©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 15

Paper 1 Physics Chemistry

1. A point mass of 2 kg tied to a string of 1 m
length is rotated in a vertical circle with
uniform speed of $4 \mathrm{~m} / \mathrm{s}$. The tension in the string is nearly 32 N when mass is at
A. botton
B. mid-way
C. highest point
D. between bottom and mid way

Answer: A

D Watch Video Solution

2. Figure below shows a balanced Wheat stone's network. If it is distributed by changing P to 22Ω, then which of the following steps will bring the bridge to balance again ?

A. increasing S by 3Ω
B. increasing Q by 20Ω
C. Both (a) and (b)
D. increasing R by 50Ω

Answer: C

D Watch Video Solution

3. A breaker contains water, up to a height h_{1} and kerosene of height h_{2} above water, so that the total height of (water + kerosene) is
$\left(h_{1}+h_{2}\right)$. Refractive index of water is μ_{1} and that of kerosene is μ_{2}. The apparent shift in
the position of the bottom of the beaker when
viewed from above is

$$
\begin{aligned}
& \text { A. }\left(1-\frac{1}{\mu_{1}}\right) h_{2}+\left(1-\frac{1}{\mu_{2}}\right) h_{1} \\
& \text { B. }\left(1+\frac{1}{\mu_{1}}\right) h_{1}+\left(1+\frac{1}{\mu_{2}}\right) h_{2} \\
& \text { C. }\left(1-\frac{1}{\mu_{1}}\right) h_{1}+\left(1-\frac{1}{\mu_{1}}\right) h_{2} \\
& \text { D. }\left(1+\frac{1}{\mu_{1}}\right) h_{2}-\left(1+\frac{1}{\mu_{2}}\right) h_{1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

4. A string of length L is fixed at one end and carries a mass M at the other end. The string makes $\frac{2}{\pi} \mathrm{rev} / \mathrm{s}$ around the vertical axis through the fixed end as shown in figure, then
tension in string is

A. ML
B. 2 ML
C. 4 ML

D. 16 ML

Answer: D

- Watch Video Solution

5. The distance between centre of the earth and moon is 384000 km . If the mass of the earth is
$6 \times 10^{24} k g$
and
$G=6.66 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$. The speed of
the moon is nearly
A. $1 \mathrm{~km} / \mathrm{s}$
B. $4 \mathrm{~km} / \mathrm{s}$
C. $8 \mathrm{~km} / \mathrm{s}$
D. $11.2 \mathrm{~km} / \mathrm{s}$

Answer: A

D Watch Video Solution

6. The following figure shows a logic gate circuit with two inputs A and B and the output
C. The voltage waveforms of A, B and C are as
shown below.

The logic circuit gate is
A. AND gate

B. NAND gate

C. NOR gate
D. OR gate

Answer: A

- Watch Video Solution

7. Assuming the sun to have a spherical outer surface of radius r radiating like a black body at temperature $t^{\circ} C$. The power received by a unit surface (normal to the incident rays) at a distance R from the centre of the sun is
where σ is the Stefan's constant.

$$
\text { A. } \frac{4 \pi r^{2} \sigma t^{4}}{R^{2}}
$$

B. $\frac{r^{2} \sigma(t+273)^{4}}{4 \pi R^{2}}$
C. $\frac{16 \pi^{2} r^{2} \sigma t^{4}}{R^{2}}$
D. $\frac{r^{2} \sigma(t+273)^{4}}{R^{2}}$

Answer: D

D Watch Video Solution

8. The maximum number of possible interference maxima for slit-separation equal to twice the wavelength in Young's double-slit experiment is
A. infinite
B. five
C. three
D. zero

Answer: B

- Watch Video Solution

9. The period of a satellite in circcular orbit of radius 12000 km around a planet is 3 h . What is
the period o a satellite in circular orbit of radius 48000 km around the same planet?
A. 18 h
B. 14 h
C. 24 h
D. 32 h

Answer: C
(Watch Video Solution
10. Focal length of the plano-convex lens is 15
cm. A small object is placed at A as shown in
the figure. The plane surface is silvered. The image will form at `

A. 60 cm left of $A B$
B. 30 cm left from AB

C. 12 cm left of $A B$

D. 60 cm right of $A B$

Answer: C

D Watch Video Solution

11. The resistance of an ammeter is 13Ω and its
scale is graduated for a current upto $100 A$.

After an additional shunt has been connected
to this ammeter it becomes possible to
measure currents upto $750 A$ by this meter.

The value of shunt resistance is
A. 20Ω
B. 2Ω
C. 0.2Ω
D. $2 k \Omega$

Answer: B
(Watch Video Solution
12. Under the influence of a unifrom magnetic
field a charged particle is moving on a circle of radius R with Constnant speed v. The time period of the motion
A. depends on vand not on R
B. depends on both R and v
C. is independent of both R and v
D. depends on R and not on v

Answer: C

13. A standing wave having 3 nodes and 2 antinodes is formed between two atoms having a distance $1.21 \AA$ between them. The wavelength of the standing wave is
A. $1.21 \AA$
B. $1.40 \AA$
C. $6.05 \AA$
D. $3.63 \AA$

Answer: B

- Watch Video Solution

14. Two condenser, one of capacity C and the other of capacity $\frac{C}{2}$, are connected to a V volt battery, as shown in figure. The work done in charging fully both the condensers is

A. $2 C V^{2}$
B. $\frac{1}{4} C V^{2}$
C. $\frac{3}{4} C V^{2}$
D. $\frac{1}{2} C V^{2}$

Answer: C

D Watch Video Solution

15. A uniform rod $A B$ of length I and mass m is
free to rotate about point A. The rod is released from rest in the horizontal position.

Given that the moment of inertia of the rod about A is $\frac{m l^{2}}{3}$, the initial angular acceleration of the rod will be

A. $\frac{2 g}{3 l}$
B. $m g \frac{l}{2}$
C. $\frac{3}{2} g l$
D. $\frac{3 g}{2 l}$

Answer: D

D Watch Video Solution

16. At a given place where acceleration due to
gravity is $g m / \sec ^{2}$, a sphere of lead of density
$d \mathrm{~kg} / \mathrm{m}^{3}$ is gently released in a column of
liquid of density ' ρ ' $k g / m^{3}$. If $d>\rho$, the sphere will
A. fall vertically with an acceleration

$$
g m s^{-2}
$$

B. fall vertically with no acceleration
C. fall vertically with an acceleration

$$
g\left(\frac{d-\rho}{d}\right)
$$

D. fall vertically with an acceleration $g\left(\frac{\rho}{d}\right)$

Answer: C

D Watch Video Solution

17. The ratio of the energies of the hydrogen atom in its first to second excited state is
A. $1 / 4$
B. $4 / 9$
C. $9 / 4$
D. 4

Answer: C

D Watch Video Solution
18. A cylinder of height 20 m is completely filled
with water. The velocity of effux of water
($\in m s^{-1}$) through a small hole on the side wall of the cylinder near its bottom is
A. 10
B. 20
C. 25.5
D. 5

Answer: B
(Watch Video Solution
19. A wire of density $9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ is
stretched between two clamps 1 m apart and is subjected to an extension of $4.9 \times 10^{-4} \mathrm{~m}$.

The lowest frequency of transverse vibration
in the wire is $\left(Y=9 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}\right)$
A. 40 Hz
B. 35 Hz
C. 30 Hz
D. 25 Hz

Answer: B
20. The molar specific heat at constant pressure of an ideal gas is $(7 / 2 R)$. The ratio of specific heat at constant pressure to that at constant volume is
A. $7 / 5$
B. $8 / 7$
C. $5 / 7$
D. $9 / 7$

D Watch Video Solution

21. A transformer is used to light a $100 W$ and

110 V lamp from a 220 V mains. If the main
current is $0.5 A$, the Efficiency of the transformer is approximately:
A. 30%
B. 50%
C. 90%

Answer: C

D Watch Video Solution

22. A charged particle (charge q) is moving in a
circle of radius R with unifrom speed v. The
associated magnetic moment μ is given by
A. $\frac{q v R}{2}$
B. $q v R^{2}$
C. $\frac{q v R^{2}}{2}$
D. $q v R^{2}$

Answer: D

D Watch Video Solution

23. Two instruments having stretched strings
are being played in unison. When the tension
in one of the instruments is increases by
$1 \%, 3$ beats are produced in $2 s$. The initial frequency of vibration of each wire is
A. 300 Hz
B. 500 Hz
C. 1000 Hz
D. 400 Hz

Answer: A

D Watch Video Solution
24. A particle executing SHM according to the equation $x=5 \cos \left(2 \pi t+\frac{\pi}{4}\right)$ in SI units. The
displacement and acceleration of the particle at $\mathrm{t}=1.5 \mathrm{~s}$ is
A. $-3 m, 100 m / s^{2}$
B. $+2.54 m, 200 m / s^{2}$
C. $-3.54,140 m / s^{2}$
D. $+3.55,120 \mathrm{~m} / \mathrm{s}^{2}$

Answer: C

D Watch Video Solution

25. The length of the wire increases 8 mm
when a weight of 5 kg is hung. If all conditions
are same, but the radius of the wire is doubled, what will be the decrease in its length ?
A. 2 mm
B. 1 mm
C. 0.5 mm
D. 1.5 mm

Answer: A

- Watch Video Solution

26. The electric flux for Gaussian surface A that enclose the charge particles in free space is
$\left.q_{1}=-14 n C, q_{2}=78.85 n C, q_{3}=-56 n C\right)$

A. $10^{3} \mathrm{Nm}^{2} \mathrm{C}^{1}$
B. $10^{3} C N^{-1} C^{2}$
C. $6.32 \times 10^{3} \mathrm{Nm}^{2} \mathrm{C}^{1}$
D. $6.32 \times 10^{3} C N^{-1} \mathrm{~m}^{2}$

Answer: A

D Watch Video Solution
27. For ordinary terrestrial experimants, the observer is an inertial frame in the following cases is
A. a child revolving in a giant wheel
B. a driver in a sports car moving with a constant high speed of $200 \mathrm{kmh}^{-1}$ on a straight rod
C. the pilot of an aeroplane which is taking off

D. a cyclist negotiating a sharp curve

Answer: B

D Watch Video Solution

28. The diagram shows the energy levels for an electron in a certain atom. Which transition shown represents the emission of photon with the most enegy ?

A. III
B. IV
C. I
D. II

Answer: A

D Watch Video Solution

29. Water rises to a height h in a capillary tube
lowered vertically into water to a depth I as
shown in the figure. The lower end of the tube is now closed, the tube is the taken out of the water and opend again. The length of the
eater column remaining in the tube will be

A. zero
B. $l+h$
C. $2 h$
D. h

Answer: B
30. When an unpolarized light of intensity I_{0} is
incident on a polarizing sheet, the intensity of the light which does not get transmitted is

> A. $\frac{1}{2} l_{0}$
> B. $\frac{1}{4} l_{0}$
C. zero
D. l_{0}

- Watch Video Solution

31. When two tuning forks (fork 1 and fork 2) are sounded simultaneously, 4 beats per second are heard. Now, some tape is attached on the prong of the fork 2 . When the tuning forks are sounded again, 6 beats per second are heard. If the frequency of fork 1 is 200 Hz , then what was the original frequency of fork 2 ? A. 200 Hz

B. 202 Hz

C. 196 Hz
D. 204 Hz

Answer: C

D Watch Video Solution

32. An observer moves towards a stationary source of sound, with a velocity one-fifth of the velocity of sound. What is the percentage increase in the apparent frequency?
A. Zero
B. 0.5%
C. 5%
D. 20%

Answer: D

D Watch Video Solution

33. A sphere fo mass m makes $S H M$ in a hemispherical bowl $A B C$ and it moves from A to C and back to A via $A B C$, so that $P B=h$. If
acceleration due to gravity is g, the speed of the ball when it just crosses the point B is

A. $2 g h$
B. $g h$
C. $\sqrt{2 g h}$
D. $\sqrt{5 g h}$

Answer: C

- Watch Video Solution

34. The length of a wire of a potentiometer is

100 cm , and the e.m.f. of its standard cell is E
volt. It is employed to measure the e.m.f. of a battery whose internal resistance is 0.5Ω. If
the balance point is obtained at $\mathrm{I}=30 \mathrm{~cm}$ from
the positive end, the e.m.f. of the battery is .
where i is the current in the potentiometer wire.
A. $\frac{30 E}{100.5}$
B. $\frac{30 E}{100-0.5}$
C. $\frac{30(E-0.5 i)}{100}$
D. $\frac{30 E}{100}$

Answer: D

D Watch Video Solution

35. Two identical metal balls at temperature $200^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ kept in air at $27^{\circ} \mathrm{C}$. The ratio of net heat loss by these bodies is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{16}$
D. $\frac{(473)^{4}-(300)^{4}}{(673)^{4}-(300)^{4}}$

Answer: D

D Watch Video Solution

36. The wavelength difference of light waves of
the wave numbers 2×10^{6} per m and 2
25×10^{6} per m is

A. $0.556 \times 10^{-6} \mathrm{~m}$
B. $0.0556 \times 10^{6} \mathrm{~m}$
C. $0.556 \times 10^{-6} \mathrm{~m}$
D. $0.556 \times 10^{6} \mathrm{~m}$

Answer: C

D Watch Video Solution

37. The work done in turning a magnet of magnetic moment ' M ' by an angle of 90° from the meridian is ' n ' times the corresponding work done to turn it through an angle of 60°, where ' n ' is given by

$$
\begin{aligned}
& \text { A. } n=\frac{1}{2} \\
& \text { B. } n=2 \\
& \text { C. } n=\frac{1}{4} \\
& \text { D. } n=1
\end{aligned}
$$

38. A common emitter amplifier has a voltage gain of 50 , an input impedance of 200Ω and an output impedance of 400Ω. Calculate the power gain of the amplifier.
A. 500
B. 1000
C. 1250
D. 100

Answer: C

D Watch Video Solution

39. The phase difference between the instantaneous velocity and acceleration of a particle executing simple harmonic motion is
A. 0.5π
B. π
C. 0.707π
D. zero

Answer: A

- Watch Video Solution

40. Three blocks of masses m_{1}, m_{2} and m_{3} are connected by mass less string as shown kept on a frictionless table.

They are pulled with a force $T_{3}=40 N$. If $m_{1}=10 \mathrm{~kg}, m_{2}=6 \mathrm{~kg}$ and $m_{3}=4 \mathrm{~kg}, \quad$ the tension T_{2} will be
A. 20 N
B. 40 N
C. 10 N
D. 32 N

Answer: D

D Watch Video Solution

41. Interference pattern is obtained with a source of red light of wavelength $6400 \AA$. The source is then replaced by another source of
wavelength $4000 \AA$. It is found that nth bright
fringe of first source coincides with $(n+3)^{t h}$
bright finge of second source. The order of
finge is equal to
A. 6
B. 5
C. 4
D. 3

Answer: B
42. A frame made of metalic wire enclosing a surface area A is covered with a soap film. If the area of the frame of metallic wire is reduced by 50% the energy of the soap film will be changed by:
A. 100%
B. 25%
C. 90%
D. 75%

Answer: C

- Watch Video Solution

43. Unit of electric flux is

A. Vm
B. Nm / c
C. V / m
D. CN / m
44. The velocity of a paritcle (v) at an instant t is given by $v=a t+b t^{2}$. The dimesion of b is
A. [L]
B. $\left[L T^{-1}\right]$
C. $\left[L T^{-2}\right]$
D. $\left[L T^{-3}\right]$

Answer: C
45. A cylindrical tube, open at both ends, has a
fundamental frequency f in air. The tube is dipped vertically in water so that half of its
length is in water. The fundamental frequency
of the air column is now
(a) $f / 2$
(b) $3 f / 4$
(C) f
(d) $2 f$
A. $\mathrm{f} / 2$
B. f
C. $3 \mathrm{f} / 4$
D. $2 f$

Answer: B

D Watch Video Solution

46. A partical has the position vector $r=\hat{i}-2 \hat{j}+\hat{k}$ and the linear momentum
$p=2 \hat{i}-\hat{j}+\hat{k}$ its angular momentum about the origin is
A. $-\hat{i}+\hat{j}-3 \hat{k}$
B. $-\hat{i}+\hat{j}+3 \hat{k}$
C. $\hat{i}+\hat{j}+3 \hat{k}$
D. $\hat{i}-\hat{j}-5 \hat{k}$

Answer: B

D Watch Video Solution

47. A passenger train is moving at $5 \mathrm{~ms}^{-1}$. An express train is travelling at $30 m s^{-1}$, on the same track and rear side of the passenger
train at some distance. The driver in express
train at some distance. The driver in express
train applied brakes in $4 \mathrm{~ms}^{-2}$, the time in which the accident is avoided after the application of brakes is
A. 4.25 s
B. 5.25 s
C. 6.25 s
D. 7.25 s

Answer: C
48. Whatis the phase velocity of electromagneticwave having electron density
and frequency for D-layer, $\mathrm{N}=300$ electron/cc, $\nu=200 k H z ?$
A. $34 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $48 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

49. Light of wavelength $4000 \AA$ is incident on a metal surface. The maximum kinetic energy of emitted photoelectron is 2 eV . What is the work function of the metal surface?
A. 4 eV
B. 1 eV
C. 2 eV
D. 6 eV

Answer: B

D Watch Video Solution

50. Neglecting and correction, the frequency of Ist overtone of the air column in a pipe of
length 25 cm closed at one end $(\mathrm{v}=350 \mathrm{~m} / \mathrm{s}$ in air) is
A. 1050 Hz
B. 350 Hz
C. 525 Hz
D. 700 Hz

Answer: A

- Watch Video Solution

