びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 12

Paper 1 Physics Chemistry

1. The S.I. unit of gravitational potential is

A. J
B. J / kg
C. $J k g$
D. $J k g^{2}$

Answer: B

D Watch Video Solution

2. A wheel has moment of inertia $5 \times 10^{-3} \mathrm{kgm}^{2}$ and is making 20revs ${ }^{-1}$. The
torque needed to stop it in $10 s$ is.....

$$
\times 10^{-2} N-m
$$

A. $2 \pi \times 10^{-2}$
B. $2.5 \pi \times 10^{-3}$
C. $4 \pi \times 10^{-2}$
D. $4.5 \pi \times 10^{-4}$

Answer: A
(Watch Video Solution
3. The dependence of acceleration due to gravity g on the distance r from the centre of the earth, assumed to be sphere of radius R of uniform density is a shown in figures along side.

(3) $g \underset{R}{\text { (}}$

The correct figure is
A. -4
B. -1
C. -2
D. -3

Answer: A

Watch Viden Solıtinn
4. Two resistors 4Ω and 800Ω are connected in series with a $6 V$ battery. The potential difference measured by voltmeter of $10 k \Omega$ across 400Ω resistor is
A. 2 V
B. 1.95 V
C. 3.8 V
D. 4 V

Answer: B

D Watch Video Solution

5. A thin liquid film formed between a Ushaped wire and a light slider supports a weight of $1.5 \times 10^{-2} N$ (see figure). The length of the slider is 30 cm and its weight negligible. The surface tension of the liquid
film is

A. $0.1 \mathrm{~N} / \mathrm{m}$

B. $0.05 \mathrm{~N} / \mathrm{m}$

C. $0.025 \mathrm{~N} / \mathrm{m}$
D. $0.0125 \mathrm{~N} / \mathrm{m}$

Answer: C

D Watch Video Solution

6. For the higher sensitivity which of the following is essential for the potentiometer?
A. Larger length of the wire
B. Higher resistivity of the wire
C. Higher emfof auxiliary battery
D. None of the above

Answer: A

D Watch Video Solution
7. A $100 \mu F$ capacitor is to have an energy
content of 50 J in order to operate a flash
lamp. The voltage required to charge the capacitor is
A. 500 V
B. 1000 V
C. 1500 V
D. 2000 V

Answer: B

- Watch Video Solution

8. Two vibrating tuning forks produce progressive waves given by
$y_{1}=4 \sin (500 \pi t)$ and $y_{2}=2 \sin (506 \pi t)$.

These tuning forks are held near the ear of person. The person will hear
A. 3 beats/s with intensity ratio of maxima
to minima $=9$
B. 3 beats/s with intensity ratio of maxima
to $\operatorname{minima}=2$
C. 6 beats/s with intensity ratio of maxima
to $\operatorname{minima}=2$
D. 6 beats/s with intensity ratio of maxima
to minima $=9$

Answer: A
(Watch Video Solution
9. The work done by surface tension on rising
water do height of h in a capillary tube of radius r is

$$
\begin{aligned}
& \text { A. } \frac{2 \pi T^{2}}{\rho g} \\
& \text { B. } \frac{\rho g}{2 \pi T^{2}} \\
& \text { C. } \frac{4 \pi T^{2}}{\rho g} \\
& \text { D. } \frac{2 \pi T^{2}}{\rho}
\end{aligned}
$$

Answer: C

D Watch Video Solution
10. λ_{a} and λ_{m} are the wavelengths of light in air and medium respectively. If i_{p} is the polarising angle, the correct relation between
λ_{a}, λ_{m} and i_{p} is
A. $\lambda_{a}=\lambda_{m} \tan ^{2} \theta$
B. $\lambda_{m}=\lambda_{a} \tan ^{2} \theta$
C. $\lambda_{a}=\lambda_{m} \cot \theta$
D. $\lambda_{m}=\lambda_{a} \cot \theta$

Answer: D

11. The dimensions of coefficient of self
inductances are
A. $\left[M L^{2} T^{-2} A^{-2}\right]$
B. $\left[M L^{2} T^{-2} A^{-1}\right]$
C. $\left[M L T^{-2} A^{-1}\right]$
D. $\left[M L T^{-2} A^{-1}\right]$

Answer: A

D Watch Video Solution
12. Three liquids of equal masses are taken in
three identical cubical vessels A, B and C. Their densities are ρ_{A}, ρ_{B} and ρ_{C} respectively but
$\rho_{A}<\rho_{B}<\rho_{C}$. The force exerted by the liquid on the base of the cubical vessel is
A. maximum in vessel C
B. minimum in vessel C
C. the same in all the vessels
D. maximum in vessel A

Answer: C

- Watch Video Solution

13. If the amplitude of a wave at a distance r
from a point source is A, the amplitude at a distance $2 r$ will be
A. $2 A$
B. A
C. $\frac{A}{2}$
D. $\frac{A}{4}$

Answer: C

- Watch Video Solution

14. A wooden block, with a coin placed on its top, floats in water as shown in figure. The distance I and h are shown here. After some time the coin falls into water. Then

A. both l and h increase
B. Both l and h decrease
C. l decreases and h increases
D. l increases and h decreases

Answer: B

D Watch Video Solution
15. If 200 MeV energy is released per fission of
.92 U^{235} How many fissions must occur per second to produce a power of 1 mW ?
A. 3.12×10^{13}
B. 3.12×10^{3}
C. 3.1×10^{17}
D. 3.12×10^{19}

Answer: A

D Watch Video Solution
16. How many minimum number of coplanar vector having different magnitudes can be added to give zero resultant?
A. 2
B. 3
C. 4
D. 5

Answer: B

D Watch Video Solution

17. A uniform disc of radius R lies in xy-plane with its centre at origin. Its moments of inertia about the axis $X=2 R$ and $Y=0$ is equal to
the moment of inertia about the axis $Y=d$ and $Z=0$. What is the value of d ?
A. $\frac{\sqrt{17}}{2} R$
B. $\sqrt{13} R$
C. $\sqrt{\frac{15}{2}} R$
D. $\frac{4}{3} R$

Answer: A

D Watch Video Solution
18. The equation $y=4 \cos \left(\frac{2 \pi x}{50}\right) \sin (200 \pi t)$
represents a stationary wave, where x and y
are in cm and t in s .
Then a node occurs at a distance of origin
A. 12.5 cm
B. 50 cm
C. 20 cm
D. $100 / 2 \pi c m$

Answer: A
19. The Young's double slit experiment the wavelength of light $\lambda=4 \times 10^{-7} m$ and separation between the slits is $d=0.1 \mathrm{~mm}$. If
the frintge width is $4 m m$ then the seperation between the slits and the screen will be
A. 100 mm
B. 1 m
C. $10^{6} \mathrm{~m}$
D. $10 \AA$

Answer: B

D Watch Video Solution

20. A neutron is confined to a nucleus of size
$2 \times 10^{-14} \mathrm{~m}$. The minimum momentum of the electron may be
A. $6.6 \times 10^{-20} \mathrm{kgm} / \mathrm{s}$
B. $3.3 \times 10^{-20} \mathrm{kgm} / \mathrm{s}$
C. $3.3 \times 10^{-48} \mathrm{kgm} / \mathrm{s}$
D. $6.6 \times 10^{-48} \mathrm{kgm} / \mathrm{s}$

Answer: B

D Watch Video Solution

21. An electron makes transition inside a
hydrogen atom. The orbital angular momentum of the electron may change by
A. h
B. $\frac{h}{3 \pi}$
C. $\frac{h}{2 \pi}$
D. $\frac{h}{4 \pi}$

Answer: C

D Watch Video Solution

22. A carnot engine has an efficiency of 20%.

The energy is supplied to the engine at the rateof $2 k W$. What is the output power of the engine?
A. 300 W
B. 400 W
C. 500 W

D. 600 W

Answer: B

D Watch Video Solution

23. In a p-type semiconductor the acceptor
level is situated 60 m eV above the valence
band. The maximum wavelength of light required to produce a hole will be [use hc $=12400 \mathrm{eV} \AA$].
A. $0.207 \times 10^{-5} m$
B. $2.07 \times 10^{-5} m$
C. $20.7 \times 10^{-5} m$
D. $2075 \times 10^{-5} m$

Answer: B

D Watch Video Solution

24. A transistor is used in common emitter
configuration. Given its $\alpha=0.9$, calculate the change in collector current when the base current changes by $2 \mu A$.
A. $1 \mu A$
B. $0.9 \mu A$
C. $30 \mu A$
D. $18 \mu A$

Answer: D

D Watch Video Solution

25. In Young's double slit experiment, slit separation is 0.6 mm and the separation between slit and screen is $1.2 m$. The angular
width is (the wavelength of light used is 4800)
A. $4 \times 10^{-4} \mathrm{rad}$
B. $10 \times 10^{-4} \mathrm{rad}$
C. $8 \times 10^{-4} \mathrm{rad}$
D. $12 \times 10^{-4} \mathrm{rad}$

Answer: C
(Watch Video Solution
26. A parallel plate condenser has a unifrom electric field $E(V / m)$ in the space between the plates. If the distance between the plates is $d(m)$ and area of each plate is $A\left(m^{2}\right)$ the energy (joule) stored in the condenser is
A. $k E^{2} A d / \varepsilon_{0}$
B. $\frac{1}{2} \varepsilon_{0} E^{2} k$
C. $k \varepsilon_{0} E A d$
D. $\frac{1}{2 k} \varepsilon_{0} E^{2} A D$

- Watch Video Solution

27. The magnetic needle of a tangent galvanometer is deflected at an angle 30° due to a magnet. The hoeizontal component of earth's magnetic field $0.34 \times 10^{-4} T$ is along the plane of the coil. The magnetic intensity is
A. $1.96 \times 10^{-4} T$
B. $1.96 \times 10^{4} T$
C. $1.96 \times 10^{-5} T$

D. $1.96 \times 10^{5} T$

Answer: C

D Watch Video Solution

28. A toroidal solenoid with an air core has an
average radius of 15 cm , area of cross-section
$12 \mathrm{~cm}^{2}$ and 1200 turns . Ignoring the field
variation across the cross-section of the toroid
the self-inductance of the toroid is
A. 4.6 mH

B. 6.9 mH

C. 2.3 mH

D. 9.2 mH

Answer: C

- Watch Video Solution

29. Two potons of energy 2.5 eV each are incident on a metal plate whose work function is 4.0 eV , then the number of emitted from the metal surface will be
A. 1
B. 2
C. more than 2
D. none of these

Answer: D

D Watch Video Solution
30. A particle P is moving in a circle of radius r with a uniform speed u. C is the centre of the
circle and $A B$ is diameter. The angular velocity of P about A and V are in the ratio :
A. $1: 1$
B. 1:2
C. 2:1
D. $4: 1$

Answer: B
(Watch Video Solution
31. A simple pendulum has a time period T.

The pendulum is completely immersed in a non-viscous liquid whose density is one-tenth of that of the material of the bob. The time period of the pendulum immersed in liquid is
A. T
B. $\sqrt{\frac{9}{10}} T$
C. $\sqrt{\frac{10}{9}} T$
D. $\frac{T}{10}$

- Watch Video Solution

32. A particle is moving eastwards with a velocity $5 m s^{-1}$, changes its direction northwards in 10 seconds and moves with same magnitude of velocity. The average acceleration is
A. $\frac{1}{\sqrt{2}} m s^{-2}$ toward North-East
B. $\frac{1}{2} m s^{-2}$ towards North
C. zero

D. $\frac{1}{\sqrt{2}} m s^{-2}$ towards North -West

Answer: D

D Watch Video Solution

33. A body is moving in a vertical circle of raius
$2 r$ such that, the string is just taut at its
highest point. The speed of the particle when
the string is horizontal, is
A. $\sqrt{g r}$
B. $\sqrt{g r}$
C. $\sqrt{6 g r}$
D. $\sqrt{5 g r}$

Answer: C

D Watch Video Solution

34. If there are six loops for 1 m length in transverse mode of Melde's experiment, the number of loops in longitudinal mode under the indentical conditions would be
A. 3
B. 6
C. 12
D. 8

Answer: A

D Watch Video Solution

35. A student unable to answer a question on

Newton's laws of motion attempts to pull
himself up by tugging on her hair. He will not succeed.
A. as the force exerted is small
B.the frictional force while gripping, is
small
C. Newton's law of inertia is not applicable
to living beings
D. as the internal force applied is to the
system

- Watch Video Solution

36. A mass M, attached to a spring, oscillates
with a period of $2 s$. If the mass is increased by
$4 k g$, the time period increases by one second.

Assuming that Hooke's law is obeyed, find the initial mass M.
A. 3.2 kg
B. 1 kg
C. 2 kg

D. 8 kg

Answer: A

D Watch Video Solution

37. A wire is vibrating in the second overtone.

In the wire there are
A. two nodes and two antinodes
B. one node and two antinodes
C. four nodes and three antinodes

D. three nodes and three antinodes

Answer: C

D Watch Video Solution

38. Block A of mass $2 k g$ is placed over a block
B of mass 8 kg . The combination is placed on a rough horizontal surface. If $g=10 \mathrm{~ms}^{-2}$, coefficient of friction between B and floor
$=0.5$, coefficient of friction between B and
floor $=0.5$, coefficient of friction between A
and $B=0.4$ and a horizontal force of $10 N$ is
applied on 8 kg block, then the force of friction between A and B is.

A. zero
B. 50 N
C. 40 N
D. 100 N

Answer: B

- Watch Video Solution

39. A cylinderical block of wood of mass m and
area cross-section A is floating in water
(density $=\rho$) when its axis vertical. When dressed a little and the released the block starts oscillating. The period oscillations is
A. $2 \pi \sqrt{\frac{m}{\rho A g}}$
B. $2 \pi \sqrt{\frac{m g}{\rho a}}$
C. $2 \pi \sqrt{\frac{\rho A g}{m}}$
D. $2 \pi \sqrt{\frac{\rho A}{m g}}$

Answer: A

D Watch Video Solution

40. A ray of light travelling in the direction $\frac{1}{2}(\hat{i}+\sqrt{3} \hat{j})$ is incident on a plane mirror. After reflection, it travels along the direction $\frac{1}{2}(\hat{i}+\sqrt{3} \hat{j})$. The angle of incidence is
A. 30°
B. 45°
C. 60°
D. 75°

Answer: A

D Watch Video Solution

41. What is the effective resistance between
the points A and C in the following network?

A. $\frac{R}{3}$
B. $\frac{2 R}{3}$
C. $\frac{3 R}{2}$
D. $\frac{R}{2}$

Answer: B

- Watch Video Solution

42. In a communication system, operating at
$\lambda=700 \mathrm{~nm}$, only 1% of the optical source
frequency is the available channel band width.
How many channels can be accommodated for transmitting the signal requiring an approximate band width of 4.5 MeV ?
A. 8.5×10^{5}
B. 9.5×10^{6}
C. 9.5×10^{5}
D. 8.5×10^{4}

Answer: C

D Watch Video Solution

43. A uniformly charged thin spherical shell of radius R carries uniform surface charge denisty of isgma per unit area. It is made of two hemispherical shells, held together by
presisng them with force F (see figure). F is proportional to

$$
\text { A. } \frac{1}{\varepsilon_{0}} \sigma^{2} R^{2}
$$

B. $\frac{1}{\varepsilon_{0}} \sigma^{2} R$
C. $\frac{1}{\varepsilon_{0}} \frac{\sigma^{2}}{R}$
D. $\frac{1}{\varepsilon_{0}} \frac{\sigma^{2}}{R^{2}}$

Answer: A

D Watch Video Solution

44. Magnetic moment of an electron of charge
e moving in a circular orbit of radius r with
speed $` v$ is given by
A. $e v r$
B. $\frac{e v r}{4}$
C. $\frac{e v r}{2}$
D. $\frac{e v r}{2}$

Answer: C

- Watch Video Solution

45. If the temperature of a hot body is increased by 50%, then the increase in the quantity of emitted heat radiation will be
A. 1.25
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution

46. A 220 V input is supplied to a transformer.

The output circuit draws a current of 2.0 A at

440 V . If the efficiency of the transformer is
80%, the current drawn by the primery
winding of the transformer is
A. 3.6 ampere
B. 2.8 ampere
C. 2.5 ampere
D. 5.0 ampere

Answer: D

D Watch Video Solution

47. A hot and a cold body are kept in vacuum separated from each other. Which of the
following cause decrease in temperature of the hot body
A. Radiation
B. Convection
C. Conduction
D. Temperature remains unchanged

Answer: A

- Watch Video Solution

48. A, B, and C are the parallel sided transparent media of refractive indices n_{1}, n_{2}
and n_{3} respectively. They are arranged as
shown in the figure. A ray is incident at an
angle i on the surface of separation of A and B which is as shown in the figure. After the refraction into the medium B the ray grazes
the surfaces of separation of the media B and
C. then $\sin i$ equal to

A. $\frac{n_{3}}{n_{1}}$
B. $\frac{n_{1}}{n_{3}}$
C. $\frac{n_{2}}{n_{3}}$
D. $\frac{n_{1}}{n_{2}}$

Answer: A

D Watch Video Solution

49. The Young's modulus of brass and steel are respectively $\quad 1.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} \quad$ and
$2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. A brass wire and steel wire of the same length are extended by 1 mm each
under the same force. If radii of brass and steel wires are R_{B} and R_{S} respectively,. then
A. $R_{S}=\sqrt{2} R_{B}$
B. $R_{S}=\frac{R_{B}}{\sqrt{2}}$
C. $R_{S}=4 R_{B}$
D. $R_{S}=\frac{R_{B}}{2}$

Answer: B

D Watch Video Solution

50. Two coils X and Y are placed in a circuit such that when the current changes by 2 A in coil X . The magnetic flux changes by 0.4 Wb in Y . The value of mutual inductance of the coils is
A. 0.8 H
B. $0.2 H$
C. $0.5 H$
D. $5 H$

Answer: B

Watch Video Solution

