\pi^{2} m / s^{2}$. Then, the time period of a simple pendulum of length 1 m is

$$
\text { A. } \frac{2}{\pi} s
$$

B. $2 \pi s$
C. $2 s$
D. πs

Answer: C

D Watch Video Solution

25. In a polarised wave, the vibrations of field
vectors are
A. asymmetric
B. symmetric
C. radomised
D. none of these

Answer: A

D Watch Video Solution

26. A particle executes S.H.M. of amplitude 25
cm and time period 3 s . What is the minimum
time required for the particle to move between two points 12.5 cm on either side of the mean position ?
A. 0.5 s
B. 1 s
C. 1.5 s
D. 2 s

Answer: A
(D) Watch Video Solution
27. Polarising angle of a transparent medium is 60°, angle of refraction will be
A. 120°
B. 45°
C. 30°
D. 60°

Answer: C

D Watch Video Solution

28. The (x, y, z) co -ordinates of two points A and
B are give respectively as (0,3,-1) and ($-2,6,4$)
The displacement vector from A to B is given by
A. $-2 \hat{i}+6 \hat{j}+4 \hat{k}$
B. $-2 \hat{i}+3 \hat{j}+3 \hat{k}$
C. $-2 \hat{i}+3 \hat{j}+5 \hat{k}$
D. $2 \hat{i}+3 \hat{j}-5 \hat{k}$

Answer: C

D Watch Video Solution

29. If yellow light in the Young's double slit experiement is replaced by red light, the fringe width will
A. increases
B. decreases
C. unchanged
D. the fringes disappear

Answer: A

D Watch Video Solution
30. A body of mass 4 kg is accelerated up by a constant force, travels a distance of 5 m in the
first second and a distance of $2 m$ in the third
second. The force acting on the body is
A. 2 N
B. 4 N
C. 6 N
D. 8 N

Answer: C
(Watch Video Solution
31. Surface charge densities of two thin concentric spherical capacitors or shells are given as σ and $-\sigma$. The radii are R and 2 R .

The concentric capacitors are connected by a thin conducting wire. The entire charge on the inner miner transfers to the outer caspacitor and potential difference between them becomes zero. final potential of each capacitor will be

$$
\begin{aligned}
& \text { A. }-\frac{3 \sigma R}{2 \varepsilon_{0}} \\
& \text { B. }-\frac{2 \sigma R}{\varepsilon_{0}}
\end{aligned}
$$

C. $-\frac{\sigma R}{2 \varepsilon_{0}}$
D. zero

Answer: A

D Watch Video Solution

32. A galvanometer of resistance 100Ω has
voltage sensitivity 2 div/volt.t he current sensitvity of galvanometer is
A. $1 \mathrm{div} / \mathrm{A}$
B. $100 \mathrm{div} / \mathrm{A}$
C. $10 \mathrm{div} / \mathrm{A}$
D. $200 \mathrm{div} / \mathrm{A}$

Answer: D

- Watch Video Solution

33. The amplitude of a executing $S H M$ is 4 cm

At the mean position the speed of the particle
is $16 \mathrm{~cm} / \mathrm{s}$ The distance of the particle from
the mean position at which the speed the particle becomes $8 \sqrt{3} \mathrm{~cm} / s$ will be
A. $2 \sqrt{3} \mathrm{~cm}$
B. $\sqrt{3} \mathrm{~cm}$
C. 1 cm
D. 2 cm

Answer: D
(Watch Video Solution
34. Some materials shows magnetic properties
according to their nature. Which of the following is diamagnetic?
A. aluminium
B. quartz
C. nickel
D. bismuth

Answer: D

D Watch Video Solution
35. In hydrogen atom, an electron is revolving in the orbit of radius $0.53 \AA$ with 6.6×10^{15} rotations $/ \sec$ ond. Magnetic field produced at the centre of the orbit is
A. $.125 W b / m^{2}$
B. $1.25 \mathrm{~Wb} / \mathrm{m}^{2}$
C. $12.5 \mathrm{~Wb} / \mathrm{m}^{2}$
D. $125 \mathrm{~Wb} / \mathrm{m}^{2}$

Answer: C

36. Capability of movement of a charged particle is determined by its mobility. SI unit of the mobility is
A. A-m/N
B. A-m
C. A / m
D. None of these

Answer: A
37. In a potentiometer, the null point is received at 7th wire. If now we have to change
the null point at 9th wire, what should we do?
A. Attach resistance in series with battery
B. Increase resistance in main circuit
C. decrease resistance in main circuit
D. decrease applied emf

- Watch Video Solution

38. In a Whatstone's bridge all the four arms
have equal resistance R_{0}. If the resistance of
the galvanometer arm is $2 R_{0}$, the equivalent resistance of the combination as seen by the battery is
A. R_{0}
B. $2 R_{0}$
C. $\frac{R_{0}}{4}$
D. $\frac{R_{0}}{2}$

Answer: A

D Watch Video Solution

39. A shell of mass 10 kg is moving with a velocity with a velocity of $10 \mathrm{~ms}^{-1}$ when it blasts and forms two parts of mass 9 kg and 1 kg respectively. If the 1st mass is stationary, the velocity of the $2 n d$ is

$$
\text { A. } 1 m s^{-1}
$$

B. $10 m s^{-1}$
C. $100 m s^{-1}$
D. $1000 \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

40. Cyclotron is a device used to accelerate charged particles but it does not accelerate
A. proton
B. charged particles
C. electrons
D. any particle

Answer: C

D Watch Video Solution

41. Transformer is an electrical device based on electromagnetic inductions and is used to
A. convert $A C$ into $D C$
B. convert DC into AC
C. to step up or down DC voltage
D. to step up or down AC voltage

Answer: D

D Watch Video Solution

42. A body of mass 2 kg is kept by pressing to
a vertical wall by a force of 100 N . The coefficient of friction between wall and body is
0.3. Then the frictional force is equal to
A. 6 N
B. 20 N
C. 600 N
D. 700 N

Answer: B

D Watch Video Solution

43. A wave equation which gives the displacement along y-direction is given by $y=0.001 \sin (100 t+x)$ where x and y are in
meterand t is time in second. This represented
a wave
A. travelling with a velocity of $100 \mathrm{~m} / \mathrm{s}$ in
the negative x-direction
B. travelling with a velocity of $\frac{50}{\pi} \mathrm{~m} / \mathrm{s}$ in
the positive x-direction
C. of wavelengthh 1 m
D. from frequency $\frac{100}{2 \pi} \mathrm{~Hz}$

Answer: A

44. To double the covering range of a TV transimitter tower, its height should be made
A. 2 times
B. 4 times
C. $\sqrt{2}$ times
D. 8 times

Answer: B
45. Digital circuits can be made by the repetition of frequently used gates which are
A. OR gate
B. AND gate
C. NOT gate
D. NAND gate

Answer: D
(Watch Video Solution
46. Which of the following has the highest moment of inertia when each of them has the same mass and the same radius?
A. A ring about any of its diameter B. A disc about any of its diameter
C.A hollow sphere about any of its diameter

D. A solid sphere about any of its diameter

Answer: C

47. Three plates of common surface A are connected as shown in the figure. The effective capacitance will be

> A. $\frac{\varepsilon_{0} A}{d}$
> B. $\frac{3 \varepsilon_{0} A}{d}$
> C. $\frac{3}{2} \frac{\varepsilon_{0} A}{d}$
> D. $\frac{2 \varepsilon_{0} A}{d}$

Answer: D

D Watch Video Solution

48. The fundamental of a closed pipe is 220 Hz .

If $\frac{1}{4}$ of the pipe is filled with water, the
frequency of the first overtone of the pipe now is
A. 220 Hz
B. 440 Hz
C. 880 Hz

D. 1760 Hz

Answer: C

D Watch Video Solution

49. A motorcycle is travelling on a curved track
of radius 500 m . If the coefficient of friction
between road and tyres is 0.5 , the speed avoiding skidding will be
A. $50 \mathrm{~m} / \mathrm{s}$
B. $75 \mathrm{~m} / \mathrm{s}$
C. $25 \mathrm{~m} / \mathrm{s}$
D. $35 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

50. The electron in a hydrogen atom makes a transition from $n=n_{1}$ to $n=n_{2}$ state. The
time period of the electron in the initial state
$\left(n_{1}\right)$ is eigh times that in the final state $\left(n_{2}\right)$.

The possible values of n_{1} and n_{2} are

$$
\begin{aligned}
& \text { A. } n_{1}=4, n_{2}=2 \\
& \text { В. } n_{1}=8, n_{2}=2 \\
& \text { C. } n_{1}=8, n_{2}=1 \\
& \text { D. } n_{1}=6, n_{2}=2
\end{aligned}
$$

Answer: A

- Watch Video Solution

1. A body of mass 4 kg is accelerated up by a constant force, travels a distance of 5 m in the first second and a distance of $2 m$ in the third second. The force acting on the body is
A. 2 N
B. 4 N
C. 6 N
D. 8 N

- Watch Video Solution

