©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 09

Paper 1 Physics Chemistry

1. A ball is moving in a circular path of radius

5 m . If tangential acceleration at any instant is
$10 \mathrm{~m} / \mathrm{s}^{2}$ and the net acceleration makes an angle 30° with the centripetal acceleration, then the instantaneous speed is
A. $50 \sqrt{3} m / s$
B. $9.3 m / s$
C. $6.6 \mathrm{~m} / \mathrm{s}$
D. $5.4 m / s$

Answer: B

D Watch Video Solution
2. A wire under certain tension is in unison with a tuning fork when tension in the wire is increased by $2 \%, 3$ beats/second are produced.

Find the frequency of tuning fork.
A. 250 Hz
B. 300 Hz
C. 400 Hz
D. 350 Hz

Answer: B

- Watch Video Solution

3. The unit of magnetic moment is

A. T / J
B. $J T^{-1}$
C. A / m^{2}
D. A / m

Answer: B

- Watch Video Solution

4. In a rectangle $A B C D(B C=2 A B)$. The moment of inertia is minimum along axis through
A. BC
B. $B D$
C. HF
D. EG

Answer: D

- Watch Video Solution

5. If $n_{1}, n_{2} \operatorname{and} n_{3}$ are the fundamental
frequencies of three segments into which a string is divided, then the original
fundamental frequency n of the string is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}} \\
& \text { B. } \frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n_{1}}+\frac{1}{\sqrt{n_{2}}+\frac{1}{\sqrt{n_{3}}}}} \\
& \text { C. } \sqrt{n}=\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}} \\
& \text { D. } n=n_{1}+n_{2}+n_{3}
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. If at the same temperature and pressure,
the densities of two diatomic gases are d_{1} and d_{2} respectively. The ratio of mean kinetic energy permolecule of gasses will be
A. 1:1
B. $d_{1}: d_{2}$
C. $\sqrt{d_{1}}: \sqrt{d_{2}}$
D. $\sqrt{d_{2}}: \sqrt{d_{1}}$

Answer: A

D Watch Video Solution

7. Two coherent sources with intensity ratio α
interfere. Then, the ratio $\frac{l_{\max }-l_{\min }}{l_{\max }+l_{\min }}$ is
A. 2α
B. $\frac{2 \sqrt{\alpha}}{1+\alpha}$
C. $\frac{2}{1-\alpha}$
D. $\frac{4 \sqrt{\alpha}}{1+\alpha}$

Answer: B

D Watch Video Solution

8. Two polaroids are crossed. If one of them is
rotated through 30° and unpolarised light of intensity l_{0} is incident on the first polaroid, then the intensity of transmitted light will be

$$
\text { A. } \frac{l_{0}}{4}
$$

B. $\frac{3 l_{0}}{4}$
C. $\frac{3 l_{0}}{8}$
D. $\frac{l_{0}}{8}$

Answer: D

D Watch Video Solution

9. An unchanged capacitor with a solid dielectric is connected to a similar air capacitor charged to a potential of V_{0}. If the common potential after sharing of charges
becomes V , then the dielectric constant of the dielectric must be
A. V_{0} / V
B. V / V_{0}
C. $\left(V_{0}-V\right) / V$
D. $\left(V_{0}-V\right) / V_{0}$

Answer: C
(Watch Video Solution
10. The inductance of a coil in which a current of 0.2 A is increasing at the rate of $0.5 \mathrm{~A} / \mathrm{s}$ represents a power flow of 0.5 W is
A. 2 H
B. 5 H
C. 10 H
D. 20 H

Answer: B

D Watch Video Solution
11. The values of two resistors are
$R_{1}=(6 \pm 0.3) k \Omega \quad$ and $\quad R_{2}=(10 \pm 0.2) k \Omega$.
The percentage error in the equivalent resistance when they are connected in parallel is
A. 0.05125
B. 0.02
C. 0.03125
D. 0.10125

Answer: D
12. What is cyclotron frequency of an electron
with an energy of 100 eV in the earth's magnetic field of $1 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$ if its velocity is perpedicular to magnetic field.
A. 0.7 MHz
B. 2.1 MHz
C. 1.4 MHz
D. 2.8 MHz

Answer: D

D Watch Video Solution

13. In the circuit given below, the ameter and voltmeter are ideal measuring devices. What is the reading of the voltmeter?

A. 6 V
B. 3 V
C. 1.5 V
D. Zero

Answer: D

D Watch Video Solution

14. When the road is dry and the coefficient of friction is μ, the maximum speed of a car in a circular path is $10 \mathrm{~m} / \mathrm{s}$. if the road becomes
wet and $\mu^{\prime}=\frac{\mu}{2}$, what is the maximum speed permitted?
A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $10 \sqrt{2} m / s$
D. $5 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: D
(Watch Video Solution
15. What should be the rate of variation of current in self inductance 1 H to generate induced emf equal to 1 V ?
A. Less than $1 \mathrm{~A} / \mathrm{s}$
B. $1 \mathrm{~A} / \mathrm{s}$
C. $2 \mathrm{~A} / \mathrm{s}$
D. More than $2 \mathrm{~A} / \mathrm{s}$

Answer: B

D Watch Video Solution
16. The potential of a large liquid drop when
eight liquid drops are combined is 20 V . Then,
the potential of each single drop was
A. 10 V
B. 7.5 V
C. 5 V
D. 2.5 V

Answer: C

D Watch Video Solution
17. If the wavelength of incident light changes
from 400 nm to 300 nm , the stopping potential for photoelectrons emitted from a surface becomes approximately
A. 1.0 V greater
B. 1.0 V smaller
C. 0.5 V greater
D. 0.5 V smaller

Answer: A
18. A hollow cylinder has a charge $q C$ within it.

If ϕ is the electric flux in unit of voltmeter associated with the curved surface B the flux
linked with the plance surface A in unit of voltmeter will be

$$
\begin{aligned}
& \text { A. } \frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi\right) \\
& \text { B. } \frac{q}{2 \varepsilon_{0}}
\end{aligned}
$$

> C. $\frac{\phi}{3}$
> D. $\frac{q}{\varepsilon_{0}}-\phi$

Answer: A

D Watch Video Solution

19. A point is situated at 6.5 cm and 6.65 cm
from two coherent sources. Find the nature of
illumination at the point if wavelength of light is $5000 \AA$.
A. Bright
B. Dark
C. Low bright
D. Low dark

Answer: A

D Watch Video Solution
20. The binding energy of deuteron is 2.2 MeV
and that of $\cdot{ }_{2}^{4} \mathrm{He}$ is 28 MeV . If two deuterons
are fused to form one ${ }_{2}^{4} \mathrm{He}$, th n the energy released is
A. 25.8 MeV
B. 23.6 MeV
C. 19.2 MeV
D. 30.2 MeV

Answer: B
(Watch Video Solution
21. In an n-p-n transistor, the collector current
is 10 mA . If 90% of the electrons emitted reach
the collector, then the emitter current will be

$$
\begin{aligned}
& \text { A. } l_{e}=1 m A, l_{b}=11 m A \\
& \text { B. } l_{e}=11 m A, l_{b}=1 m A \\
& \text { C. } l_{e}=-1 m A, l_{b 0=9 m A} \\
& \text { D. } l_{e}=9 m A, l_{b}=1 m A
\end{aligned}
$$

Answer: B

- Watch Video Solution

22. Two equal vector have a resultant equal to

either of them, then the angle between them
will be:
A. 120°
B. 110°
C. 60°
D. 150°

Answer: A

D Watch Video Solution
23. In the following network of 5 branches, the respective current are l_{1}, l_{2}, l_{3} etc. given that $l_{1}=-0.5 A, l_{4}=1 A$ and $l_{5}=0.5 A$, the remaining currents are

$$
\begin{aligned}
& \text { A. } l_{2}=-1.5 \mathrm{~A}, l_{3}=0.5 \mathrm{~A}, l_{6}=0.5 \mathrm{~A} \\
& \text { B. } l_{2}=1.5 \mathrm{~A}, l_{3}=-0.5 \mathrm{~A}, l_{6}=0.5 \mathrm{~A} \\
& \text { С. } l_{2}=1.5 \mathrm{~A}, l_{3}=0.5 \mathrm{~A}, l_{6}=-0.5 \mathrm{~A}
\end{aligned}
$$

$$
\text { D. } l_{2}=1.5 A, l_{3}=0.5 A, l_{6}=0.5 A
$$

Answer: B

D Watch Video Solution

24. Balmer gave an equation for wavelength of
visible radiation of H -spectrum as
$\lambda=\frac{k n^{2}}{n^{2}-4}$. The value of k in terms of Rydberg's constant R is m / R, where m is :
A. R
B. 4 R
C. R/4
D. $4 / \mathrm{R}$

Answer: D

D Watch Video Solution

25. A radioactive substance has an average life
of 5 hours. In a time of 5 hours
A. all active nuclei will decay
B. less than 50% of the active nuclei will decay
C. less than 60% of the active nuclei will decay
D. more than 70% of the active nuclei will
decay

Answer: D

26. A solid sphere of radius R has moment of inertia I about its diameter. What will be moment of inertia of a shell of same mass and same radius about its diameter?
A. $\frac{3}{5} l$
B. $\frac{5}{3} l$
C. $\frac{2}{3} l$
D. $\frac{2}{5} l$

Answer: B

27. If the angle between the vectors A and B is

θ, the value of the product ($B \times A$). A is equal to
A. $B A^{2} \cos \theta$
B. $B A^{2} \sin \theta$
C. $B A^{2} \sin \theta \cos \theta$
D. zero

Answer: D
28. By sucking a straw a student can reduce the pressure in his lungs to 750 mm of $H g($ density $\left.)=13.6 \mathrm{~kg} / \mathrm{cm}^{3}\right) \quad$ Using the straw, he can drink water from a glass up to a maximum depth of :
A. 10 cm
B. 75 cm
C. 13.6 cm
D. 1.36 cm

Answer: C

D Watch Video Solution

29. A stretched sonometer wire is in unison
with a tuning fork. When length of wire is
increase by 1%, the number of beats heard per second is 5 . then, the frequency of the fork is
A. 500 Hz
B. 505 Hz
C. 255 Hz

D. 250 Hz

Answer: B

D Watch Video Solution

30. The displacement y in cm is given in terms
of time t sec by the equation
$y=3 \sin 314 t+4 \cos 314 t$

The amplitude of SHM is
A. 7 cm
B. 3 cm
C. 4 cm
D. 5 cm

Answer: D

D Watch Video Solution

31. Two wires of same material of length I and 21 vibrate with frequencies 100 Hz and 150 Hz respectively. The ratio of their tensions is
A. $2: 3$
B. 3: 2
C. 1:9
D. $1: 3$

Answer: C

D Watch Video Solution

32. Two solid pieces, one of steel and the other of aluminium when immersed completely in
water have equal weights. When the solid pieces are weighed in air
A. the weight of aluminium is half the weight of steel
B. steel piece will weigh more
C. they have the same weight
D. aluminium piece will weigh more

Answer: A

33. A galvanometer has a coil of resistance 100Ω and gives a full scale deflection for 30
volt range, the resistance required to be added will be
A. 900Ω
B. 1800Ω
C. 500Ω
D. 1000Ω

Answer: A

D View Text Solution
34. If the radius of a potentiometer wire is increased four times, keeping its length constant, then the value of its potential gradient will become
A. half
B. two times
C. four times
D. constant

- Watch Video Solution

35. A very long magneti is placed vertically
with one pole on the table. A neutral point was found at 20 cm from the pole. What is the pole strength if the vertical component of earth's field is $0.4 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$?
A. 16 A-m
B. 8 A-m
C. 4 A-m

D. none of the

Answer: A

- Watch Video Solution

36. A single slit of width a is illuminated by violet light of wavelength 400 nm and the width of the diffraction pattern is measured as
y. When half of the slit width is covered and
illuminated by yellow light of wavelength 600 nm , the width of the diffraction pattern is
A. the patternn vanishes and the width is
zero
B. $\frac{y}{3}$
C. $3 y$

D. None of the above

Answer: C

(Watch Video Solution
37. A body of mass m is travelling with a velocity vu. When a constant retarding force F is applied, it comes to rest after travelling a distance s_{1}. If the initial velocity is 2 u with the same force F, the distance travelled before it comes to rest is s_{2}. then,
A. $s_{2}=4 s_{1}$
B. $2 s_{2}=2 s_{1}$
C. $s_{2}=\frac{s_{1}}{2}$
D. $s_{2}=s_{1}$

Answer: A

D Watch Video Solution

38. For a carrier frequency of 100 kHz and a modulating frequency of 5 kHz what is the width of AM transmission-
A. 105 kHz
B. 95 kHz
C. 2.5 kHz
D. 10 kHz

Answer: D

D Watch Video Solution

39. A rocket with a lift-off mass $3.5 \times 10^{4} \mathrm{~kg}$ is
blasted upwards with an initial acceleration of
$10 \mathrm{~m} / \mathrm{s}^{2}$. Then the initial thrust of the blast is
A. $3.5 \times 10^{5} N$
B. $7.0 \times 10^{5} N$
C. $14.0 \times 10^{5} N$
D. $1.75 \times 10^{5} \mathrm{~N}$

Answer: A

D Watch Video Solution

40. A particle of mass M is situated at the centre of a spherical shell of same mass and radius 'a'. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will be

$$
\text { A. }-\frac{3 G M}{a}
$$

B. $-\frac{2 G M}{a}$
C. $-\frac{G M}{a}$

D. $-\frac{4 G M}{a}$

Answer: A

D Watch Video Solution

41. The maimum velocity of a particle, executing SHM with an amplitude 7 mm is 4.4 m / s. the period of oscillation is
A. 0.01s
B. 10s
C. 0.1s
D. 100 s

Answer: A

- Watch Video Solution

42. A large glass slabe $(\mu=5 / 3)$ of thickness

8 cm is placed over a point source of light on a
plane surface. It is seen that light emerges out of th etop surface fo the slab from a circular area of radius Rcm . What is the value of R ?
A. 6 cm
B. 7 cm
C. 8 cm
D. 9 cm

Answer: A

D Watch Video Solution
43. If the work done in stretching a wire by 1 mm is 2 J , then work necessary for stretching another wire of same material but with double
radius of corss-section and half the length by 1

mm is

A. 16
B. 8
C. 4
D. $\frac{1}{4}$

Answer: B
(Watch Video Solution
44. A fixed volume of iron is drawn into a wire of length l. The extension produced in this wire by a constant force F is proportional to
A. $\frac{1}{L}$
B. L^{2}
C. L

$$
\text { D. } \frac{1}{L^{2}}
$$

Answer: B

D Watch Video Solution
45. A capillary tube when immersed vertically in a liquid records a rise of 3 cm .if the tube is immersed in the liquid at an angle of 60° with the vertical, then find the length of the liqiud column along the tube.
A. 9 cm
B. 6 cm
C. 3 cm
D. 2 cm

Watch Video Solution

46.

The period of oscillation of a mass M
suspended from a spring of spring constant K
is T. the time period of oscillation of combined
blocks is
A. $\frac{T}{\sqrt{2}}$
B. $\sqrt{2} T$
C. $2 T$
D. $\mathrm{T} / 2$

Answer: B

D Watch Video Solution
47. Starting from rest, a body slides down at
45° inclined plane in twice the time it takes to
slide down the same distance in the absence
of friction. The coefficient of friction between
the body and the inclined plane is
A. 0.33
B. 0.25
C. 0.75
D. 0.8
48. The radiation energy density per unit wavelength at a temperature T has a maximum at a wavelength λ_{0}. At temperature 2 T , it will have a maximum wavelength
A. $4 \lambda_{0}$
B. $2 \lambda_{0}$
C. $\frac{\lambda_{0}}{2}$
D. $\frac{\lambda_{0}}{4}$

Answer: C

- Watch Video Solution

49. A cup of tea cools from $80^{\circ} C$ to $60^{\circ} C$ in one minute. The ambient temperature is $30^{\circ} \mathrm{C}$
. In cooling from $60^{\circ} C$ to $50^{\circ} C$ it will take
A. 50 s
B. 90 s
C. 60 s
D. 20 s

Answer: A

D Watch Video Solution

50. A condenser of capacity C is charged to a potential difference of V_{1}. The plates of the condenser are then connected to an ideal inductor of inductance L. The current through
the inductor wehnn the potential difference across the condenser reduces to V_{2} is

$$
\text { A. }\left(\frac{C\left(V_{1}-V_{2}\right)^{2}}{L}\right)^{\frac{1}{2}}
$$

$$
\begin{aligned}
& \text { B. } \frac{C\left(V_{1}^{2}-V_{2}^{2}\right)}{L} \\
& \text { C. } \frac{C\left(V_{1}^{2}+V_{2}^{2}\right)}{L} \\
& \text { D. }\left(\frac{C\left(V_{1}^{2}-V_{2}^{2}\right)}{L}\right)^{\frac{1}{2}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

