©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR

 PAPERS AND PRACTICE PAPERS
PRACTICE SET 21

Paper 1 Physics Chemistry

1. A laser beam of pluse power 10^{12} watt is focussed on an object are $10^{-4} \mathrm{~cm}^{2}$. The
energy flux in $w a / \mathrm{cm}^{2}$ at the point of focus is
A. 10^{20}
B. 10^{16}
C. 10^{8}
D. 10^{4}

Answer: B
2. A weightless thread can bear tension upto
3.7 kg wt A stone of mass 500 g is tied to it and
revolves in a verticle circle of radius $4 m$ What
will be the maximum angular velocity of the
stone if $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. $2 \mathrm{rad} / \mathrm{s}$
B. $4 \mathrm{rad} / \mathrm{s}$
C. $16 \mathrm{rad} / \mathrm{s}$
D. $\sqrt{21} \mathrm{rad} / \mathrm{s}$

Answer: B
3. In a carnival ride the passengers travel in a circle of radius 5.0 m , maklin gone completer circle in 4.0 s . What is the acceleration ?
A. $24.6 m / s^{2}$
B. $12.3 \mathrm{~m} / \mathrm{s}^{2}$
C. $6.15 m / s^{2}$
D. $49.2 m / s^{2}$
4. A road is 8 m wide. Its radius of curvature is

40 m . The outer edge is above the lower edge
by a distance of 1.2 m . This road is most suited for a velocity of
A. $5.7 m / s$
B. $7.4 m / s$
C. $36.1 \mathrm{~m} / \mathrm{s}$
D. $9.7 m / s$

Answer: B

D Watch Video Solution

5. A 0.5 kg ball moves in a circle of radius 0.4 m
at a velocity of $4 \mathrm{~m} / \mathrm{s}$. The centripetal force on
the ball is
A. 10 N
B. 20 N
C. 40 N
D. 80 N

Answer: B

D Watch Video Solution

6. Two wires of equal length are made of the same material. Wire A has a diameter that is
twice as that of wire B. If identical weights are suspended from the ends of these wires, the increase in length is
A. four times for wire A as for wire B
B. twice for wire A as for wire B
C. halrf for wire A as for wire B
D. one-fourth for wire A as for wire B

Answer: D

D Watch Video Solution

7. The equation of a transverse travelling on a rope is given by $y=10 \sin \pi(0.01 x-2.00 t)$
where y and x are in cm and t in seconds. The maximum transverse speed of a particle in the rope is about
A. $63 \mathrm{~cm} / \mathrm{s}$
B. $75 \mathrm{~cm} / \mathrm{s}$
C. $100 \mathrm{~cm} / \mathrm{s}$
D. $121 \mathrm{~cm} / \mathrm{s}$

Answer: A

D Watch Video Solution

8. Two bodies with moment of inertia l_{1} and l_{2}
$\left(l_{1}>l_{2}\right)$ have equal angular momentum. If E_{1}
and E_{2} are the rotational kinetic energies, then
A. $K E_{1}>K E_{2}$
B. $K E_{1}=K E_{2}$
C. $K E_{1}<K E_{2}$
D. cannot be said

Answer: C
(Watch Video Solution
9. A satellite moves around the earth in a circular orbit with speed v. If m is the mass of the satellite, its total energy is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m v^{2} \\
& \text { B. }-\frac{1}{2} m v^{2} \\
& \text { C. }-m v^{2} \\
& \text { D. } \frac{3}{2} m v^{2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

10. A particle moves in the $x y$ plane under the influence of a force such that its linear momentum is
$\vec{P}(t)=A[\hat{i} \cos (k t)-\hat{j} \sin (k t)]$, where A
and k are constants. The angle between the force and momentum is
A. 0°
B. 30°
C. 45°
D. 90°

Answer: D

D Watch Video Solution

11. A body of mass m is taken from earth
surface to the height h equal to radius of earth, the increase in potential energy will be
A. $2 m g R$
B. $m g R$
C. $\frac{1}{2} m g R$
D. $\frac{1}{4} m g R$

- Watch Video Solution

12. At which of the following temperatures, the
value of surface tension of water is minimum
A. $4^{\circ} C$
B. $25^{\circ} \mathrm{C}$
C. $50^{\circ} \mathrm{C}$
D. $75^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

13. Work done is splitting a drop of water of 1 mm radius into 64 droplets is (surface tension

$$
\text { of water } \left.=72 \times x 10^{\wedge}(-3) j \mathrm{~m}^{\wedge}(2)\right)^{\wedge}
$$

A. $2.0 \times 10^{-6} J$
B. $2.7 \times 10^{-6} \mathrm{~J}$
C. $4 \times 10^{-6} J$
D. $5.4 \times 10^{-6} J$

Answer: B

D Watch Video Solution

14. Under which of the following conditions is
the law $\mathrm{PV}=\mathrm{RT}$ obeyed most closed by a real gas?
A. high pressure and high temperature
B. low pressure and low temperature
C. low pressure and high temperature
D. high pressure and low temperature

D Watch Video Solution

15. Show that the moon would depart for ever
if its speed were increased by 42%.
A. 100%
B. 140.4%
C. 41.4%
D. None of these

D Watch Video Solution

16. Relation between emissivity e and absorptive power a is (for black body)

$$
\begin{aligned}
& \text { A. } e=a \\
& \text { B. } e=\frac{1}{a} \\
& \text { C. } e=a^{2} \\
& \text { D. } a=e^{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

17. In Young's double slit experiment, angular width of fringes is 0.20° for sodium light of wavelength $5890 \AA$. If complete system is dipped in water, then angular width of fringes becomes

$$
\text { A. } 0.11^{\circ}
$$

B. 0.15°
C. 0.22°
D. 0.30°

Answer: B

D Watch Video Solution

18. A black body at $227^{\circ} \mathrm{C}$ radiates heat at the
rate of $7 \mathrm{calcm}^{-2} \mathrm{~s}^{-1}$. At a temperature of
$727^{\circ} \mathrm{C}$, the rate of heat radiated in the same unit will be
A. 80
B. 60
C. 50
D. 112

Answer: D

D Watch Video Solution

19. The component of vector $A=2 \hat{i}+3 \hat{j}$
along the vector $\hat{i}+\hat{j}$ is

> A. $\frac{1}{\sqrt{2}}$
> B. $\frac{3}{\sqrt{2}}$
> C. $\frac{5}{\sqrt{2}}$
> D. $\frac{7}{\sqrt{2}}$

Answer: C

- Watch Video Solution

20. A particle of mass 10 gm is describing S.H.M. along a straight line with period of 2 sec and amplitude of 10 cm . Its kinetic energy
when it is at 5 cm from its equilibrium position
is

A. $3.75 \pi^{2} \mathrm{erg}$
B. $375 \pi^{2} \operatorname{erg}$
C. $0.375 \pi^{2} \mathrm{erg}$
D. $37.5 \pi^{2} \mathrm{erg}$

Answer: B

D Watch Video Solution
21. The string of pendulum of length I is displaced through 90° from the vertical and released. Then the minimum strength of the string in order to withstand the tension, as
the pendulum passes through the mean position is
A. $m g$
B. 3 mg
C. 5 mg
D. 6 mg

Answer: B

D Watch Video Solution

22. The velocity of sound in air at NTP is 330
m / s. What will be its value when temperature
is doubled and pressure is halved ?
A. $330 \mathrm{~m} / \mathrm{s}$
B. $165 \mathrm{~m} / \mathrm{s}$
C. $330 \sqrt{2} \mathrm{~m} / \mathrm{s}$
D. $330 / \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

23. When light is incident on a doubly refracting crystal, two refracted rays-ordinary ray (O -ray) and extra ordinary ray (E -ray) are produced. Then
A. Both O-ray and E-ray are polarised perpendicular to the plane of incidence
B. Both O-ray and R-ray are polarised in the plane of incidence
C. E-ray is polarised perpendicular to the plane of incidence and O-ray in the plane of incidence
D. E-ray is polarised in the plane of incidence and O -ray perpendicular to the plane of incidence

Answer: D

24. A bullet of mass 0.05 kg moving with a speed of $80 \mathrm{~m} / \mathrm{s}$ enters a wooden block and is stopped after a distance of 0.40 m The average resistive force exerted by the block on the bullet is:
A. 300 N
B. 20 N
C. 400 N
D. 40 N

Answer: B

D Watch Video Solution

25. Doppler's effect is sound in addition of relative velocity between source and observer, also depends while source and abserver or both are moving. Doppler effect in light depend only on the relative velocity of source and observed. The reason of this is
A. Einstein mass-energy relation
B. Einstein theory of relativity
C. Photoelectric effect
D. none of the above

Answer: C

D View Text Solution

26. An e.m.f. $E=4 \cos (1000 t)$ volt is applied to
an $L R$ circuit of inductance $3 m H$ and resistance 40 hm . The amplitude of current in the circuit is
A. $\frac{4}{\sqrt{7}} A$
B. 1.0 A
C. $\frac{4}{7} A$
D. 0.8 A

Answer: D

D Watch Video Solution

27. Consider telecommunication through
optical fibres. Which of the following
statements is not true?
A. Optical fibers may have homogeneous
core with a suitable cladding
B. Optical fibers can be of graded
refractivce index
C. Optical fibers are subject to
electromagnetic interference
from
outside
D. Optical fibres have extremely low transmission loss
28. The expression for thermo emf in a thermocouple given by the relation
$E=40 \theta-\frac{\theta^{2}}{20}$, where θ is the temperatue difference of two junctons. For this, the neutral temperature will be
A. $400^{\circ} \mathrm{C}$
B. $300^{\circ} \mathrm{C}$
C. $200^{\circ} \mathrm{C}$
D. $100^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

29. Minimum number of capacitors of $2 \mu F$
capacitance each required to obtain a
capacitor of $5 \mu F$ will be
A. 3
B. 4
C. 5
D. 6

Answer: B

D Watch Video Solution

30. A charge q is placed at the centre of the open end of a cylindrical vessel. The flux of the electric field through the surface of the vessel

A. zero
B. $\frac{q}{\varepsilon_{0}}$
C. $\frac{q}{2 \varepsilon_{0}}$
D. $\frac{2 q}{\varepsilon_{0}}$

Answer: C

- Watch Video Solution

31. The distance of two points on the axis of a magnet from its centre is 10 cm and 20 cm repectively. The ratio of magnatic intensity at these points is $12.5: 1$. The length of the megnet will be
A. 5 cm
B. 25 cm
C. 10 cm

D. 20 cm

Answer: D

D Watch Video Solution

32. Two masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are connected by massless flexible and inextensible string passed over massless and frictionless pulley. The acceleration of centre of mass is

$$
\text { A. }\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} g
$$

$$
\begin{aligned}
& \text { B. } \frac{m_{1}-m_{2}}{m_{1}+m_{2}} g \\
& \text { C. } \frac{m_{1}+m_{2}}{m_{1}-m_{2}} g \\
& \text { D. zero }
\end{aligned}
$$

Answer: A

D Watch Video Solution

33. When a ferromagnetic material is heated
to temperature above its Curie tamperature, the material
A. it gets demagnetised
B. it becomes diamagnetic
C. it behaves like a paramagnetic substance
D. it remains unaffected

Answer: C

D Watch Video Solution
34. A rectangular vessel when full of water
takes 10 minutes to be emptied through an
orifice in its bottom. How much time will it take to be emptied when half filled with water
A. 9 min
B. 7 min
C. 5 min
D. 3 min

Answer: B
(Watch Video Solution
35. A layer of glycerine of thickness 1 mm is
present between a large surface and small
surface of area $0.1 \mathrm{~m}^{2}$. With what force the small surface is to be pulled, so that it can move with a velocity of $1 \mathrm{~m} / \mathrm{s}$?
(coefficient of viscosity $=0.07 g-m^{-1} s^{-1}$)
A. 70 N
B. 7 N
C. 700 N
D. 0.70 N

Answer: B

D Watch Video Solution

36. Two coils of self-inductance L_{1} and L_{2} are placed closed to each other so that total flux in one coil is completely linked with other. If
M is mutual inductance between them, then
A. $M=L_{1} L_{2}$
B. $M=L_{1} / L_{2}$
C. $M=L_{2} / L_{1}$

D. $M=\sqrt{L_{1} L_{2}}$

Answer: D

D Watch Video Solution

37. A new flashlight cell of e.m.f. 1.5 volts given
a current of 15 amps . When connected directly
to an ammeter of resistance 0.04Ω. The internal resistance of cell is
A. 0.04Ω
B. 0.06Ω
C. 0.10Ω
D. 10Ω

Answer: B

- Watch Video Solution

38. In a transformer, the number of turns in primary coil and secondary coil are 5 and 4 respectively. If 240 V is applied on the primary
coil, then the ratio of current in primary and secondary coil is
A. $4: 5$
B. 5: 4
C. $5: 9$
D. 9:5

Answer: A

D Watch Video Solution
39. Two coherent monochromatic light beams
of intensities I and 4 I are superposed. The maximum and minimum possible intensities in the resulting beam are
A. 51 and I
B. 51 and 31
C. 31 and I
D. 9 and I

Answer: D

40. In the relation $x=\cos (\omega t+k x)$, the dimension(s) of ω is/are
A. $\left[M^{0} L T\right]$
B. $\left[M^{0} L T^{0}\right]$
C. $\left[M^{0} L^{0} T^{-1}\right]$
D. $\left[M^{0} L T^{-1}\right]$

Answer: C
41. For the stationary wave
$y=4 \sin \left(\frac{\pi x}{15}\right) \cos (96 \pi t), \quad$ the distance between a node and the next antinode is
A. 7.5
B. 15
C. 22.5
D. 30

Answer: A
42. When monochromatic light is replaced by white light in Fresnel's biprism arrangement, the central fringe is
A. coloured
B. white
C. dark
D. None of these

Answer: B
43. Wavelength of a 1 keV photon is
$1.24 \times 10^{-9} \mathrm{~m}$. What is the frequency of 1 MeV photon ?
A. 1.24×10^{15}
B. 2.4×10^{20}
C. 1.24×10^{18}
D. 2×10^{23}

Answer: B

Watch Video Solution

44. A physical quantity Q is found ot depend on observables x, y and z obeying relation
$Q=\frac{x^{3} y^{2}}{z}$. The percentage error in the measurments of x, y and z are $1 \%, 2 \%$ and 4% respectively. What is percentage error in the quantity Q ?
A. 4%
B. 3%
C. 11%
D. 1%

Answer: C

D Watch Video Solution

45. Why is refractivce index in a transparent medium greater than one?
A. Because the speed of light in vaccum is

B. Because the speed of light in veccum is

always greater than speed in a transparent medium
C. Frequency of wave charges when it crosses medium

D. none of the above

Answer: B

D Watch Video Solution

46. A disc is rotating with angular velocity ω. If a child sits on it, what is conserved?
A. kinetic energy
B. Potential energy
C. Linear momentum

D. Angular momentum

Answer: D

47. A voltmeter having resistance of 50×10^{3}
ohm is used to measure the voltage in a circuit. To increase the range of measurement

3 times the additional series resistance required is
A. $10^{5} \Omega$
B. $150 k \Omega$
C. $900 k \Omega$
D. $9 \times 10^{6} \Omega$

Answer: A
48. Ground state energy of H -atom is -13.6 eV .

The energy needed to ionise H -atom from its second excited state is
A. 1.51 eV
B. 3.4 eV
C. 13.6 eV
D. 12.1 eV

- Watch Video Solution

49. A plano convex lens of refractive index 1.5 and radius of curvature 30 cm . Is silvered at the
curved surface. Now this lens has been used to
form the image of an object. At what distance
from this lens an object be placed in order to
have a real image of size of the object.
A. 20 cm
B. 30 cm
C. 60 cm
D. 80 cm

Answer: A

D Watch Video Solution

50. The energy gap between conductionband
and valence band is of the order of 0.07 eV . It
is a/an
A. insulator
B. conductor

C. semiconductor

D. ailoy

Answer: B

(Watch Video Solution

