©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 13

Paper I Objective Type

1. A car is fitted with a convex side-view mirror
of focal length 20 cm . A second car 2.8 m
behind the first car is overtaking the first car at a relative speed of $15 \frac{m}{s}$. The speed of the image of the second car as seen in the mrror of the first one is:

$$
\begin{aligned}
& \text { A. } \frac{1}{15} m / s \\
& \text { B. } 10 m / s \\
& \text { C. } 15 m / s \\
& \text { D. } \frac{1}{10} m / s
\end{aligned}
$$

Answer: A

2. A car of mass m moves in a horizontal circular path of radius r meter. At an instant
its speed is $V m / s$ and is increasing at a rate
of a m / sec^{2}. Then the acceleration of the car
is:
A. $\frac{v^{2}}{r}$
B. a
C. $\sqrt{a^{2}+\left(\frac{v^{2}}{r}\right)^{2}}$
D. $\sqrt{u+\frac{v^{2}}{r}}$

Answer: C

D Watch Video Solution

3. In children's park using the part ride the visitors can be made to rotate in a vertical circle. At the top of the circle, a rider has an effective weight of magnitude $1000 N$. If his actual weight is 500 N then what is the effective at eh bottom of the circle?
A. 1500 N
B. $2000 N$
C. 2500 N
D. 1800 N

Answer: B

- Watch Video Solution

4. If the distance between the sun and the earth is increased by three times, then attraction between two will
A. remain constant
B. decrease by 63%
C. increase by 63%
D. decrease by 89%

Answer: D

D Watch Video Solution

5. Figure shows an object $A B$ placed in front of two thin coaxial lenses 1 and 2 with focal
lengths 24 cm and 9.0 cm , respectively. The
object is 6.0 cm from the lens/and the lens
separation is $L=10 \mathrm{~cm}$. Where does the
system of two lenses produce an image of the object $A B$?

A. +18 cm
B. -18 cm
C. +24 cm
D. -24 cm

Answer: A

D Watch Video Solution

6. The moment of inertia of a circular loop of radius R, at a distance of $R / 2$ around a rotating axis parallel to horizontal diameter of loop is
A. $M R^{2}$
B. $\frac{1}{2} M R^{2}$
C. $2 M R^{2}$
D. $\frac{3}{4} M R^{2}$

Answer: D

D Watch Video Solution

7. Two pendulums have time period T and 5T/4.

They starts SHM at the same time from the mean position. What will be the phase
difference between them after the bigger pendulum completed one oscillation ?
A. 45°
B. 90°
C. 60°
D. 30°

Answer: B
(Watch Video Solution
8. For a particle executing $S . H . M$., the kinetic energy K is given $K=K_{0} \cos ^{2} \omega t$. The maximum value of potential energy is:
A. K_{0}
B. zero
C. $K_{0} / 2$
D. not obtainable

Answer: A

D Watch Video Solution
9. A string of mass 2.50 kg is under a tension os

200N. The length of the stretched string is
20.0m. If the transverse jerk is struck at one end of the string, how long does the disturbance take to reach the other end?
A. $1 s$
B. 0.5 s
C. 1.5 s
D. 2.5 s

- Watch Video Solution

10. When a metal wire elongates by hanging a
load $M g$ on it the gravitational potential energy of mass M decrease by $M g l$. This energy appears
A. as elastic potential enelrgy apears
B. as thermal energy completely
C. half as elastic potential energy and half
as thermal energy

D. as kinetic energy of the load completely.

Answer: C

D Watch Video Solution

11. The bus movingwith a speed $42 \mathrm{~km} / \mathrm{h}$ is
brought to a stop by brakes after $6 m$. If the
same bus is moving at a speed of $90 \mathrm{~km} / \mathrm{h}$, then the minimum stopping distance is
A. $15.48 m$
B. $18.64 m$
C. $22.13 m$
D. 27.55 m

Answer: D

D Watch Video Solution

12. A water drop is divided into 8 equal droplets. The pressure difference between the inner and outer side of the big drop will be
A. same as for smaller droplet
B. $\frac{1}{2}$ of that for smaller droplet
C. $\frac{1}{4}$ of that for smaller droplet
D. twice that for smaller droplet

Answer: B

D Watch Video Solution

13. Two polaroids are kept crossed to each other. Now one of them is rotated through an
angle of 45°. The percentage of incident light now transmitted through the system is
A. 0.15
B. 0.25
C. 0.5
D. 0.6

Answer: C
(Watch Video Solution
14. A satellite orbiting the circular orbit of radius R complete one revolution in $3 h$. If orbital radius of geostationary satellite is 36000 km , then the orbital radius R of satellite is
A. 6000 km
B. 9000 km
C. 12000 km
D. 15000 km

Answer: B

- Watch Video Solution

15. The displacement y of a particle executing
periodic motion is given by
$y=4 \cos ^{2}\left(\frac{1}{2} t\right) \sin (1000 t)$
This expression may be considereed to be a result of the superposition of
A. two motions
B. three motions
C. four motions

D. five motions

Answer: B

D Watch Video Solution

16. Change in frequency due to Doppler's effect is produced when
A. the source and the observer are moving in the same direction
B. the source and the observe are both at rest
C. there is a relative motion between the source and the observer
D. there is a resultant motion between the
source and observer.

Answer: C

- Watch Video Solution

17. Three blocks of masses $4 \mathrm{~kg}, 2 \mathrm{~kg}$ and 1 kg respectively are in contact on a frictionless
table as shown in the figure. If a force of $14 N$ is applied on the 4 kg block, the contact force between the 4 kg and the 2 kg block will be
A. $2 N$
B. $6 N$
C. $8 N$
D. $14 N$

Answer: B

- Watch Video Solution

18. The equation of the stationary wave is
$y=2 A \sin \left(\frac{2 \pi c t}{\lambda}\right) \cos \left(\frac{2 \pi x}{\lambda}\right)$
Which of the following statements is wrong?
A. The until of ct is same as that of λ.
B. The unit of x is same as that of λ.
C. The unit of $2 \pi c / \lambda$ is sameas that of

$$
2 \pi \frac{x}{\lambda} t
$$

D. The unit of c / λ is same as that of x / λ.

Answer: D

- Watch Video Solution

19. A moving coil galvanometer has 10 turns each of length 12 cm and breadth 8 cm the coil of MCG carries a current of $125 \mu \mathrm{~A}$ The coil is kept perpendicular to uniform magnetic field of induction $10^{-2} \mathrm{~T}$ the twis t constant of phosphor bronz fibre is $12 \times 10^{-9} \mathrm{Nm} /$ degree calculate the defection produced
A. 10°
B. 20°
C. 30°
D. 40°

Answer: A

D Watch Video Solution
20. A moving coil galvanometer gives full scale defection when a current of 0.005 A is passed
through its coil it is converted in to a
voltmeter reading up to 5 V by using an external resistance of 975Ω what is the resistance of the galvanometer coil ?
A. 5
B. 10
C. 15
D. 25

Answer: D

D Watch Video Solution
21. A balloon contains $500 \mathrm{~m}^{3}$ of He at $27^{\circ} \mathrm{C}$
and 1 atm pressure. Then, the volume of He at
$-3{ }^{\circ} \mathrm{C}$ and 0.5 atm pressure will be
A. 700^{3}
B. $900 m^{3}$
C. $1000 m^{3}$
D. $500 m^{3}$

Answer: B

22. A body cools from $50^{\circ} \mathrm{C}$ to $49^{\circ} \mathrm{C}$ in 5 s. How long will it take to cool from $40^{\circ} \mathrm{C}$ to $39.5^{\circ} \mathrm{C}$? Assume the temperature of surroundings to be $30^{\circ} \mathrm{C}$ and Newton's law of cooling to be valid:
A. $2.5 s$
B. $10 s$
C. 20 s
D. $5 s$
23. What is the torque of a force $3 \hat{i}+7 \hat{j}+4 \hat{k}$ about the origin if the force acts on a particle whose position vector is $2 \hat{i}+2 \hat{j}+1 \hat{k}$?
A. $\hat{i}-\hat{j}+8 \hat{k}$
B. $2 \hat{i}+2 \hat{j}+2 \hat{k}$
C. $\hat{i}+\hat{j}+\hat{k}$
D. $3 \hat{i}+2 \hat{j}+3 \hat{k}$
24. On increasing the plate separation of a charged condenser, the energy
A. increases
B. decreases
C. remains unchanged
D. becomes zero

Answer: A
25. Two waves having intensities in the ratio of

16:1 produce interference. The ratio of maxium to minimum intensities is equal to
A. 10: 8
B. $9: 1$
C. $25: 9$
D. $4: 1$

- Watch Video Solution

26. A man standing on a road has to hold his umbrella at 30° with the vertical to keep the rain away. The throws the umbrella and starts
running at $10 \mathrm{~km} / \mathrm{h}$. He finds that raindrops are hitting his head vertically. Find the speed of raindrops with respect to a. the road, b. the moving man.
A. $20 k m h^{-1}$
B. $10 \sqrt{3} k m h^{-1}$

C. $20 \sqrt{3} k m h^{-1}$

D. $10 \mathrm{~km}^{-1}$

Answer: A

D Watch Video Solution

27. A capacitor having capacity of $2 \mu F$ is
charged to 200 V and then the plates of the capacitor are connected to a resistance wire.

The heat produced in joule will be
A. 2×10^{-2}
B. 4×10^{-2}
C. 4×10^{4}
D. 4×10^{10}

Answer: B

D Watch Video Solution

28. The compressibility of water is
$4.5 \times 10^{-10} \mathrm{~m}^{2} / N .1 \mathrm{~L}$ of water is subjected
to pressure of $2 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$. The decrease in
its volume is
A. 1 cc
B. 4 cc
C. 5 cc
D. 9 cc

Answer: D
(Watch Video Solution
29. A charge q is located at the centre of a
cube. The electric flux through any face is

$$
\begin{aligned}
& \text { A. } \frac{\pi q}{6\left(\pi \varepsilon_{0}\right)} \\
& \text { B. } \frac{q}{6\left(4 \pi \varepsilon_{0}\right)} \\
& \text { C. } \frac{2 \pi q}{6\left(4 \pi \varepsilon_{0}\right)} \\
& \text { D. } \frac{4 \pi q}{6\left(4 \pi \varepsilon_{0}\right)}
\end{aligned}
$$

Answer: D

D Watch Video Solution

30. A soap film in formed on a frame of area
$4 \times 10^{-3} \mathrm{~m}^{2}$. If the area of the film in reduced
to half, then the change in the potential
energy of the film is (surface tension of soap
solution $\left.=40 \times 10^{-3} \mathrm{~N} / \mathrm{m}\right)$
A. $32 \times 10^{-5} J, 16 \times 10^{-5} J$
B. $16 \times 10^{-5} J, 8 \times 10^{-5} J$
C. $48 \times 10^{-5} J, 12 \times 10^{-5} J$
D. $36 \times 10^{-5} J, 2 \times 10^{-5} J$

Answer: A
31. The maximum electron density in the ionospherein the mornong is $10^{10} \mathrm{~m}^{-3}$. At noon time it increases to $2 \times 10^{10} \mathrm{~m}^{-3}$. Find the ratio of critical frequency at noon and the critical frequency in the morning.
A. 2.00
B. 2.82
C. 4.00
D. 1.414

Answer: D

D Watch Video Solution

32. If the difference between the frequencies of two sound notes is $8 H z$, then the time interval between successive maximum intensity, is
A. $125 s$
B. $0.0125 s$
C. $5 s$

D. 0.125 s

Answer: D

- Watch Video Solution

33. The length of a sonometer wire between
two fixed ends is 110 cm . Where should the two
bridges the placed so as to divide the wire into three segments, whose fundamental frequencies are in the ration $1: 2: 3$?
A. 30 cm and 90 cm
B. 40 cm and 80 cm
C. 60 cm and 90 cm
D. 30 cm and 60 cm

Answer: C

D Watch Video Solution

34. The magnetic susceptibility of a paramagnetic substance at $-173 .{ }^{\circ} C$ is 1.5×10^{-2} then its value at
A. 7.5×10^{-1}
B. 7.5×10^{-2}
C. 7.5×10^{-3}
D. 7.5×10^{-4}

Answer: C

D Watch Video Solution
35. A voltmeter of range 2 V and resistance 300Ω cannot be converted into ammeter of range
A. $1 A$
B. $1 m A$
C. $100 m A$
D. 10 mA

Answer: B

D Watch Video Solution

36. If the momentum of a body is increased by
50%, then the percentage increase in its
kinetic energy is
A. 1
B. 2.5
C. 4
D. 5

Answer: C

D Watch Video Solution
37. A ray of light is incident on the surface of a glass plate at an angle of incidence equal to Brewster's angle ϕ. If μ represents the
refractive index of glass with respect to air, then the angle between reflected and refracted rays is
A. $90^{\circ}+\phi$
B. $\sin ^{-1}(\mu \cos \phi)$
C. 90°
D. $90^{\circ}-\sin ^{-1}(\sin \phi / 4)$

Answer: C

D Watch Video Solution

A jar filled with two non-mixing liquid 1 and 2
having densities ρ_{1} and ρ_{2} respectively. A solid ball, made of a material of density ρ_{3} is dropped in the jar. It come to equilibrium in
the position shown in the figure. Which of the following is true for ρ_{1}, ρ_{2} and ρ_{3} ?
A. $\rho_{3}<\rho_{1}<\rho_{2}$
B. $\rho_{1}>\rho_{3}>\rho_{2}$
C. $\rho_{1}<\rho_{2}<\rho_{3}$
D. $\rho_{1}<\rho_{3}<\rho_{2}$

Answer: A

D Watch Video Solution

39. A coil has a inductance of 0.7 H and is
joined in series with a resistance of 220Ω.

When an alternating emf of 220 V at 50 cps is
applied to it, then the wattless component of the current in the circuit is
A. $5 A$
B. 0.5 A
C. $0.7 A$
D. $7 A$

Answer: B
(Watch Video Solution
40. what should be the velocity of an electron
so that its momentum becomes equal to that of a photon of wavelength $5200 \AA$
A. $700 \mathrm{~m} / \mathrm{s}$
B. $1000 \mathrm{~m} / \mathrm{s}$
C. $1400 \mathrm{~m} / \mathrm{s}$
D. $2800 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution
41. A proton accelerated through a potential V has de-Broglie wavelength λ. Then, the deBroglie wavelengthof an alpha-particle, when accelerated through the same potential V is
A. $\frac{\lambda}{2}$
B. $\frac{\lambda}{\sqrt{2}}$
C. $\frac{\lambda}{2(\sqrt{2})}$
D. $\frac{\lambda}{8}$

Answer: C
42. If the series limit of wavelength of the

Lymman series for the hydrogen atoms is
$912 \AA$, then the series limit of wavelength for the Balmer series of the hydrogen atom is :
A. $3600 \AA$
B. $1800 \AA$
C. $1200 \AA$
D. $1600 \AA$

Answer: A

D Watch Video Solution

43. A fringe width in Young's experiment is 0.8 mm for a certain source when the screen is at
a distance of 50 cm from the slits. If the distance of screen from the slits is increased to 200 cm , other things remaining same the new fringe width is
A. 3.2 mm

B. 1.2 mm

C. 1 mm

D. 4 mm

Answer: A

- Watch Video Solution

44. Figure shows currents in a part of an electric circuit, then current l is

A. $17 A$
B. 35 A
C. $1.3 A$
D. $3 A$

Answer: B

D Watch Video Solution

45. The equivalent resistance across P and Q in
the given electric circuit will be

A. 1Ω
B. 2Ω
C. 3Ω
D. 5Ω

Answer: A

D Watch Video Solution
46. Pure Si at 300 K has equal electron $\left(n_{e}\right)$
and hole $\left(n_{h}\right)$ concentrations of
$1.5 \times 10^{16} m^{-3}$ doping by indium increases n_{h}
to $4.5 \times 10^{22} m^{-3}$. Caculate n_{e} in the doped

Si-
A. 9×10^{5}
B. 5×10^{9}
C. 2.25×10^{11}
D. 3×10^{10}

Answer: B

- Watch Video Solution

47. if a ball of steel (density $\rho=7.8 \mathrm{~g} / \mathrm{cm}^{3}$)
attains a terminal velocity of $10 \mathrm{~cm} / \mathrm{s}$ when
falling in a tank of water (coefficient of viscosity, $\eta_{\text {water }}=8.5 \times 10^{-4} \mathrm{Ps}$ s), then its terminal velocity
in
glycerine
($\rho=1.2 \mathrm{~g} / \mathrm{cm}^{2}, \eta=13.2$ Pas $) \quad$ would be nearly
A. $1.6 \times 10^{-5} \mathrm{cms}^{-1}$
B. $6.25 \times 10^{-4} \mathrm{cms}^{-1}$
C. $6.45 \times 10^{-4} \mathrm{cms}^{-1}$
D. $1.5 \times 10^{-5} \mathrm{cms}^{-1}$

Answer: B

D Watch Video Solution

48. Capacitance of a capacitor becomes
times of its original value if a dielectric slab of
thickess $t=\frac{2}{4} d$ is introduced in between the
plates, d is the separation between the plates.

The dielectric constant of the dielectric slab is
A. $\frac{14}{11}$
B. $\frac{11}{14}$
C. $\frac{7}{11}$
D. $\frac{11}{7}$

Answer: A
(Watch Video Solution
49. The unit of physical quantity obtained by
the line integral of electric field is

> A. $N C^{-1}$
> B. $V m^{-1}$
> C. $J C^{-1}$
> D. $C^{2} N^{-1} m^{-2}$

Answer: C
(Watch Video Solution
50. A student uses a simple pendulum of exactly $1 m$ length to determine g, the acceleration due ti gravity. He uses a stop watch with the least count of 1 sec for this and record 40 sec onds for 20 oscillations for this observation, which of the following statement (s)is(are) true?
A. Error $D \eta T$ in measureing T, the time period is 0.05 s .
B. Error ΔT in measuring T, the time perios is $1 s$
C. Percentage error in the determination of

$$
g \text { is } 5 \%
$$

D. Percentage error in the determination of

$$
g \text { is } 3.5 \%
$$

Answer: C

D Watch Video Solution

