

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 06

Paper 1 Physics Chemistry

1. The time period of a simple pendulum is 2s.

It its length is increased by 4 times, then its

period becomes

A. 16 s

B. 12 s

C. 8 s

D. 4 s

Answer: D

2. If speed of a body and radius of it's circular path are double, centripetal force will become

A. double

B. 4 times

C. unchanged

D. half

Answer: A

3. The weight of a body will be zero

A. at the centre of earth

B. in a freely falling chamber

C. in an artificial satellite

D. all of these

Answer: D

4. A ray of light is incident at 50° on the middle of one of the two mirrorrs arranged at an angle of 60° between them . The ray then touches the second mirrorr, get reflected back to the first mirrorr, making an angle of incidence of

A. 50°

B. 60°

C. 70°

D. 90°

Answer: C

Watch Video Solution

5. A homogeneous disc of mass 2 kg and radius 15 cm is rotating about its axis with an angular velocity of 4 rad/s. the linear momentum of the disc is

A. 1.2 kg m/s

B. 1.0 kg m/s

C. 0.6 kg m/s

D. zero

Answer: D

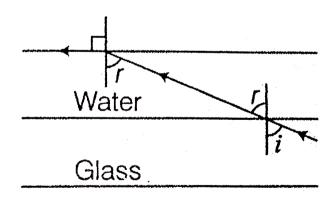
Watch Video Solution

6. A tuning fork has natural frequency 256 Hz. Which of the following frequencies will resonate it?

A. 300 Hz

B. 230 Hz

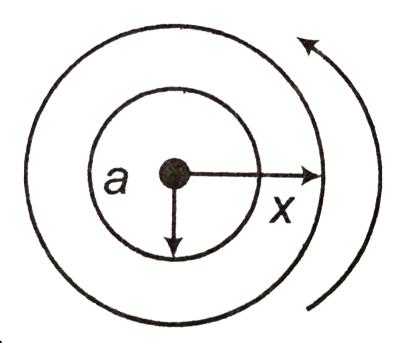
C. 512 Hz


D. 1000 Hz

Answer: C

7.

Watch Video Solution


A ray of light is incident at the glass-water

interface at an angle i it emerges finnaly parallel to the surface of water, then the value of μ_g would be

- A. (4/3)sin i
- B. 1/sin i
- C.4/3
- D. 1

Answer: B

8.

The radius of a planet is a. satelite revolves around it in a circle of radius x with angular velocity ω . The acceleration due to the gravity on planet's surface is

A.
$$\frac{\omega^2 x^3}{a^2}$$

B.
$$\frac{2\omega^2x^3}{3a^2}$$

C.
$$\frac{\omega^2 x^2}{a}$$

D.
$$\dfrac{\omega^2 x^4}{2a^3}$$

Answer: A

Watch Video Solution

9. The magnitude of force developed by raising temperature from 0° to $100^\circ C$ of an iron bar 1.00 m long and $1cm^2$ cross-sectional area

$$(lpha = 10^{-5}/.^{\circ} \ C \ {
m and} \ Y = 10^{11} N/m^2)$$

A. 10^3N

B. 10^4N

 $\mathsf{C.}\,10^5N$

D. $10^{9} N$

Answer: B

Watch Video Solution

10. Four wires of same material are stretched by the same load, which of them will elongate most?

- A. Length 100 cm, diameter 1 mm
- B. Length 200 cm, diameter 2 mm
- C. Length 300 cm, diameter 3 mm
- D. Length 400 cm, diameter 0.5 mm

Answer: D

Watch Video Solution

11. In a capillary tube water rises upto a certain height such that the upward force of surface tension balances the force of $75 \times 10^{-4} N$.

Due to weight of water, the internal circumference of capillary must be (ST of water

$$=6\times 10^{-2}N/m)$$

A.
$$1.25 imes10^{-2}m$$

B.
$$0.50 imes 10^{-2} m$$

$$\mathsf{C.}\,6.5 imes10^{-2}m$$

D.
$$12.5 imes 10^{-2} m$$

Answer: D

12. If two sources of frequencies 300 Hz and 303 Hz are sounded simultaneously, time interval between sounds of successive maximum intensity will be

- **A.** 1 s
- B. 3 s
- C. $\frac{1}{3}s$
- $\mathsf{D.}\,6s$

Answer: C

13. A wooden ball of density D is immersed in water of density d to a depth h//2 below the surface of water and then relased. To what height will the ball jump out of water?

A.
$$\frac{d}{D}h$$

B.
$$\left(rac{d}{D}-1
ight)h$$

 $\mathsf{C}.\,h$

D. Zero

Answer: B

14. Stationary waves are produced in 10 m long stretched string. If the string vibrates in 5 segments and wave velocity 20 m/s then the frequency is :-

A. 20 Hz

B. 5 Hz

C. 10 Hz

D. 15 Hz

Answer: B

Watch Video Solution

15. A particle is moving in the xy-plane with a constant velocity along a line parallel to the X-axis away from the origin. The magnitude of its angular momentum about the origin.

A. is zero

B. remains constant

C. goes on increasing

D. goes on decreasing

Answer: B

Watch Video Solution

16. In a Biprism experiment, the slit separation is 1mm. Using monochromatic light of wavelength 5000 Å, an interference patternn is obtained on a screen. For changing the bond width by 2.5×10^{-5} m.

A. the screen is moved away from the slits

by 10 cm

B. the screen is moved towards the slits by

10 cm

C. the screen is moved away or towards the

slits by 5 cm

D. the screen is moved away or towards the

slits by 10 cm

Answer: C

17. The capacity of a condenser is 4×10^6 farad and its potential is 100 volts. The energy released on discharging it fully will be

A. 0.02 J

B. 0.04 J

C. 0.025 J

D. 0.05 J

Answer: A

18. Voltmeters V_1 and V_2 are connected in series across a D. C. line V_1 reads 80 volts and has a per volt resistance of 200ohms, V_2 has a total resistance of 32 kilo ohms.

The line voltage is

A. 120 V

B. 160 V

C. 220 V

D. 240 V

Answer: D

Watch Video Solution

19. The relation between internal energy U, pressure p and volume V of a gas in an adiabatic process is U=2a+bpV where a and b are constants. What is the effective value of adiabatic constant γ ?

A.
$$\dfrac{2b+1}{2b}$$

B.
$$\frac{b+1}{b}$$

C.
$$\dfrac{b^2+1}{b^2}$$
D. $\left(\dfrac{b+1}{b}\right)^2$

Answer: B

Watch Video Solution

20. Assuming that about 20MeV of energy is per fusion released reaction $._1~H^2+._1~H^3
ightarrow ._0~n^1+._2~He^4$, the mass of $_{ ext{-}1}\,H^2$ consumed per day in a future fusion

reactor of powder 1MW would be approximately

A. 0.001 g

B. 0.1 g

C. 10.0 g

D. 1000 g

Answer: B

21. Sun and moon emit maximum radiant energy at wavelength 5000 Å and 15μ respectively. Iff surface temperature of sun is 6000 K, then value of surface temperature of moon is

- A. 100 K
- B. 450 K
- C. 200 K
- D. 150 K

Answer: C

22. Two bodies A and B emits radiant energy at the rate of $1.6 \times 10^6 J/m^2/s$ and $8.1 \times 10^6 J/m^2/s$ from its surface. If the temperature of A is $227^{\circ}C$, the temperature of B will be

A. 500 K

B. 400 K

C. $524^{\circ}\,C$

D. $477^{\circ}\,C$

Answer: D

Watch Video Solution

23. Radius of an air bubble at the bottom of the lake is r and it becomes 2r when the air bubbles rises to the top surface of the lake. If P cm of water be the atmospheric pressure, then the depth of the lake is

A. 2p

- B. 8p
- C. 4p
- D. 7p

Answer: D

Watch Video Solution

24. Total internal refelction takes place, when

light travels from

A. water to glass

B. glass to diamond

C. water to air

D. air to mercury

Answer: C

Watch Video Solution

25. A band playing music at a frequency f is moving towards a wall at a speed v_b . A motorist is following the band with a speed v_m . If v is the speed of sound, obtain an

expression for the beat frequency heard by the motorist.

A.
$$rac{v+v_m}{v+v_0}f_0$$

B.
$$rac{v+v_m}{v-v_0}f_0$$

C.
$$rac{2v_b(v+v_m)}{v^2-v_0^2}f$$

D.
$$rac{2v_m(v+v_b)}{v^2-v_m^2}f$$

Answer: A

26. An AC voltage source $E=200\sqrt{2}$, is connected across AC ammeter and capacitor of capacitance $1\mu F$, the reading of ammeter is $(\omega=rad/s)$

A. 80 mA

B. 40 mA

C. 10 mA

D. 20 mA

Answer: D

atti video Solution

27. Widths of two slits in Young's experiment are in the ratio 4: 1. What is the ratio of the amplitudes of light waves from them?

A. 4:1

B. 1:4

C. 2:1

D. 1: 2

Answer: C

28. A body of mass 0.4kg starting at origin at t=0 with a speed of $10ms^{-1}$ in the positive x-axis direction is subjected to a constant F=8 N towards negative x-axis. The position of body after 25s is

A. -6000m

B. -8000m

C. 4000m

D. 7000m

Answer: A

Watch Video Solution

29. If the air column in a pipe which is closed at one end, is in resonance with a vibrating turning fork at a frequency 60 Hz, then the length of the air column is (velocity of sound is 330m/s)

A. 35.7 cm

B. 31.7 cm

C. 12.5 cm

D. 62.5 cm

Answer: B

Watch Video Solution

30. A body of mass 5 kg stJrls from the origin with an initial velocity $\bar{u}=\left(30\hat{i}+40\hat{j}\right)ms^{-1}$.If a constant force $\left(-6\hat{i}-5\hat{j}\right)N$ acts on the body, the time in velocity, which the y-component of the velocity becomes zero is.

- A.5s
- B.20s
- C.40s
- D.80s

Answer: C

Watch Video Solution

31. A spherical Gaussian surface encloses a charge of $8.85 imes 10^{-8} C$ (i) Calculate the electric flux passing through the surface (ii) If the radius of Gaussian surface is doubled, how

would the flux change?

A.
$$10^4Nm^2/C$$

B.
$$10^3Nm^2/C$$

C.
$$10^2Nm^2\,/\,C$$

D. zero

Answer: A

32. The excess pressure inside mercury drop of diameter 4 mm is (Take surface tension of mercury is 0.465 N/m)

- A. 410 Pa
- B. 465 Pa
- C. 610 Pa
- D. 310 Pa

Answer: B

The equivalent capacitance of the combination shown in the figure between P and Q is $30\mu F$, the capacitance of capacitor C is

A.
$$20 \mu F$$

33.

B.
$$30\mu F$$

C.
$$40 \mu F$$

D. $60 \mu F$

Answer: D

Watch Video Solution

34. The resistance of the shunt required to allow 2% of the main current through the galvanometer of resistance 49Ω is

A. 1Ω

 $\mathrm{B.}~2\Omega$

 $\mathsf{C}.\,0.2\Omega$

D. 0.1Ω

Answer: A

Watch Video Solution

35. Density of a liquid in CGS system is

 $0.625 \frac{g}{cm^3}$. What is its magnitude is SI system?

A. 0.625

B. 0.0625

C. 0.00625

D. 625

Answer: D

Watch Video Solution

36. A difference of 2.3 eV separates two energy levels in an atom. What is the frequency of radiation emitted when the atom transits form the upper level to the lower level.

A.
$$6.65 imes10^{14} Hz$$

B.
$$3.68 imes 10^{15} Hz$$

C.
$$5.5 imes10^{14} Hz$$

D.
$$9.11 imes 10^{15} Hz$$

Answer: C

Watch Video Solution

37. A deuteron of kinetic energy 100 keV is describing a circular motion in a cyclotron having orbit of radius 0.5 m, in a plane perpendicular to describes circular orbit in the cyclotron of radius 0.5 m in the sae plane with the same magnetic field is

- A. 200 keV
- B. 50 keV
- C. 100 keV
- D. 25 keV

Answer: A

38. A moving coil galvanometer has following characteristics. Number of turns of coil=80, Area of coil= $50mm^2$, resistance of coil = 20Ω , flux density of radial field 0.2T, torsional constant of suspension wire = $5 \times 10^{-9} Nm/rad$. For this moving coil galvanometer, mark the correct statement(s).

A. The angular deflection produced due to a potential difference of 0.01 mV is 0.08 div

B. Current sensitivity of the device is 160

div/mA

C. Voltage sensitivity of the device is 8 div/mV

D. all of the above

Answer: D

39. Of the following transitions in a hydrogen atom, the one which gives an absorption line of highest frequency is

Answer: A

40. Truth table given represent

A	В	Y
0	0	1
1	0	0
0	1	0
1	1	0

A. XOR gate

B. NOR gate

C. AND gate

D. OR gate

Answer: B

Watch Video Solution

41. Which one of the following represents the correct dimensions of the coefficient of viscosity?

A. $\lceil ML^{-1}T^{-2}
ceil$

B.
$$\left\lceil MLT^{\,-1}
ight
ceil$$

C.
$$\left[ML^{-1}T^{-1}\right]$$

D.
$$\left[ML^{-2}T^{-2}\right]$$

Answer: C

Watch Video Solution

42. If a rate of change of current of 4 As^{-1} induces an emf of 20 mV in a solenoid, the self inductance of the solenoid is

A. 5 mH

B. 80 mH

C. 0.25 mH

D. zero

Answer: A

Watch Video Solution

43. The equation of a damped simple harmonic

motion is $2mrac{d^2x}{dt^2}+2a_0rac{dx}{dt}+kx=0$. Then

the angualr frequency of oscillation is

A.
$$\omega = \left(rac{k}{m} - rac{a_0^2}{2m^2}
ight)^{1/2}$$

B.
$$\omega = \left(rac{k}{m} - rac{a_0}{4m}
ight)^{1/2}$$

C.
$$\omega=\left(rac{k}{2m}-rac{a_0^2}{4m^2}
ight)^{1/2}$$

D.
$$\omega=\left(rac{k}{m}-rac{a_0^2}{4m^2}
ight)^{1/2}$$

Answer: C

44. A spring (spring constant=k) is cuttend into 4 equal parts and two parts are connected in parallel. What is the effective spring constant?

- A. 4 k
- B. 16 k
- C. 8 k
- D. 6 k

Answer: C

ratch video Solution

45. At what angle must the two forces (x+y)

and (x-y) act so that the resultant may be

$$\sqrt{\left(x^2+y^2
ight)}$$
 :-

A.
$$\cos^{-1}\left[-rac{(x^2+y^2)}{2(x^2-y^2)}
ight]$$

B.
$$\cos^{-1} \left[\frac{-2(x^2-y^2)}{(x^2+y^2)} \right]$$

C.
$$\cos^{-1} \left[- \frac{\left(x^2 + y^2\right)}{\left(x^2 - y^2\right)} \right]$$

D.
$$\cos^{-1} \Bigg\lceil -rac{\left(x^2-y^2
ight)}{\left(x^2+y^2
ight)} \Bigg
ceil$$

Answer: A

46. Faraday's law are consequence of conservation

A. charge

B. energy

C. mass

D. angular momentum

Answer: B

47. A body of mass 2 kg is kept by pressing to a vertical wall by a force of 100 N . The coefficient of friction between wall and body is 0.3. Then the frictional force is equal to

A. 6N

B. 20 N

C. 600N

D. 700N

Answer: B

- 48. The threshold frequency of a material is
- $2 imes 10^{14}$ Hz. What is its work function in eV ?
 - A. 0.8275 eV
 - B. 0.80 eV
 - C. 0.7325 eV
 - D. 0.9275 eV

Answer: A

- **49.** The susceptibility of magnetism at 300 K is 1.2×10^{-5} the temperature at which the susceptibility becomes 1.44×10^{-5} is
 - A. 200 keV
 - B. 240 K
 - C. 250 K
 - D. OK

Answer: C

