©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 14

Paper 1 Physics Chemistry

1. A particle is moving along a circular along a
circular path of radius 5 m with a uniform
speed $5 m s^{-1}$. What will be the average acceleration when the particle completes half revolution?
A. Zero
B. $10 \mathrm{~m} / \mathrm{s}^{2}$
C. $10 \pi \mathrm{~m} / \mathrm{s}^{2}$
D. $\frac{10}{\pi} \mathrm{~m} / \mathrm{s}^{2}$

Answer: D

- Watch Video Solution

2. A rectangular block is $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 10 \mathrm{~cm}$ in size. The block is floating in water with 5 cm side vertical. If it floats with 10 cm side vertical, what change will occur in the level of water?
A. No change
B. It will rise
C. It will fall
D. It may rise or fall depending on the density of blook

- Watch Video Solution

3. A wire of length L and radius a rigidlyl fixed at one end. On stretching the other end of the wire with a force F, the increase in its length is

L, if another wire of same material but of length 2 L and radius 2 a is stretched with a force 2 F , the increase in its length will be
A. 1
B. 21
C. 1/2

D. 4 I

Answer: A

D Watch Video Solution

4. A river of salty water is flowing with a velocity $2 \mathrm{~m} / \mathrm{sec}$. If the density of water is $1.2 g m / c c$, the kinetic energy of each of cubic metre of water is
A. 2.4 J
B. 24 J
C. 2.4 kJ
D. 4.8 kJ

Answer: C

D Watch Video Solution

5. If $E=$ energy,$G=$ gravitational constant, I
=impulse and $M=$ mass, then dimensions of
$G I M^{2}$ E^{2}
A. time
B. mass
C. length
D. force

Answer: A

D Watch Video Solution
6. Gravitational force between a point mass m and M separated by a distance is F. Now if a point mass 2 m is placed next to m is contact
with it. The force on M due to m and the total

force on M are

A. $2 \mathrm{~F}, \mathrm{~F}$
B. F, 2 F
C. F, 3F
D. F, F

Answer: C
(Watch Video Solution
7. If the earth suddenly shrinks (without changing mass) to half of its present radius, the acceleration due to gravity will be
A. 4 g
B. 2 g
C. $g / 2$
D. $\mathrm{g} / 4$

Answer: A

D Watch Video Solution
8. If the length of a rectangular $\mid=0.5 \mathrm{~cm}$, breath $b=2.1 \mathrm{~cm}$ and minimum possible measurement by scale $=0.1 \mathrm{~cm}$ then the area is
A. $22 \mathrm{~cm}^{2}$
B. $22.1 \mathrm{~cm}^{2}$
C. $22.05 \mathrm{~cm}^{2}$
D. $22.2 \mathrm{~cm}^{2}$

Answer: A

D Watch Video Solution

9. If the maximum velocity and acceleration of

a particle executing SHM are equal in magnitude the time period will be
A. 1.57 s
B. 3.14 s
C. 6.28 s
D. 12.56 s

Answer: C

D Watch Video Solution
10. While measuring the speed of sound by performing a resonance column experiment, a student gets the first resonance condition at a column length of 18 cm during winter.

Repeating the same experiment during
summer, she measures the column length to be $x \mathrm{~cm}$ for the second resonance. Then
A. $18>x$
B. $x>54$
C. $54>x>36$

$$
\text { D. } 36>x>18
$$

Answer: B

D Watch Video Solution

11. The length of the second's pendulum is decreased by 0.3 cm , when it is shifted to

Chennai from London. If the acceleration due to gravity at London is $981 \mathrm{~cm} / \mathrm{s}^{2}$, the acceleration due to gravity at Chennai is
(Assume $\pi^{2}=10$)
A. $981 \mathrm{~cm} / \mathrm{s}^{2}$
B. $978 \mathrm{~cm} / \mathrm{s}^{2}$
C. $984 \mathrm{~cm} / \mathrm{s}^{2}$
D. $975 \mathrm{~cm} / \mathrm{s}^{2}$

Answer: B

D Watch Video Solution

12. Two gases A and B having the same temperature T, same pressure P and same volume V are mixed. If the mixture is at the
same temperature and occupies a volume V .

The pressure of the mixture is
A. $2 p$
B. p
C. $p / 2$
D. $4 p$

Answer: A
(Watch Video Solution
13. The Young's double slit experiment is performed with blue and with green light of wavelengths $4360 A$ and $5460 A$ respectively. If
X is the distance of $4 t h$ maximum from the central one, then :
A. x (blue) $=x$ (green)
B. x (blue) $>x($ green $)$
C. x (blue) $<x$ (green $)$
D. $\frac{x(\text { blue })}{x(\text { green })}=\frac{5460}{4360}$

Answer: C
14. In one metre long open pipe what is the harmonic of resonance obtained with a tuning
fork of frequency 480 Hz
A. First
B. Second
C. Third
D. Fourth
15. The ratio of radii of two bubbles is $2: 1$.

What is the ratio of excess pressures inside them?
A. 1:2
B. 1:4
C. 2:1
D. $4: 1$
16. The coordinates of a particle moving in XYplane at any instant of time t are $x=4 t^{2}, y=3 t^{2}$. The speed of the particle at that instant is
A. 10 t
B. 5 t
C. 3 t
D. 2 t

D Watch Video Solution

17. A stretched string of length I, fixed at both ends can sustain stationary waves of wavelength λ given by
A. $\lambda=2 \ln$
B. $\lambda=\frac{2 l}{n}$
C. $\lambda=\frac{l^{2}}{2 n}$
D. $\lambda=\frac{n^{2}}{2 l}$

Answer: B

D Watch Video Solution

18. A 6 V battery is connected to the terminals
of a 3 m long wire of uniform thickness and
resistance of 100Ω. The difference of potential
between two points on the wire separated by
a distance of 50 cm will be
A. 1 V
B. 1.5 V
C. 2 V
D. 3 V

Answer: A

D Watch Video Solution

19. A $10 \mu F$ capacitor and a $20 \mu F$ capacitor are
connected in series across a 200 V supply line.
The chraged capacitors are then disconnected from the line and reconnected with their positive plates together and negative plates
together and no external voltage is applied.
what is the potential difference across each
capacitor?
A. $\frac{400}{9} \mathrm{~V}$
B. $\frac{800}{3} \mathrm{~V}$
C. 400 V
D. 200 V

Answer: A

D Watch Video Solution
20. An open tube is in resonance with string
(frequency of vibration of tube is n 0). If tube
is dipped in water so that 75% of length of
tube is inside water, then the ratio of the frequency of tube to string now will be
A. v_{0}
B. $2 v_{0}$
C. $\frac{2}{3} v_{0}$
D. $\frac{3}{2} v_{0}$

Answer: B
21. Consider three vectors
$A=\hat{i}+\hat{j}-2 \hat{k}, B=\hat{i}-\hat{j}+\hat{k}$ and
$C=2 \hat{i}-3 \hat{j}+4 \hat{k}$. A vector X of the form
$\alpha A+\beta B(\alpha$ and β are numbers) is perpendicular to C . The ratio of α and β is
A. 1:1
B. 2:1
C. $-1: 1$
D. 3:1

Answer: A

D Watch Video Solution

22. If the angle between the pass axis of polariser and analyser is 45°, write the ratio of intensities of original light and the transmitted light after passing through analyser.
A. $\frac{l}{2}$
B. $\frac{l}{3}$
C. 1
D. $\frac{l}{4}$

Answer: D

- Watch Video Solution

23. In an LC R circuit having $\mathrm{L}=8 \mathrm{H}, \mathrm{C}=05 \mu F$
and $R=100 \Omega$ in series, the resonance
frequency in rad/s is
A. 600
B. 200
C. $250 / \pi$
D. 500

Answer: C

D Watch Video Solution

24. A 50 Hz alternating current of peak value 1
ampere flows through the primary coil of a
transformer. If the mutual inductance between
the primary secondary be 1.5 henry, then the peak value of the induced voltage is
A. 75 V
B. 150 V
C. 225 V
D. 300 V

Answer: D
(Watch Video Solution
25. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m . If a force P is applied at the free end of the rope, the force exerted by the rope on the block is
A. $\frac{\mathrm{Pm}}{M+m}$
B. $\frac{\mathrm{Pm}}{M-m}$
C. P
D. $\frac{\mathrm{PM}}{M+m}$

Answer: D
26. If work W is done in blowing a bubble of
radius R from a soap solution. Then the work done is blowing a bubble of radius $2 R$ from the same solution is
A. $2^{1 / 3} \mathrm{~W}$
B. 4 W
C. 2 W
D. $\frac{W}{2}$

Answer: B

D Watch Video Solution

27. In the lowest energy level of hydrogen atom, the electron has the angular momentum
A. $\frac{\pi}{h}$
B. $\frac{h}{\pi}$
C. $\frac{h}{2 \pi}$
D. $\frac{2 \pi}{h}$

Answer: B

- Watch Video Solution

28. A proton, a deuteron and an α-particle with the same KE enter a region of uniform magnetic field, moving at right angles to B.

What is the ratio of the radii of their circular paths ?
A. $1: \sqrt{2}: 1$
B. $1: \sqrt{2}: \sqrt{2}$
C. $\sqrt{2}: 1: 1$
D. $\sqrt{2}: \sqrt{2}: 1$

Answer: A

D Watch Video Solution

29. A milli-voltmeter of 25 milli-volt range is to
be converted into an ammeter of 25 ampere
range. The value (in ohm) of necessary shunt will be:
A. 0.001
B. 0.01
C. 1
D. 0.05

Answer: A

D Watch Video Solution
30. The resistance of an ammeter is 13Ω and its scale is graduated for a current upto $100 A$.

After an additional shunt has been connected
to this ammeter it becomes possible to measure currents upto 750 A by this meter.

The value of shunt resistance is
A. 2Ω
B. 0.2Ω
C. $2 \mathrm{k} \Omega$
D. 20Ω

Answer: A

D Watch Video Solution
31. Out of given paramagnetic substance
(Calcium, Chromium, Oxygen and Tungsten)
which substance has maximum susceptibility
A. Calcium
B. Chromium
C. Oxygen
D. Tungsten

Answer: B
(Watch Video Solution
32. represents a graph of most energetic photoelectrons $K_{\max }$ (in eV) and frequency v for a metal used as cathode in photoelectrons experiment. The threshold frequency of light
for the photoelectric emission from the metal
is

A. $1 \times 10^{14} \mathrm{~Hz}$
B. $1.5 \times 10^{15} \mathrm{~Hz}$
C. $2.1 \times 10^{14} \mathrm{~Hz}$
D. $2.8 \times 10^{14} \mathrm{~Hz}$

Answer: D

D Watch Video Solution

33. A box of mass 2 kg is placed on the roof of
a car. The box would remain stationary until
the car attains a maximum acceleration.

Coefficient of static friction between the box and the roof of the car is 0.2 and 1
$g=10 \mathrm{~ms}^{-2}$.
The maximum acceleration of the car, for the box to remain stationary, is
A. $8 \mathrm{~ms}^{-2}$
B. $6 \mathrm{~ms}^{-2}$
C. $4 \mathrm{~ms}^{-2}$
D. $2 \mathrm{~ms}^{-2}$

Answer: D
34. Two light waves of amplitudes A_{1} and A_{2}
superimpose with each other such that
$A_{1}>A_{2}$. The difference between maximum and minimum amplitudes is
A. A_{1}
B. $2 A_{2}$
C. $2 A_{1}$
D. A_{2}

Answer: B

- Watch Video Solution

35. In the circuit shown, the value of I in ampere is

A. 1
B. 0.60
C. 0.4
D. 1.5

Answer: C

D Watch Video Solution
36. The magnetic flux linked with a coil at any instant 't' is given by $\phi=5 t^{3}-100 t+300$,
the e.m.f. induced in the coil at $t=2$ second is
A. 40 V
B. -40 V
C. 300 V
D. 140 V

Answer: A

D Watch Video Solution

37. A real object is placed at a distance f from
the pole of a convex mirror, infront of the convex mirror. If focal length of the mirror is f,
then distance of the image from the pole of the mirror is
A. $2 f$
B. $\frac{f}{2}$
C. $4 f$
D. $\frac{f}{4}$

Answer: B
(Watch Video Solution
38. What should be the height of transmitting
antenna if the T.V. telecast is to cover of a
radius of 128 km ?

Radius of earth $=6.4 \times 10^{6} \mathrm{~m}$.
A. 128 m
B. 1280 m
C. 100 m
D. 1500 m

Answer: B
39. The diode used in the circuit shown in the figure has a constant voltage drop of 0.5 V at all currents and a maximum power rating of 100 mW . What should be the value of the resistor R , connected in series with the diode, for obtaining maximum current put less I. ?

A. 200Ω
B. 6.67Ω
C. 5Ω
D. 1.5Ω

Answer: C

D Watch Video Solution

40. A transistor with $\alpha=0.98$ is operated in common emitter circuit with a load resistance of $5 \mathrm{k} \Omega$. If the dynamic resistance of the
emitter junction is 70Ω, the voltage gain and power gain will be

A. $3500,1.715 \times 10^{5}$
B. $4000,2.715 \times 10^{5}$
C. $2500,1.215 \times 10^{5}$

D. None of these

Answer: A

D Watch Video Solution

41. Two bodies of same shape, same size and same radiating power have emissivities 0.2 and 0.4 The ratio of their temperature is .
A. $\sqrt{3}: 1$
B. $\sqrt{2}: 1$
C. $1: \sqrt{5}$
D. $1: \sqrt{8}$

Answer: B

D Watch Video Solution
42. The ionization energy for the hydrogen
atom is $13.6 e V$ then calculate the required
energy in $e V$ to excite it from the ground state to $1^{\text {st }}$ excited state.
A. 3.4 eV
B. 10.2 eV
C. 12.1 eV
D. 1.5 eV

Answer: B
43. A luminous object is separated from a screen by distance d. A convex lends is placed between the object and the screeen such that it forms a distinct image on the screen. The maximum possible focal length of this convex lens is.
A. 4 d
B. 2d
C. $\frac{d}{2}$
D. $\frac{d}{4}$

Answer: D

D Watch Video Solution

44. A body cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 min .

Find its temperature at the end of next 10 min
if the room temperature is $25^{\circ} \mathrm{C}$. Assume

Newton's law of cooling holds.
A. $45^{\circ} C$
B. $42.85^{\circ} \mathrm{C}$
C. $40^{\circ} \mathrm{C}$
D. $38.5^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

45. The driver of a car travelling with speed $30 \mathrm{~ms}^{-1}$ towards a hill sounds a horn of frequency 600 Hz . If the velocity of sound in air
is $330 \mathrm{~ms}^{-1}$, the frequency of reflected sound as heard by driver is
A. 500 Hz
B. 550 Hz
C. 720 Hz
D. 555 Hz

Answer: C
(Watch Video Solution
46. The phase difference between two points
separated by 0.8 m in a wave of frequency 120

Hz is 0.5π. The velocity of wave will be
A. $720 \mathrm{~m} / \mathrm{s}$
B. $384 \mathrm{~m} / \mathrm{s}$
C. $256 \mathrm{~m} / \mathrm{s}$
D. $144 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution
47. An electron of mass m and charge e moves
from point A to point C which are respectively at potentials of $+5 V$ and $-4 V$. The electron
will acquire the wavelength of

$$
\begin{aligned}
& \text { A. } \frac{2 h}{\sqrt{3 e \mathrm{em}}} \\
& \text { B. } \frac{h}{\sqrt{18 \mathrm{em}}} \\
& \text { C. } \frac{h^{2}}{\sqrt{5 \mathrm{em}}} \\
& \text { D. } \frac{2 h}{\sqrt{7 \mathrm{em}}}
\end{aligned}
$$

Answer: B
48. A thin wire of length I and mass m is bent
in the form of a semicircle as shown in the
figure. Its moment of inertia about an axis
joining its free ends will be

A. $m l^{2}$
B. zero
C. $m l^{2} / 2 \pi^{2}$
D. $m l^{2} / 2 \pi^{2}$

Answer: C

D Watch Video Solution

49. The speed of a uniform spherical shell after rolling down an inclined plane of vertical height h from rest, is
A. $\sqrt{\frac{10 \mathrm{gh}}{7}}$
B. $\sqrt{\frac{6 \mathrm{gh}}{5}}$
C. $\sqrt{\frac{4 \mathrm{gh}}{5}}$
D. $\sqrt{2 \mathrm{gh}}$

Answer: B

D Watch Video Solution

50. If in a wire of Young's moduls Y, longitudinal strain X is produced then the
potential energy stored in its unit volume will be:

A. $0.5 \mathrm{Y} \mathrm{X}^{2}$
B. $0.5 \mathrm{Y}^{2} \mathrm{X}$
C. $2 \mathrm{Y} \mathrm{X}^{2}$
D. $\mathrm{Y} \mathrm{X}^{2}$

Answer: A
(Watch Video Solution

