©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 04

Paper 1 Physics Chemistry

1. A 4 kg mass moves on a circular track radius

2 m with $120 \mathrm{rev} / \mathrm{min}$ its KE will be
A. 2 J
B. 32 J
C. 80 J
D. 1262 J

Answer: D

D Watch Video Solution

2. Which one of the following is not a unit of young's modulus
A. $N m^{-1}$
B. $N m^{-2}$
C. Dyne cm^{-2}
D. $M P a$

Answer: A

D Watch Video Solution
3. A stone is thrown with a velocity less than
the escape velocity. The sum of its' KE and PE is
A. positive
B. negative
C. zero
D. may be positive or negative

Answer: B

D Watch Video Solution
4. The dimensions of plank's constant is same
as that of
A. angular momentum
B. linear momentum
C. work
D. coefficient of viscosity

Answer: A

D Watch Video Solution
5. Moment of inertia of a body does not depend on
A. mass of the body
B. angular velcoity of the body
C. axis of rotation of the body
D. distribution of the mass of the body

Answer: B

D Watch Video Solution

6. The radius of gyration of a disc of mass 100 g and radius 5 cm about an axis pasing
through centre of gravity and perpendicular to the plane is
A. 3.54 cm
B. 1.54 cm
C. 4.54 cm
D. 2.5 cm

Answer: A
(Watch Video Solution
7. Magnitude of vector which comes on addition of two vectors, $6 \hat{i}+7 \hat{j}$ and $3 \hat{i}+4 \hat{j}$ is
A. $\sqrt{132}$
B. $\sqrt{136}$
C. $\sqrt{160}$
D. $\sqrt{202}$

Answer: D

D Watch Video Solution
8. The velocity of particle undergoing SHM is v at the mean position. If only amplitude is doubled, the velocity at mean position
A. 2 v
B. 3 v
C. $2 \sqrt{2} v$
D. 4 v

Answer: A

D Watch Video Solution
9. Refractive index of glyceric w.r.t. air is 1.4 in glycerin the speed of light will be $\left(c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
A. $1.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $2.14 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution
10. Matter shows property of elasticity which
has all the three types of elasticity?
A. Gas
B. Liquid
C. Solid
D. All of these

Answer: C
(D) Watch Video Solution
11. Searle's method is used to determine
A. bulk modulus
B. compressibility
C. density of material
D. young's modulus

Answer: D

D Watch Video Solution
12. A force $\vec{F}=(5 \hat{i}+3 \hat{j}) N$ is applied over a particle which displaces it from its original position to the point $\vec{s}=S(2 \hat{i}-1 \hat{j}) m$. The work done on the particle is

> A. -7
> B. +7
> C. +10
> D. +13

Answer: B
13. Water raises to a height of 10 cm in a capillary tube and mercury falls to a depth of
3.5 cm in the same capillary tube. If the density of mercury is $13.6 \frac{g m}{c . c}$ and its angle of contact is 135° and density of water is $1 \frac{g m}{c . c}$ and its angle of contact is $0^{\circ} C$ then the ratio of surface tensions of two liquids is $\left(\cos 135^{\circ}=0.7\right)$
A. $1: 14$
B. 5: 34

C. 1:5

D. 5: 25

Answer: B

D Watch Video Solution

14. A body of mass 10 kg is acted upon by two
forces each of magnitude 10 N making an
angle of 60° with each other. Find the net acceleration of the body
A. $2 \sqrt{3} m s^{-2}$
B. $\sqrt{3} m s^{-2}$
C. $3 \sqrt{3} m s^{-2}$
D. $4 \sqrt{3} m s^{-2}$

Answer: B

D Watch Video Solution

15. A tuning fork produces 5 beats/sec with a senometer wire of length 78 cm . if the length of the wire is increased by 2 cm , then there is a
resonance between the tuning form and the wire. The frequency of the fork is
A. 195 Hz
B. 190 Hz
C. 200 Hz
D. 180 Hz

Answer: A

D Watch Video Solution
16. A 5000 kg rocket is set of vertical firing. The exhaust speed is $800 m s^{-1}$. To give an initial upward acceleration of $20 m s^{-2}$, the amount of gas ejected per second to supply the needed thrust will be (take, $g=10 \mathrm{~ms}^{-2}$)
A. $127.5 \mathrm{~kg} s^{-1}$
B. $187.5 \mathrm{~kg} s^{-1}$
C. $185.5 \mathrm{~kg} \mathrm{~s}^{-1}$
D. $137.5 \mathrm{~kg} s^{-1}$

Answer: B
17. A closed organ pipe emits harmonics in the ratio of
A. $1: 5: 9$
B. 1:2:3
C. 1:3:5
D. None of these

Answer: C
18. The ratio of the molar specific heats of a
gas is 1.41 , if the molar specific heat of the gas
at constant volume is $4.846 \mathrm{kcal} / \mathrm{kmol}-\mathrm{K}$
universal gas constant has the value
A. $2.0 \mathrm{kcal} / \mathrm{kmol}-\mathrm{K}$
B. $1.98 \mathrm{kcal} / \mathrm{kmol}-\mathrm{K}$
C. $8.31 \mathrm{kcal} / \mathrm{kmol}-\mathrm{K}$
D. Can't be found

Answer: B

- Watch Video Solution

19.

A tray of mass $M=10 \mathrm{~kg}$ is supported on two identical springs, each of spring constant k, as
shown in figure, when the tray is depressed a
little and released, it executes simple
harmonic motion of period 1.5 s . when a blockof mass m is placed on the tray, the speed of oscillation becomes 3 s . the value of m is
A. 10 kg
B. 20 kg
C. 30 kg
D. 40 kg
20. A motorcycle is going on an overbridge of radius R. The driver maintains a constant speed. As the motorcycle is ascending on the overbridge, the normal force on it
A. increases
B. decreases
C. remains the same
D. fluctuates

Answer: A

D Watch Video Solution

21. In Melde's experiment the srting vibrates in

4 loops when a 50 g weight is placed on the pan of weight 15 g .How much weight must be added or removed to make the string vibrate
in 6 loops?
A. 28 g
B. 35 g
C. 40 g
D. 42 g

Answer: B

D Watch Video Solution

22. Emissive powerr of a surfac eis maximum when surface is
A. perfectly black
B. smooth

C. shining

D. white

Answer: A

D Watch Video Solution

23. The force of repulsion between two electrons kept at a distance of 1 m is F . if m is the mass of the electron, h is the planck's constant and c is the velocity of light, then the Rydberg's constant of

> A. $\frac{F^{2} 2 \pi^{2} m}{h^{3} c}$
> B. $\frac{F 2 \pi^{2} m}{h^{3} c}$
> C. $\frac{h^{3} c}{F^{3} 2 \pi^{2} m}$
> D. $\frac{F 2 \pi^{2} m}{h^{2} c}$

Answer: A

- Watch Video Solution

24. A horizontal pipeline carries water in a streamline flow. At a point along the pipe, where the cross- sectional area is $10 \mathrm{~cm}^{2}$, the
water velocity is $1 m s^{-1}$ and the pressure is

2000 Pa. The pressure of water at another point where the cross-sectional area is $5 \mathrm{~cm}^{2}$, is........Pa. (Density of water $=10^{3} \mathrm{~kg} . \mathrm{m}^{-3}$)
A. 200 Pa
B. 400 Pa
C. 500 Pa
D. 800 Pa

Answer: C

25. In the propagation of electromagnetic waves the angle between the direction of propagation and plane of polarisation is
A. 0°
B. 45°
C. 90°
D. 180°

Answer: A

- Watch Video Solution

26. A spring executes SHM with mass off 10 kg attached to it. The force constant of spring is
$10 \mathrm{~N} / \mathrm{m}$. If at any instant its velocity is $40 \mathrm{~cm} / \mathrm{s}$
, the displacement will be (where amplitude is
$0.5 \mathrm{~m})$
A. 0.09 m
B. 0.3 m
C. 0.03 m
D. 0.9 m

Answer: B

- Watch Video Solution

27. For constructive interference to take place between two monochromatic light waves of wavelength λ, the path difference should be
A. $(2 n-1) \frac{\lambda}{4}$
B. $(2 n-1) \frac{\lambda}{2}$
C. $n \lambda$
D. $(2 n+1) \lambda / 2$

Answer: C

D Watch Video Solution

28. Interference is possible in
A. all waves
B. transverse waves only
C. logitudinal waves only
D. progressive waves only

- Watch Video Solution

29. The headlights of a truck are 1.22 m apart and light of wavelength $5000 \AA$ is used for the headlights. The pupil of the eye of the obeserver has a diameter of 1 mm . what should be the maximum distance of the truck from observer, so that the headlights are just separated for him?
A. 2 km
B. 1.5 km
C. 3 km
D. 3.5 km

Answer: A

D Watch Video Solution

30. An iron sphere of mass $20 \times 10^{-3} \mathrm{~kg}$ falls
througha viscous liquid with terminal velcoity
$0.5 \mathrm{~ms}^{-1}$. The terminal velocity (in $m s^{-1}$) of
another iron sphere of mass $54 \times 10^{-2} \mathrm{~kg}$ is
A. 4.5
B. 3.5
C. 2.5
D. 1.5

Answer: A

D Watch Video Solution

31. A conducting sphere of radius 10 cm is given a charge of $+2 \times 10^{-8} C$. What will be its potential?
A. 0.03 kV
B. 0.8 kV
C. 1.8 kV
D. 3.6 kV

Answer: C

D Watch Video Solution

32. Energy stored in two capactiros of capacitance joined in series $8 \mu F$ joined in
series when connected with a buffer of emf

500 V is

A. 1 J
B. 0.5 J
C. 1.5 J
D. 2 J

Answer: B
(Watch Video Solution
33. For a circuit arrangement shown in figure,

A. 0.54 J
B. 0.36 J
C. 0.24 J
D. 0.18 J
34. An AC source is in series with R and L. if the
respective potetntial drops are 200 V and 150

V , the applied voltage will be
A. 500 V
B. 25 V
C. 250 V
D. 350 V

- Watch Video Solution

35. If in the experiment of Wheatstone's bridge, the positions of cells and galvanometer are interchanged, then balance point will
A. change
B. remain unchanged
C. depends upon internal resistance of cell
D. none of the above

Answer: B

D Watch Video Solution

36. Find the incorrect from the following the equation of a stationary wave is given by $y=6 \cos \left(\frac{\pi x}{5}\right) \sin (4 \pi t)$, where y and x are in cm and t is in second. Then, for the stationary wave
A. amplitude $=3 \mathrm{~cm}$
B. wavelength $=5 \mathrm{~cm}$
C. frequency $=20 \mathrm{~Hz}$
D. velocity= $2 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

37. Two cells of emfs E_{1} and $\left(E_{2}\left(E_{1}>E_{2}\right)\right.$ are connected as shows in Fig. 6.45.

When a potentiometer is connected between
A and B, the balancing length of the potentiometer wire is 300 cm . On connecting the same potentiometer between A and C, the balancing length is 100 cm . The ratio E_{1} / E_{2} is
A. $3: 1$
B. $1: 3$
C. 2:3
D. $3: 2$

Answer: D
38. An ammeter is always connected is series in a circuit because........
A. parallel
B. series
C. high voltage line
D. anywhere

Answer: B

- Watch Video Solution

39. What is meant by cyclotron frequency?

$$
\begin{aligned}
& \text { A. } v=\frac{\pi m}{q B} \\
& \text { B. } v=\frac{q B}{2 \pi m} \\
& \text { C. } v=\frac{2 \pi m}{q B} \\
& \text { D. } v=\frac{2 \pi m}{3 q B}
\end{aligned}
$$

Answer: B

- Watch Video Solution

40. For paramagnetic substances permeability
is always
A. less than 1
B. equal to 1
C. greater than 1
D. none of these

Answer: C

41. A concave lens of focal length 20 cm placed
in contact with ah plane mirror acts as a convex mirror of focal length
A. 10 cm
B. 40 cm
C. 60 cm
D. 20 cm

Answer: A

D Watch Video Solution
42. Two identical coils, each carrying the same current I in the clockwise direction as shown in
figure, are moved towards e3ach other with
the same speed, then, the current

A. will increase in each loop
B. will decrease in each loop
C. will remain same in each loop

D. will increase in coil A and decrease in the

coil

Answer: B

- Watch Video Solution

43. The AC's are given by
$l_{1}=l_{0} \sin \omega t, l_{2}=l_{0} \cos (\omega t+\phi)$ the ratio of
rms values is
A. $1: 1$
B. 1: ϕ
C. 1:2
D. $\phi: 1$

Answer: A

D Watch Video Solution

44. A uniform rope of length I lies on a table. If
the coefficient of friction is μ, then the maximum length L of the part of this rope
which can overhang from the edge of the table without sliding down is
A. $\frac{l}{\mu}$
B. $\frac{l}{\mu+1}$
C. $\frac{\mu l}{1+\mu}$
D. $\frac{\mu l}{\mu-1}$

Answer: C

D Watch Video Solution
45. The binding energy of deuteron is 2.2 MeV
and that of $\cdot{ }_{2}^{4} \mathrm{He}$ is 28 MeV . If two deuterons
are fused to form one ${ }_{2}^{4} \mathrm{He}$, th n the energy released is
A. 25.8 MeV
B. 23.6 MeV
C. 19.2 MeV
D. 30.2 MeV

Answer: B
46. A p-n jucntion when forward biased has a drop of 0.7 V which is assumed to be independent of current. The current in excess of 10 Ma through the diode produces a large joule heating effect which burns the diode. If we want to use 1.6 V battery to forward ibas
the diode, the value of resistor used in series
with the diode so that the maximum current does not exceed 6 mA should be
B. 200Ω
C. 150Ω
D. 250Ω

Answer: C

D Watch Video Solution

47. When a certain metal surface is illuminated wth light of frequency v, the stopping potential for photoelectric current is V_{0}. When the same surface is illumiinated by light of
frequency $\frac{v}{2}$, the stopping potential is $\frac{V_{0}}{4}$.
The threshold frequency ofr photoelectric emissiohn id

> A. $\frac{v}{6}$
> B. $\frac{v}{3}$
> C. $\frac{2 v}{3}$
> D. $\frac{4 v}{3}$

Answer: B

- Watch Video Solution

48. Semiconductor is damaged by the strong current due to
A. lack of free electrons
B. excess of electrons
C. decrease in electrons
D. None of these

Answer: B
49. A forced oscillator is acted upon by a force,
$F=F_{0} \sin \omega t$. The amplitude of the oscillator
is given by $A=\frac{55}{\sqrt{\left(2 \omega^{2}-36 \omega+9\right)}}$
What is the resonance angular freuqnecy (in $\mathrm{rad} / \mathrm{s})$?
A. 36
B. 18
C. 9
D. 2

- Watch Video Solution

50. A light ray going from air is incident (as shown in figure) at one end of a optical fibre used for communication purpose (refractive index of core $\mu=1.5$) making an incidence angle of 60° on the lateral surface.

so that it undergoes a total internal reflection.
how much time would it take to traverse the straight fibre of length 1 km ?
A. $4.25 \times 10^{-5} s$
B. $3.85 \times 10^{-6} s$
C. $5.77 \times 10^{-6} s$
D. $4.85 \times 10^{-5} s$

Answer: C
(Watch Video Solution

