©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 11

Paper 1 Physics

1. An object is placed infront of a convex mirror of focal length f. Find the maximum and
minimum distance of two object from the mirror such that the image is real and magnified.
A. 20 and ∞
B. f and $2 f$
C. f and 0
D. None of these

Answer: D

D Watch Video Solution
2. A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N ?
A. $10 \mathrm{ra} \frac{d}{s^{2}}$
B. $15 \mathrm{ra} \frac{d}{s^{2}}$
C. $20 \mathrm{ra} \frac{\mathrm{d}}{s^{2}}$
D. $25 \mathrm{ra} \frac{\mathrm{d}}{s^{2}}$

Answer: D

- Watch Video Solution

3. A body of mass m is situated on the earth in the gravitational field of sun. For the body to escape from the gravitation pull of the solar system the body must be imparted an escape velocity of (assume earth to be stationary)
A. $11.2 \mathrm{~km} / \mathrm{s}$
B. $22.4 \mathrm{~km} / \mathrm{s}$
C. $33.6 \mathrm{~km} / \mathrm{s}$
D. $42 \mathrm{~km} / \mathrm{s}$

Answer: D

D Watch Video Solution

4. The root mean square velocity of the molecules in a sample of helium is $5 / 7 t h$ that of the molecules in a sample of hydrogen. If the temperature of hydrogen sample is $0^{\circ} C$, then the temperature of the helium sample is about
B. $273^{\circ} C$
C. 173 K
D. $0^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

5. The refractive index of water and glycerine are 1.33 and 1.47 respectively. What is the critical angle for a light ray going from the latter to the former?
A. $60^{\circ} 48^{\prime}$
B. $64^{\circ} 48^{\prime}$
C. $74^{\circ} 48^{\prime}$
D. None of these

Answer: B

D Watch Video Solution
6. A stone tied to a string of length L is
whirled in a vertical circle with the ofter end of
the string at the centre. At a certin instant of
time, the stone is at its lowest position, and
has a speed is, the magintube of the change
in its velocity as it reached a positive when the
string is horizontal is

> A. $\sqrt{u^{2}-2 g L}$
> B. $\sqrt{2 g L}$
> C. $\sqrt{u^{2}-g L}$
> D. $\sqrt{2\left(u^{2}-g L\right)}$

Answer: D

7. What is the smallest radius of a circle at

 which a cyclist can travel if its speed is 36 km / h, angle of inclination 45° and $g=10 \mathrm{~m} / \mathrm{s}^{2}$?A. 20 m
B. 10 m
C. 30 m
D. 40 m

- Watch Video Solution

8. A 10 kg stone is suspended with a rope of breaking strength $30 \mathrm{~kg}-\mathrm{wt}$. The minimum time in which the stone can be raised through a height 10 m starting from rest is (Take, $\left.g=10 N k g^{-1}\right)$.
A. 0.5 s
B. 1s
C. $\sqrt{\frac{2}{3}}$
D. 2 s

Answer: B

- Watch Video Solution

9. A pendulum bob has a speed of $3 \mathrm{~ms}^{-1}$ at
its lowest position. The pendulum is 0.5 m
long. The speed of the bob, when string makes
an angle of 60° to the vertical is
$\left(\right.$ take, $\left.\mathrm{g}=10 \mathrm{~ms}^{-1}\right)$
A. $\frac{3}{2} m / s$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $\frac{1}{2} m / s$
D. $3 \mathrm{~m} / \mathrm{s}$

Answer: B
(Watch Video Solution
10. Figure shows the displacement time graphs of two simple harmonic motions I and
II. From the graph it follows that

A. curve I has same frequency as that of
curve II
B. curve I has frequency twice that of curve

II
C. curve I has frequency half that of curve II

D. curve I has frequency four times that of

 curve II
Answer: C

D Watch Video Solution

11. A ray of light is Incident on a glass plate at
60°. The reflected and refracted rays are
found to be mutually perpe:ndiwlar. The refractive index of the glass is
A. 2
B. 1.73
C. 1.5
D. 1.15

Answer: B

D Watch Video Solution

12. In the interference pattern produced by
two identical slits, the intensity of central
maximum is I . What will the intensity of light at the same spot, if one of the slits is closed?
A. I
B. I/2
C. 1/4
D. I/8

Answer: C
(Watch Video Solution
13. A geostationary satellite orbites around
the earth in a circular orbit of radius 36000 km
Then, the time period of a spy satellite orbiting a few hundred km above the earth's surface ($R_{e}=6400 \mathrm{~km}$) will approximately be
A. 1 h
B. 2 h
C. 24 h
D. 36 h

Answer: B
14. A capacitor of capacitance $10 \mu F$ is charged
by connecting through a resistance of 200 mga and battery of 20 V . What is the energy supplied by the battery?

A. Less than 2 mJ
B. 2 mJ
C. More than 2 mJ
D. Cannot be predicted

Answer: C

D Watch Video Solution

15. Consider the following statement. When
jumping from some height, you should bend
your knees as you come to rest instead of
keeping your legs stiff. Which of the following
relations can be useful in explaining the statement?
A. $\Delta p_{1}=-\Delta p_{2}$
B. $\Delta E=-0 \Delta(P E+K E)=0$
C. $F \Delta t=m \Delta v$
D. $\Delta x \propto \Delta F$

Answer: C

D Watch Video Solution
16. Two equal forces (P each) act at a point inclined to each other at an angle of 120°. The magnitude of their resultant is
A. $P / 2$
B. $P / 4$
C. P
D. $2 P$

Answer: C
17. In a potentiometer experiment for measuring the emf of a cell the null point is at 240 cm when we have a 400ω resistor in series with the cell and galvanometer. If the series
resistance is reduced to half, the null point will be at
A. 120 cm
B. 240 cm
C. 480 cm
D. 600 cm

Answer: B

D Watch Video Solution

18. Figure shows the circular motion of a particle. The radius of the circle, the period, sense of revolution and the initial position are indicated in the • figure. The simple harmonic motion of the X-projection of the radius vector
of the rotating particle Pis

A. $x=2 \cos \left(2 \pi t+\frac{\pi}{4}\right)$
B. $x=2 \sin \left(2 \pi t+\frac{\pi}{4}\right)$
C. $x=2 \sin \left(2 \pi t-\frac{\pi}{4}\right)$
D. $x=2 \cos \left(2 \pi t-\frac{\pi}{4}\right)$

Answer: A

D Watch Video Solution

19. A frame made of metallic wire enclosing a
surface area A is covered with a soap film. If
the area of the frame of metallic wire is
reduced by 25%, the energy of the soap film
will be changed by
A. 1
B. 0.75
C. 0.5
D. 0.25

Answer: D

D Watch Video Solution

20. A plane wave of wavelength $6250 \AA$ is incident normally on a slit of width 2×10^{-2} cm . The width of the principal maximum on a screen distant 50 cm will be

A. $312.5 \times 10^{-3} \mathrm{~cm}$
 B. $312.5 \times 10^{-3} m$
 C. $312.5 \times 10^{-2} \mathrm{~m}$
 D. $312.5 \mathrm{xx} \mathrm{10} 10^{\wedge}(-3)^{\wedge} \mathrm{m}$

Answer: A

D Watch Video Solution

21. The susceptibility of a paramagnetic material is Kat $27^{\circ} C$. At what temperature will its susceptibility be K/2?
A. $600^{\circ} \mathrm{C}$
B. $287^{\circ} C$
C. $54^{\circ} \mathrm{C}$
D. $327^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

22. If the frequency of first harmonic of a
closed pipe is in unison with the third
harmonic of an open pipe. Then, the ratio of
lengths of the pipe closed at one end to the open at both the ends is

$$
\begin{aligned}
& \text { A. } \frac{1}{12} \\
& \text { B. } \frac{3}{4} \\
& \text { C. } \frac{1}{6} \\
& \text { D. } \frac{6}{7}
\end{aligned}
$$

Answer: C
(Watch Video Solution
23. Consider a collection of a large number of particles each with speed v. The direction of velocity is randomly distributed in the collection. Show that the magnitude of the relative velocity between a pair of particles averaged over all the pairs in the collection is greater than v .
A. $4 v / \pi$
B. greater than $4 v / \pi$
C. less than $4 v / \pi$

Answer: A

D Watch Video Solution

24. In a semiconductor diode p-side is earthed

and N -side is applied a potential of -2 V , the diode shall
A. conduct
B. not conduct

C. conduct partially

D. break down

Answer: A

- Watch Video Solution

25. Assuming that the function diode is ideal,
the current in the arrangement shown in figure is .

A. zero
B. 2 mA
C. 10 mA
D. 30 mA

Answer: A

D Watch Video Solution
26. In the given circuit the potential at point B is zero, the potential at points A and D will be

A. $V_{A}=4 V, V_{D}=9 V$
B. $V_{A}=3 V, V_{D}=4 V$
C. $V_{A}=9 V, V_{D}=3 V$
D. $V_{A}=4 V, V_{D}=-3 V$

Answer: D

- Watch Video Solution

27. The magnetic flux ϕ (in weber) in a closed
circuit of resistance 10Ω varies with time t (in
secnod) according to equation
$\phi=6 t^{2}-5 t+1$. The magnitude of induced
current at $t=0.25 \mathrm{~s}$ is
A. $0.2 A$
B. 0.6 A
C. 1.2A
D. 0.8 A

Answer: A
A. 10 mA
B. 22 mA
C. 40 mA
D. 80 mA

Answer: B

- Watch Video Solution

29. The sun with surface t,emper'ature of 6000
K has maximum emlssion at 5000 A. The temperature of a star whose maximum emission is at $4500 \AA$ will be
A. 5500 k
B. 6500 k
C. 6000 k

D. 6666.7 k

Answer: D

D Watch Video Solution

30. Energy required to remove an electron from aluminium surface is 4.2 eV . If light of wavelength $2000 \AA$ falls on the surface , the velocity of the fastest electron ejected from the surface will be

$$
\text { A. } 2.5 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

B. $2.5 \times 10^{9} \mathrm{~m} / \mathrm{s}$
C. $6.7 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. None of these

Answer: A

D Watch Video Solution

31. A liquid X of density $3.36 \mathrm{~g} / \mathrm{cm}^{3}$ poured in a U-tube which contains Hg . Another liquid Y is poured in left arm with heght 8 cm upper
levels of X and Y are same. What is density of Y ?
A. $0.8 g c c^{-1}$
B. $1.2 g c c^{-1}$
C. $1.4 g c c^{-1}$
D. $1.6 g c c^{-1}$

Answer: A
(Watch Video Solution
32. Ionization potential of hydrogen atom is
13.6 V . Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV . The spectral lines emitted by hydrogen atoms according to Bohr's theory will be
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

33. Water is flowing continuously from a tap
having an internal diameter $8 \times 10^{-3} \mathrm{~m}$. The water velocity as it leaves the tap is $0.4 \mathrm{~m} / \mathrm{s}$.

The diameter of the water stream at a distance $2 \times 10^{-1} \mathrm{~m}$ below the tap is close to
A. $7.5 \times 10^{-3} \mathrm{~m}$
B. $9.6 \times 10^{-3} \mathrm{~m}$
C. $3.6 \times 10^{-3} \mathrm{~m}$
D. $5.0 \times 10^{-3} \mathrm{~m}$

Answer: C

D View Text Solution

34. A galvanometer of resistance 98 ohms is
shunted by a resistance of 2 ohms. The
fraction of the total current that pass through is.
A. $1 / 50$
B. $1 / 49$
C. $1 / 2$
D. $1 / 98$

Answer: A

D Watch Video Solution

35. The equations of two SH M's are
$X_{1}=4 \sin (\omega t+\pi / 2) . X_{2}=3 \sin (\omega t+\pi)$
A. 6 units
B. 5 units
C. 1 units
D. 7 units

Answer: B

D Watch Video Solution

36. A proton passes undeviated through a ~eg_ion ~here both the electric and magnetic fields exlst m sUltable directions. Its velocity is
v. If an alpha particle of double the charge of proton passes through the same region with
the velocity $\frac{V}{2}$ it will
A. remain stationary
B. be deflected towards the driection of magnetic field
C. path udeviated.
D. be deflected towards the direction of
electric filed

- Watch Video Solution

37. A wire elongates by 1 mm when a load W is
hanged from it. If the wire goes over a pulley and two weights W each are hung at the two ends, the elongation of the wire will be (in mm)
A. I/2
B. I
C. 21

D. zero

Answer: B

D Watch Video Solution

38. A wire of length $2 m$ is made from $10 \mathrm{~cm}^{2}$ of copper. A force F is applied so that its length increases by 2 mm . Another wire of length $8 m$ is made from the same volume of copper. If
the force F is applied to it, its length will increase by
A. 0.8 cm
B. 1.6 cm
C. 2.4 cm
D. 3.2 cm

Answer: D

D Watch Video Solution
39. In a stationary wave, all particles of the medium cross the mean position with (
A. different velcoities at different instants
B. different velocities at same instant
C. same speed at all instant
D. different speeds at all instant

Answer: A

D Watch Video Solution
40. When a capillary is dipped in water, water rises 0.015 m in it . If the surface tension of
water is $75 \times 10^{-3} \mathrm{~N} / \mathrm{m}$, the radius of

capillary is

A. $0.1 m m$
B. 0.5 mm
C. 1 mm
D. 2 mm

Answer: C

D Watch Video Solution

41. A boat at anchor is rocked by waves whose crests are 100 m apart and whose speed is $25 \mathrm{~m} / \mathrm{s}$. These waves reach the boat once every :
A. 2500 s
B. 75 s
C. 4 s
D. 0.25 s

Answer: C

42. A source of sound S is moving with a velocity of $50 \mathrm{~m} / \mathrm{s}$ towards a stationary observer. The observer measures the frequency of the source as 1000 Hz . What will be the apparent frequency of the source as

1000 Hz . What will be the apparent frequency of the source when it is moving away from the observer after crossing him? The velocity of the sound in the medium is $350 \mathrm{~m} / \mathrm{s}$

B. 1140 Hz

C. 750 Hz
D. 850 Hz

Answer: C

D Watch Video Solution

43. A standing wave having 3 nodes and 2 antinodes is formed between two atoms having a distance $1.21 \AA$ between them. The wavelength of the standing wave is
A. $3.63 \AA$
B. $6.05 \AA$
C. $1.12 \AA$
D. $2.42 \AA$

Answer: C

D Watch Video Solution

44. The dimensions of gravitational constant G
and the moment of inertia are, respectively
A. $\left[M L^{3} T^{-2}\right],\left[M L^{2} T^{0}\right]$
B. $\left[M^{-1} L^{3} T^{-2}\right],\left[M L^{2} T^{0}\right]$
C. $\left[M^{-1} L^{3} T^{-2}\right],\left[M^{-1} L^{2} T\right]$
D. $\left[M L^{3} T^{-2}\right],\left[M^{-1} L^{2} T\right]$

Answer: B

D Watch Video Solution

45. If the length of $\operatorname{rod} A$ is $3.25 \pm 0.01 \mathrm{~cm}$ and that of B is $4.19 \pm 0.01 \mathrm{~cm}$ then the $\operatorname{rod} B$
is longer than rod A by
A. $(0.94 \pm 0.00) \mathrm{cm}$
B. $(0.94 \pm 0.01) \mathrm{cm}$
C. $(0.94 \pm 0.02) \mathrm{cm}$
D. $(0.95 \pm 0.005) \mathrm{cm}$

Answer: C

D Watch Video Solution

46. A 50 ohm galvanometer gets full scale deflection when a current of 0.01 A passes
through the coil. When it is converted to a 10

A ammeter, the shunt resistance is
A. 0.01Ω
B. 0.05Ω
C. 200Ω
D. 5000Ω

Answer: B
(Watch Video Solution
47. The reflection coefficient and absorption coefficient of a body are 0.3 and 0.2 respectively. The percentage of radiation transmitted
A. 0.1
B. 0.5
C. 0.2
D. 0.3

Answer: B
48. An alpha nucleus of energy $\frac{1}{2} m \nu^{2}$ bombards a heavy nucleus of charge $Z e$. Then
the distance of closed approach for the alpha nucleus will be proportional to

$$
\begin{aligned}
& \text { A. } \frac{1}{z e} \\
& \text { B. } v^{2} \\
& \text { C. } \frac{1}{m} \\
& \text { D. } \frac{1}{v^{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

49. The voltage between the plates of a parallel plate capacitor of capacitance $1 \mu F$ is changing at the rate of $8 \mathrm{~V} / \mathrm{s}$. What is the displacement current in the capacitor?
A. $3 \mu A$
B. $8 \mu A$
C. $5 \mu A$

D. $10 \mu \mathrm{~A}$

Answer: B

D Watch Video Solution

50. An AM radio station operating at 630 kHz
is permitted to broadcast audio frequencies
up to 6 kHz . The band pass filter in its modulation circuit can retain the frequencies
A. $636 \mathrm{kHz}, 624 \mathrm{kHz}$
B. $12 \mathrm{kHz}, 6 \mathrm{kHz}$

C. $1260 \mathrm{kHz}, 6 \mathrm{kHz}$

D. 1260 kHz, 630 kHz

Answer: A

- Watch Video Solution

