đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 08

Paper 1 Objective Type

1. The physical quantity which isnot a unit of energy is
A. Volt-Coulomb
B. $\mathrm{MeV}-\mathrm{s}$
C. Henry (ampere) ${ }^{2}$
D. Farad- $(\text { volt })^{2}$

Answer: B

D Watch Video Solution

2. A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_{c} is varying with the
time t as
$a_{c}=k^{2} r^{3} t^{4}$
where k is a constant. The power delivered to
the particle by the forces acting on it is
A. $\frac{1}{3} m k^{2} r^{4} t^{5}$
B. $m k^{2} r^{2} t$
C. $2 m k^{2} r^{4} t^{3}$
D. zero

Answer: C

3. Find ratio of acceleration due to gravity g at

 depth d and at height h where $d=2 h$A. $1: 1$
B. $1: 2$
C. 2:1
D. 1: 4

Answer: A
(Watch Video Solution
4. If error in radius is 3% whast is error in volume of sphere?
A. 0.03
B. 0.27
C. 0.09
D. 0.06

Answer: C

- Watch Video Solution

5. A body rolls without slipping. The radius of gyration of the body about an axis passing through its centre of mass is K. The radius of the body is R. The ratio of rotational kinetic energy to translational kinetic energy is.

$$
\begin{aligned}
& \text { A. } \frac{K^{2}}{R^{2}} \\
& \text { B. } \frac{R^{2}}{K^{2}+R^{2}} \\
& \text { C. } \frac{K^{2}}{K^{2}+R^{2}} \\
& \text { D. }\left(K^{2}+R^{2}\right)
\end{aligned}
$$

6. The square of resultant of two equal forces
is three times their product. Angle between
the force is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

- Watch Video Solution

7. A mass of 1 kg is suspended from a spring. Its time period of oscillation on the earth is T.

What will be its time periods at the centre of the earth?
A. Zero
B. T
C. $2 T$
D. Infinite

Answer: B

D Watch Video Solution

8. A bob of pendulum was filled with $H g$ and entire $H g$ is drained out, then the time period
of pendulum

A. remains unchanged

B. decreases

C. increases

D. increases then decreases

Answer: D

- Watch Video Solution

9. A motorboat covers a given distance in $6 h$ moving downstream on a river. It covers the
same distance in $10 h$ moving upstream. The
time it takes to cover the same distance in still
water is
A. $9 h$
B. $7.5 h$
C. $6.5 h$
D. $8 h$

Answer: B

D Watch Video Solution
10. The load versus elongation graph of four wires of same length and the same material as
shown in the figure. The thinest wire is
represented by the line

A. OD
B. $O B$
C. OC
D. OA

- Watch Video Solution

11. A thin metal disc of radius r floats on water surface and bends the surface downwards along the perimeter making an angle θ with vertical edge of the disc. If the disc displaces a weight of water W and surface tension of water is T, then the weight of metal disc is :
A. $2 \pi r T \cos \theta$
B. $2 \pi r T$
C. $2 \pi r T \cos \theta+w$

D. $2 \pi r T \cos \theta-w \mathrm{w}$

Answer: C

D Watch Video Solution

12. A soap bubble of radius r is placed on another bubble of radius $2 r$. The radius of the
surface common to both the bubbles is
A. $2 r$ concave towards P
B. $2 r$ concave towards Q
C. $3 r$ concave towards P
D. $3 r$ concave towards Q

Answer: A

D Watch Video Solution

13. When both the listener and source are moving towards each other, then which of the following is true regarding frequency and wavelength of wave obserseved by the observer?
A. More frequency, less wavelength
B. More frequency, more wavelength
C. Less frequency, less wavelength
D. More frequency, constant wavelength

Answer: A

D Watch Video Solution

14. The neck and bottom of a bottle are 3 cm and 15 cm in radius respectively. If the cork is pressed with a force 12 N in the neck of the
bottle, then force exerted on the bottom of the bottle is :-
A. $30 N$
B. 150 N
C. $300 N$
D. 600 N

Answer: C
(Watch Video Solution
15. A wave of length $2 m$ is superimposed on its
reflected wave to form a stationary wave. A
node is located at $x=3 m$, the next node will be located at x equals to
A. 3.25 m
B. 3.50 m
C. 3.75 m
D. 4 m

Answer: D

16. Two gases A and B having the same temperature T, same pressure P and same
volume V are mixed. If the mixture is at the same temperature and occupies a volume V .

The pressure of the mixture is
A. $p / 2$
B. p
C. $2 p$
D. $4 p$

Answer: C

D Watch Video Solution

17. A liquid of density $800 \mathrm{kgm}^{-3}$ is filled in a tank open at the top. The pressure of the liquid at the bottom of the tank is 6.4 atm. The velocity of efflux through a hole at the bottom
is (1 atm $=10^{4} \mathrm{Nm}^{-2}$)
A. $10 m s^{-1}$
B. $20 \mathrm{~ms}^{-1}$

C. $30 m s^{-1}$

D. $40 m s^{-1}$

Answer: D

- Watch Video Solution

18. Which of the following is the $\lambda_{m}-T$ graph for a perfectly blask body?
A.

Answer: D

- Watch Video Solution

19. The momentum of photon of
electromagnetic radiation
$3.3 \times 10^{-29} \mathrm{kgms}^{-1}$. What is the frequency and wavelength of the waves associated with it $? h=6.6 \times 10^{-34} J s$.
A. $7.5 \times 10^{12} \mathrm{~Hz}$
B. $1.5 \times 10^{13} \mathrm{~Hz}$
C. $6 \times 10^{10} \mathrm{~Hz}$
D. $3 \times 10^{-2} H z$

Answer: B
20. The refractive index of water is $4 / 3$ and
that of glass is $5 / 3$. What will be the critical
angle for the ray of light entering water from
the glass

> A. $\sin ^{-1}\left(\frac{3}{4}\right)$
> B. $\sin ^{-1}\left(\frac{3}{5}\right)$
> C. $\sin ^{-1}\left(\frac{4}{5}\right)$
D. Data given is insufficient

Answer: C

D Watch Video Solution

21. In Young's double slits experiment, light of wavelength $4000 \AA$ is used to produced bright fringes of width 0.6 mm , at a distance of $2 m$. If the whole apparatus is dipped in a liquid of refractive index 1.5 , then the fringe width will be

$$
\text { A. } 0.2 \mathrm{~mm}
$$

B. 0.3 mm
C. $0.4 m m$
D. 1.2 mm

Answer: C

D Watch Video Solution

22. The resolving power of a telescope whose
lens has a diameter of 1.22 m for a wavelength of $5000 \AA$ is
A. 2×10^{5}
B. 2×10^{6}
C. 2×10^{2}
D. 2×10^{4}

Answer: B

D Watch Video Solution

23. A meter bridge is balanced by putting 20π resistance in the left gap and 40π in the right, gap, if 40π resistance is now shunted with 40π
resistance the shift in the null point towards right is nearly
A. 16.67 cm
B. 50 cm
C. 25 cm
D. 70.67 cm

Answer: A
(Watch Video Solution
24. An air capacitor of capacity $C=10 \mu F$ is
connected to a constant voltage battery of
$12 V$. Now the space between the plates is
filled with a liquid of dielectirc constant 5 . The
charge that flows now from battery to the capacitor is
A. $40 \mu C$
B. $480 \mu C$
C. $600 \mu C$
D. $120 \mu C$

Answer: B

- Watch Video Solution

25. Calculate amount of charge flow, when a
conducting sphere of radius R and carrying a
charge Q, is joined to an uncharged conducting sphere of radius $2 R$.
A. $\frac{q}{4}$
B. $\frac{q}{3}$
C. $\frac{q}{2}$
D. $\frac{2 q}{3}$

Answer: D

D Watch Video Solution

26. The inward and outward electric flux for a
closed surface unit of $N-m^{2} / C$ are respectively 8×10^{3} and 4×10^{3}. Then the total charge inside the surface is [where $\varepsilon_{0}=$ permittivity constant]

$$
\text { A. } \frac{-4 \times 10^{3}}{\varepsilon_{0}} C
$$

B. $-4 \times 10^{3} \varepsilon_{0} C$
C. $-4 \times 10^{3} C$
D. $\frac{12 \times 10^{3}}{\varepsilon_{0}} C$

Answer: B

D Watch Video Solution

27. A cell in the secondary circuit gives null deflection for 2.5 m length of a potentiometer having 10 m length of wire. If the length of the potentiometer wire is increased by 1 m without
changing the cell in the primary, the position of the null point wil be
A. 3.5 m
B. 3 m
C. 2.75 m
D. 2.0 m

Answer: C
(Watch Video Solution
28. A galvanometer having a reisstance 12Ω gives a full scale deflection for a current f
$2.5 m A$. It is converted into a voltmeter of
range 10 V , what is the net resistasnce of the galvanometer?
A. 3898Ω
B. 4000Ω
C. 4Ω
D. 0.25Ω

Answer: B
29. A person is sitting in a lift acceleration upwards, Measured weight of person will be
A. less than actual weight
B. equal to actual weight
C. more than actual weight
D. None of the above

Answer: C
30. A proton is moving in uniform magnetic
field B in a circular path of radius a in a direction perpendicular to Z-axis along which field B exists. Calculate the angular momentum, if the radius is a charge on proton is e
A. $\frac{B e}{a^{2}}$
B. $e B^{2} a$
C. $a^{2} e B$

D. $a e B$

Answer: C

D Watch Video Solution

31. A bullet of mass 10 g moving with $300 \mathrm{~m} / \mathrm{s}$
hits a block of ice of mass 5 kg and drops dead. The velocity of ice is
A. $50 \mathrm{~cm} / \mathrm{s}$
B. $60 \mathrm{~cm} / \mathrm{s}$
C. $40 \mathrm{~cm} / \mathrm{s}$
D. $200 \mathrm{~cm} / \mathrm{s}$

Answer: B

D Watch Video Solution

32. A North pole of $40 A-m$ is palced 20 cm apart from a South pole of $80 A-m$.

Calculate the distance of a point from the Sourth pole on the line joining the two poles
where the resultant field due to these poles is

zero

A. 8.2 cm towards Northh pole
B. 8.2 cm away from North pole
C. 48.2 cm towards North pole
D. 48.2 cm away from North pole

Answer: C

D Watch Video Solution

33. Wires A and B are made from the same material. A has twice the diameter and three times the length of B. If the elastic limits are not reached, when each is stretched by the same tension, the ratio of energy stored in A to that in B is
A. 2:3
B. 3:4
C. 3:2
D. 6:1

Answer: B

- Watch Video Solution

34. A point source of light is placed 4 m below
the surface of water of refractive index $5 / 3$.
The minimum diameter of a disc, which should be placed over the source, on the surface of water to cut-off all light coming out of water is
A. infinite
B. 6 m
C. 4 m
D. 3 m

Answer: B

D Watch Video Solution

35. A $100 \mathrm{~V}, \mathrm{aC}$ source of frequency of 500 Hz is
connected to an L-C-LR circuit with
$L=8.1 m H, C=12.5 \mu F, R=10 \Omega$
all
connected in series as shown in figure. What is
the quality factor of circuit?

A. 2.02
B. 2.5434
C. 20.54
D. 200.54

Answer: B
36. In an ideal transformer, the voltage and current in the primary are 200 V and 2 A respectively and voltage in secondary is 2000 V . The value of the current in secondary is
A. $0.2 A$
B. 10 A
C. $1 A$
D. 20 A
37. The energy difference between the first two
levels of hydrogen atom is 10.2 eV . For another element of atomic number 10 and mass number 20 , this will be
A. 1020 eV
B. 2040 eV
C. 0.51 eV
D. 0.102 eV

Answer: A

- Watch Video Solution

38. A steel wire 0.5 m long has a total mass of
0.02 kg and is stretched with a tension of $800 N$. The frequency when it vibrates in its fundamental mode is
A. 2 Hz
B. 141 Hz
C. 100 Hz

D. 200 Hz

Answer: B

D Watch Video Solution

39. Energy E of a hydrogen atom with
principle quantum number n is given by $E=\frac{-13.6}{n^{2}} e V$. The energy of a photon ejected when the electron jumps from $n=3$ state to $n=2$ state of hydrogen is approximately
A. 1.5 eV
B. 0.85 eV
C. 3.3 eV
D. 1.9 eV

Answer: D

D Watch Video Solution

40. A convex lens has its radi of curvature equal. The focal length of the lens is f. It is is dividded vertically into two identical plano-
convex lenses by cutting it, then the focal
length of the plane -convex lens is ($\mu=$ the refractive index of the material of the lens)
A. f
B. $\frac{f}{2}$
C. $2 f$
D. $(\mu-1) f$

Answer: C

D Watch Video Solution
41. An organ pipe closed at one end has
fundamental frequency of 1500 hz . The maximum number of overtones generated by
the pipe which is normal person can hear is
A. 4
B. 12
C. 6
D. 9

Answer: C

D Watch Video Solution
42. Assuming that the silicon diode (having negligible resistance) the current through the diode is (knee voltage of silicon diode is 0.7 V)

A. zero
B. $7 m A$
C. $2.3 m A$
D. $23 m A$

Answer: D

- Watch Video Solution

43. A sinusoidal voltage of rms value 100 V is connected to an ideal function diode as shown
in figure. The final potential difference across
the capacitor will be

A. 100 V
B. $100 \sqrt{2} V$
C. $50 \sqrt{2} V$
D. Zero

Answer: C

D Watch Video Solution
44. A stationary wave $y=0.4 \sin \frac{2 \pi}{40} \cos 100 \pi t$ is produced in string fixced of both ends. The
minimum possible length of the string is given by
A. $10 m$
B. $20 \sqrt{2} m$
C. $20 m$
D. $28 m$

Answer: C
(Watch Video Solution
45. A sonometer wire resonates with a given tuning fork forming a standing wave with five antinodes between the two bridges when a mass of 9 kg is suspended from the wire. When this mass is replaced by a mass ' M ' kg , the wire resonates with the same tuning fork forming three antinodes for the same positions of the bridges. Find the value of M.
A. 25 kg
B. 5 kg
C. 12.5 kg

D. $\frac{1}{25} k g$

Answer: A

D Watch Video Solution

46. If a ladder weighting $250 N$ is placed against a smooth vertical wall having coefficient of friction between it and floor 0.3,
then what is the maximum force of friction available at the point of contact between the ladder and the floor?
A. 75 m
B. 50 m
C. $35 m$
D. $25 M$

Answer: A

- Watch Video Solution

47. Four waves A, B, C, D of frequencies 6 MHz .
$8 \mathrm{MHz}, 10 \mathrm{MHz}$ and 4 MHz respectively are beamed in the same direction, communicate
via sky waves. Which one of these is likely travel the longest distance in the ionosphere before suffering total internal reflection?
A. A
B. B
C. C
D. D

Answer: C

D Watch Video Solution
48. Two identical capacitors, have the same capacitance C. One of them is charged to potential V_{1} and the other V_{2}. The negative ends of the capacitors are connected together.

When the poistive ends are also connected,
the decrease in energy of the combined
system is

$$
\begin{aligned}
& \text { A. } \frac{1}{4} C\left(V_{1}^{2}-V_{2}^{2}\right) \\
& \text { B. } \frac{1}{4} C\left(V_{1}^{2}+V_{2}^{2}\right) \\
& \text { C. } \frac{1}{4} C\left(V_{1}-V_{2}\right)^{2} \\
& \text { D. } \frac{1}{4} C\left(V_{1}+V_{2}\right)^{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

49. For a certain metal, incident frequency v is
five times of threshold frequency v_{0} and the maximum velocity of coming out photoelectrons is $8 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}$. If the maximum velocity of photoelectrons will be

$$
\text { A. } 4 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

$$
\text { B. } 6 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

C. $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$

D. $1 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: A

D View Text Solution

50. A simple pendulum is set into vibrations.

The bob of the pendulum comes to rest after sometime due to
A. air friction

B. moment of inertia

C. weight of the bob

D. combination of all the above

Answer: A

- Watch Video Solution

