©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

PRACTICE SET 22

Physics Chemistry

1. The wavelength of light coming from a distant galaxy is found to be 0.5% more than
that coming from a source on earth. Calculate the velocity of galaxy.
A. stationary with respect to the earth
B. approaching the earth with velocity of

light

C. receding from the earth with velocity of
light
D. receding from the earth with a velocty
equal to $1.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

2. A ball is moving in a circular path of radius 5
m . If tangential acceleration at any instent is
m / s^{2} and the net acceleration makes an
angle 30° with the centripetal accelaration, then the instantaneous speed is
A. $50 \sqrt{3} \mathrm{~m} / \mathrm{s}$
B. $9.3 \mathrm{~m} / \mathrm{s}$
C. $6.6 m / s$

D. $5.4 m / s$

Answer: B

D View Text Solution

3. The radius of curvature of concave mirror is

24 cm and the image is magnified by 1.5 times.

The object distance is
A. 20 cm
B. 8 cm
C. 16 cm
D. 24 cm

Answer: A

D Watch Video Solution

4. The moment of inertia of thin spherical shell of mass M and radius R about a diameter is $\frac{2}{3}$

MR. Its radius of gyration K about a tangent will be
A. $\sqrt{\frac{2}{3}} R$
B. $\frac{2}{3} R$
C. $\frac{5}{3} R$
D. $\sqrt{\frac{5}{3}} R$

Answer: D

D Watch Video Solution
5. The outer sphere of a spherical air capacitor is earthed.For increasing its capacitance
A. vacuum is created between two spheres
B. dielectric material is filled between two
spheres
C. the space between two spheres is
increased
D. the earthing of the outer sphere is
removed

Answer: B

6. A body weighs 200 N at the surface of earth.

If it be placed in an artificial satellite revoling at height where jaccelaration due to gravity is half of that at earth's surface. It will weigh
A. 100 N
B. 200 N
C. 400 N
D. zero

Answer: D

7. The bulk modulus of water is
$2.0 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. The pressure required to increase the density of water by 0.1% is
A. $2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
B. $2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
C. $2 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
D. $2 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
8. A simple pendulum is made by attaching a 1 kg bob to a 5 m long copper wire. Its period is
T. Now, if 1 kg bob is replaced by 10 kg bob,the period of oscillations
A. remains T
B. becomes greater than T
C. becomes less than T
D. any of above depends on locality

Answer: B

D Watch Video Solution

9. A wire suspended vertically from one of
itsends is strached by attached a weight of $200 N$ to the lower end. The weight streches
the wire by $1 m m$. Then the elastic energy
stored in the wire is
A. 20 J
B. 0.1 J
C. 0.2J
D. 10 J

Answer: B

- Watch Video Solution

10. The focal length of a thin biconex lens is 20
cm . When an object is moved from a distance
of 25 cm in front energy stored in the wire is
A. 6
B. 7
C. 8
D. 9

Answer: A

D View Text Solution
11. Dimensions of ohm are same as that of (where h is Planck's constant and e is charge)
A. $\frac{h^{2}}{e^{2}}$
B. $\frac{h^{2}}{e}$
C. $\frac{h}{e^{2}}$
D. $\frac{h}{e}$

Answer: C

D Watch Video Solution

12. Certain neutron stars are believed to be rotating at about $1 \mathrm{rev} / \mathrm{sec}$. If such a star has
a radius of 20 km , the acceleration of an
object on the equator of the star will be
A. $20 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$
B. $8 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$
C. $120 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$
D. $4 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$

Answer: B

D Watch Video Solution
13. The length of needle floating on water is
2.5 cm . Calculate the added force required to
pull the needle out of water

$$
\left(T=7.2 \times 10^{-2} N / m\right)
$$

A. $3.6 \times 10^{-3} \mathrm{~N}$
B. $3.4 \times 10^{-10} \mathrm{~N}$
C. $3.0 \times 10^{-5} \mathrm{~N}$
D. $3.8 \times 10^{-11} \mathrm{~N}$

Answer: A
(Watch Video Solution
14. A capillary tube of radius R is immersed in water and water rises in it to a height H . Mass of water in the capillary tube is.M If the radius of the tube is doubled, mass of water that will rise in the capillary tube will now be
A. m
B. 2 m
C. $m / 2$
D. 4 m

Answer: B

- Watch Video Solution

15. In planetary motion the areal velocity of possition vector of a planet depends of angular velocity (ω) and the distance of the planet from sun (r). If so the correct relation for areal velocity is
A. $\frac{d A}{d t} \propto \omega r$
B. $\frac{d A}{d t} \propto \omega^{2} r$
C. $\frac{d A}{d t} \propto \omega r^{2}$
D. $\frac{d A}{d t} \propto \omega r^{2}$

Answer: C

D Watch Video Solution

16. When a galvanometer is shunted by resistance S, then its current capacity increases n times. If the same galvanometer is shunted by another resistance S^{\prime}, then its
current capcity will increase by n ' is given by

$$
\text { A. } \frac{(n+1) S}{S^{\prime}}
$$

> B. $\frac{S(n-1)+S^{\prime}}{S^{\prime}}$
> C. $\frac{n+S}{S^{\prime}}$
> D. $\frac{S(n-1)-S^{\prime}}{S^{\prime}}$

Answer: B

D Watch Video Solution

17. A metallic solid sphere is rotating about its diameter as axes of rotation. If the temperature is increased by $200^{\circ} \mathrm{C}$, the percentage increase in its moment of inertia is
(Coefficient of linear expansion of the metal

$$
\left.=10^{-5} /{ }^{\circ} C\right)
$$

A. 0.1%
B. 0.2%
C. 0.3%
D. 0.4%

Answer: B
(Watch Video Solution
18. In a simple pendulum experiment, the maximum percentage error in the measurement of length is 2% at that in the observation of the time period is 3% then,
the maximum percentage error in determination of the acceleration due to gravity g is
A. 5%
B. 6%
C. 7%
D. 8%

Answer: D

D Watch Video Solution

19. Maximum energy is evolved during which of
the following transitions?
A. $n=1$ to $n=2$
B. $n=2$ to $n=6$
C. $n=2$ to $n=1$

D. $n=6$ to $n=2$

Answer: C

D Watch Video Solution

20. The average velocity of the molecules in a gas in equilibrium is
A. proportional to \sqrt{T}
B. proportional to T
C. proportional to T^{2}

D. equal to zero

Answer: D

D Watch Video Solution

21. A vessel containing $0.1 \mathrm{~m}^{3}$ of air at 76 cm of

Hg is connected to an evacuated vessel of capacity $0.09 m^{3}$. The resultant air pressure is:
A. 20 cm of Hg
B. 30 cm of Hg

C. 40 cm of Hg

D. 60 cm of Hg

Answer: C

D Watch Video Solution

22. Two springs of force constants $1000 \mathrm{~N} / \mathrm{m}$
and $2000 \mathrm{~N} / \mathrm{m}$ are stretched by same force.

The ratio of their respective potential enegries is
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1: 4

Answer: A

D Watch Video Solution

23. If at the same temperature and pressure,
the densities of two diatomic gases are d_{1} and
d_{2} respectively. The ratio of mean kinetic energy permolecule of gasses will be
A. $1: 1$
B. $d_{1}: d_{2}$
C. $\sqrt{d_{1}}: \sqrt{d_{2}}$
D. $\sqrt{d_{2}}: \sqrt{d_{1}}$

Answer: A
(Watch Video Solution
24. When LED is forward biased, then
A. electrons from the n-type material cross
the $\mathrm{p}-\mathrm{n}$ junction
B. electrons and holes neutralise each
other
C. at junction electrons and holes remains
at rest
D. None of the above

D Watch Video Solution

25. If there were no gravity, which of the following will not be there for a fluid?
A. viscosity
B. surface tension
C. Pressure

D. Archimedes's upward thrust

Answer: D

26. Maximum velocity of photoelectron emitted is $4.8 m s^{-1}$. If e/m ratio of electron is
$1.76 \times 10^{11} \mathrm{Ckg}^{-1}$, then stopping potential is given by

> A. $5 \times 10^{-10} \mathrm{~J} / \mathrm{C}$
> B. $3 \times 10^{-7} \mathrm{~J} / \mathrm{C}$
> C. $7 \times 10^{-11} \mathrm{~J} / \mathrm{C}$
> D. $2.5 \times 10^{2} \mathrm{~J} / \mathrm{C}$

Answer: C

- Watch Video Solution

27. A copper rod is suspended in a non homogeneous magnetic field region. The rod when in equilibrium will align itself.
A. in the region where magnetic field is
strongest
B. in the region where magnetic field is
weakest and parallel to direction of
magnetic field there
C. in the direction in which it was originally
suspended
D. in the region where magnetic field is
weakest and perpendicular to be
direction of magnetic field there

Answer: D

- Watch Video Solution

28. A black body of mass 34.38 g and surface area $19.2 \mathrm{~cm}^{2}$ is at an intial temperature of 400 K . It is allowed to cool inside an evacuated enclouse kept at constant temperature 300 K .

The rate of cooling is $0.04^{\circ} \mathrm{C} / \mathrm{s}$. The specific heat of body is (Stefan's constant

$$
\left.\sigma=5.73 \times 10^{-8} j m^{-2} K^{-4}\right)
$$

A. $2800 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
B. $2100 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
C. $1400 \mathrm{~J} / \mathrm{kg}-K$

D. $1200 \mathrm{~J} / \mathrm{kg}-K$

Answer: C

D Watch Video Solution

29. A rain drop of radius 0.3 mm falls through
air with a terminal viscosity of $1 m s^{-1}$. The
viscosity of air is 18×10^{-5} poise. The viscous
force on the rain drop is

$$
\text { A. } 16.95 \times 10^{-9} \mathrm{~N}
$$

B. $1.695 \times 10^{-9} \mathrm{~N}$
C. $10.17 \times 10^{-9} \mathrm{~N}$
D. $101.73 \times 10^{-9} \mathrm{~N}$

Answer: D

D Watch Video Solution

30. The motion of a particle executing S.H.M. is given by $x=0.01 \sin 100 \pi(t+.05)$, where x is in metres and time is in seconds. The time period is
A. 0.01
B. 0.02
C. 0.1
D. 0.2

Answer: B

D Watch Video Solution

31. What is the area of the plates of a 3 F parallel plate capacitor, if the sepreration between the plates is 5 mm ?
A. $1.694 \times 10^{9} m^{2}$
B. $4.529 \times 10^{9} \mathrm{~m}^{2}$
C. $9.281 \times 10^{9} \mathrm{~m}^{2}$
D. $12.981 \times 10^{9} \mathrm{~m}^{2}$

Answer: A

D Watch Video Solution

32. When a certain volume of water is
subjected to 100 kPa pressure, the volume of
water decreases by 0.005%. The speed of sound in water must be
A. $140 \mathrm{~m} / \mathrm{s}$
B. $300 \mathrm{~m} / \mathrm{s}$
C. $1400 \mathrm{~m} / \mathrm{s}$
D. $5000 \mathrm{~m} / \mathrm{s}$

Answer: C
(Watch Video Solution
33. A man stands in a narrow, steep-sided valley. When he shouts he hears two eachoes, one after 1 s and other after 2 s . If the velocity of sound in air is $330 \mathrm{~m} / \mathrm{s}$, the width of the valley is
A. 300 m
B. 495 m
C. 600 m
D. 990 m

Answer: B
34. A cylinderical tube open at both ends, has
a fundamental frequency f in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of air column is now
A. $f / 2$
B. $3 \mathrm{f} / 4$
C. f

D. $2 f$

Answer: C

D Watch Video Solution

35. The end correction of a resonance tube is

1 cm . If shortest resonating length is 15 cm , the next resonating length will be.
A. 31 cm
B. 45 cm

C. 46 cm

D. 47 cm

Answer: D

D Watch Video Solution

36. A 1.5 kg ball drops vertically on a floor hitting with a speed of $25 m s^{1}$. It rebounds with an initial speed of $15 \mathrm{~ms}^{-1}$. If the ball was in contact for only 0.03 , the force exerted on the floor by the ball is
A. 2000 N
B. 3000 N
C. 3500 N
D. 4000 N

Answer: A

D Watch Video Solution

37. The de - Broglie wavelength of an electron having $80 e v$ of energy is nearly
$\left(1 \mathrm{eV}=1.6 \times 10^{-19} J, \quad\right.$ Mass of electron

$$
\begin{aligned}
& =9 \times 10^{-31} \mathrm{~kg} \quad \text { Plank's constant } \\
& \left.=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{sec}\right)
\end{aligned}
$$

A. $140 \AA$
B. $0.14 \AA$
C. $14 \AA$
D. $1.4 \AA$

Answer: D
(Watch Video Solution
38. The distance between two coherent sources is 1 mm . The screen is placed at a distance of 1 m from the sources. If the distance of the third bright fringe is 1.2 mm from the central fringe, the wavelength of light used is
A. $4000 \AA$
B. $5000 \AA$
C. $6000 \AA$
D. $7200 \AA$

Answer: A

D Watch Video Solution

39. Two polaroids are crossed. If now one of
them is rotated through 30° and unpolarised
light of intensity l_{0} is incident on the first polaroid, then the intensity of transmitted light will be

$$
\begin{aligned}
& \text { A. } \frac{l_{0}}{4} \\
& \text { B. } \frac{3 l_{0}}{4}
\end{aligned}
$$

c. $\frac{3 l_{0}}{8}$
D. $\frac{l_{0}}{8}$

Answer: D

- Watch Video Solution

40.

Block A weighing 100 kg rests on a block B and is tied with a horizontal string to the wall at C .

Block B weighs 200 kg . The coefficient of friction between A and B is 0.25 and between B and the surface is $1 / 3$. The horizontal force P necessary to move the block B should be $\left(g=10 m / s^{2}\right)$
A. 1150 N
B. 1250 N
C. 1300 N
D. 1420 N

Answer: B

D Watch Video Solution
41. The intensity ratio of two coherent sources
of light is p. They are interfering in some
region and produce interference patten. Then
the fringe visibility is

$$
\begin{aligned}
& \text { A. } \frac{1+P}{2 \sqrt{P}} \\
& \text { B. } \frac{2 \sqrt{P}}{1+P} \\
& \text { C. } \frac{P}{1+P} \\
& \text { D. } \frac{2 P}{1+P}
\end{aligned}
$$

Answer: B

- Watch Video Solution

42. A condenser of capacitance $6 \mu F$ was originally charged to 10 V . Now potential difference is made 20 V . The increase in potential energy is
A. $3 \times 10^{-4} \mathrm{~J}$
B. $6 \times 10^{-4} \mathrm{~J}$
C. $9 \times 10^{-4} \mathrm{~J}$
D. $12 \times 10^{-4} \mathrm{~J}$

Answer: C

43. If there is no deflection in the galvanometer connected in a circuit shown in
figure, then the ratio of lengths $A C / C B$ is

A. $4: 1$
B. 1: 4

C. $1: 1$

D. 2:1

Answer: A

- Watch Video Solution

44. In moving coil galvanometer, the magnetic field used is
A. non-uniform
B. radial

C. uniform

D. None of these

Answer: B

D Watch Video Solution

45. A particle has an initial velocity $3 \hat{i}+4 \hat{j}$ and an accleration of $0.4 \hat{i}+0.3 \hat{j}$. Its speed after 10 s is
B. 7 units
C. $7 \sqrt{2}$ units
D. 8.5 units

Answer: C

D Watch Video Solution

46. Calculate the current which will produce a deflection of 30° in a tangent galvanometer, if its reduction factor is 3 A .
A. $1.732 A$
B. $0.732 A$
C. $3.732 A$
D. $2.732 A$

Answer: A

D Watch Video Solution

47. Iron is ferromagnetic
A. at all temperatures

B. at NTP only

C. above $770^{\circ} \mathrm{C}$
D. below $770^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

48. If $A=B+e$ and the values of A, B and C are

13,12 and 5 respectively, then the angle between A and C will be
A. $\cos ^{-1}(5 / 13)$
B. $\cos ^{-1}(13 / 12)$
C. $\pi / 2$
D. $\sin ^{-1}(5 / 12)$

Answer: A

D Watch Video Solution
49. The mutual inductance of an induction coil
is 5 H. In the primary coil, the current reduces
from 5 A to zero in $10^{-3} s$. What is the induced emf in the secondary coil
A. 2500 V
B. 25000 V
C. 2510 V
D. Zero

Answer: B
(Watch Video Solution
50. The electrical conductivity of a
semiconductor increases
when
electromagnetic radiation of wavelength
shorter than 2480 nm is incident on it. The band gap in ($e V$) for the semiconductor is.
A. 0.9 eV
B. 0.7 eV
C. 0.5 eV
D. 1.1 eV

Answer: C

Watch Video Solution

