©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

REFRACTION OF LIGHT

Example

1. When a glass slab is placed on a cross made
on a sheet, the cross appears to be raised by

1 cm . The thickness of the glass is 3 cm . The critical angle for glass is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}(0.33) \\
& \text { B. } \sin ^{-1}(0.5) \\
& \text { C. } \sin ^{-1}(0.67) \\
& \text { D. } \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

1. A light wave has a frequency of $4 \times 10^{14} \mathrm{~Hz}$ and a wavelength of 5×10^{-7} meters in a medium. The refractive index of the medium is
A. 1.5
B. 1.33
C. 1.25
D. 1.75
2. Absolute refractive indices of glass and water are $3 / 2$ and $4 / 3$. The ratio of velocity of light in glass and water will be
A. $4: 3$
B. $9: 8$
C. $8: 9$
D. $3: 4$
3. Wavelength of light in vaccum is $5890 \AA$,
then its wavelength in glass ($\mu=1.5$) will be
A. $9372 \AA$
B. $7932 \AA$
C. $7548 \AA$
D. $3927 \AA$

Answer:
4. A ray of light is Incident on a glass plate at 60°. The reflected and refracted rays are found to be mutually perpe:ndiwlar. The refractive index of the glass is
A. $\frac{\sqrt{3}}{2}$
B. 1.5
C. 1.732
D. 2

Answer:

- Watch Video Solution

5. A ray of light, travelling in a medium of refractive index mu, is incident at an angle ion
a composite transparent plate consisting of three plates of refractive indices
μ_{1}, μ_{2} and μ_{3}. The ray emerges from the composite plate into a medium of refractive index μ_{4}, at angle x . Then,
A. $\sin x=\sin i$

$$
\begin{aligned}
& \text { B. } \sin \mathrm{x}=\frac{\mu}{\mu_{4}} \sin \mathrm{i} \\
& \text { C. } \sin \mathrm{x}=\frac{\mu_{4}}{\mu} \sin \mathrm{i} \\
& \text { D. } \sin \mathrm{x}=\frac{\mu_{1}}{\mu_{2}} \frac{\mu_{3}}{\mu_{2}} \frac{\mu}{\mu_{4}} \sin \mathrm{i}
\end{aligned}
$$

Answer:

D Watch Video Solution

6. The optical density of turpentine is higher than that of water while its mass density is
lower. Figure shows, a layer of turpentine
floating over water in a container. For which one of the four rays incident on turpentine in figure, the path shown is correct?
A. 1
B. 2
C. 3
D. 4

Answer:

7. The $x z$ plane separates two media A and B
with refractive indices $\mu_{1} \& \mu_{2}$ respectively. A
ray of light travels from A to B. Its directions
in the two media are given by the unut vectors, $\quad \vec{r}_{A}=a \hat{i}+b \hat{j} \quad \& \quad \vec{r}_{B} \alpha \hat{i}+\beta \hat{j}$ respectively where $\hat{i} \& \hat{j}$ are unit vectors in the $x \& y$ directions. Then :
A. $\mu_{1} a=\mu_{2} \alpha$
B. $\mu_{1} \alpha=\mu_{2} a$
C. $\mu_{1} b=\mu_{2} \beta$

D. None of these

Answer:

D Watch Video Solution

8. If refractive indices of glass and water with
respect to air are $3 / 2$ and $4 / 3$ respectively,
what is the refractive index of glass with respect to water?
A. $8 / 9$
B. $9 / 8$
C. $7 / 6$
D. None of these

Answer:

D Watch Video Solution

9. How does refractive (μ) of a material vary
with respect to wavelength (λ) ? A and B are constants

> A. $\mu=A+\frac{B}{\lambda^{2}}$
> B. $\mu=A+B \lambda^{2}$
> C. $\mu=A+\frac{B}{\lambda}$
> D. $\mu=A+B \lambda$

Answer:

- Watch Video Solution

10. If ${ }_{i} \mu_{j}$ represents refractive index when a light ray goes from mefium i to medium j,
then the product ${ }_{\cdot 2} \mu_{1} \times{ }_{\cdot 3} \mu_{2} \times{ }_{\cdot 4} \mu_{3}$ is equal to
A. ${ }_{3} \mu_{1}$
B. . $3 \mu_{2}$
C. $\frac{1}{{ }^{1} \mu_{4}}$
D. . $4 \mu_{2}$

Answer:

D Watch Video Solution
11. μ_{1} and μ_{2} are the refractive index of two mediums and v_{1} and v_{2} are the velocity of
light in these in two mediums respectively. Then, the relation connecting these quantities is
A. $v_{1}=v_{2}$
B. $\mu_{2} v_{1}=\mu_{1} v_{2}$
C. $\mu_{1}^{2} v_{1}=\mu_{2}^{2} v_{2}$
D. $\mu_{1} v_{1}=\mu_{2} v_{2}$
12. When light is refracted into a medium from
vacuum
A. its wavelength and frequency both
increases
B. its wavelength increases but frequency
remains unchanged
C. its wavelength decreases but frequency
remains unchanged
D. its wavelength and frequency both decreases

Answer:

D Watch Video Solution

13. An under water swimmer is at a depth of 12
m below the surface of water. A bird is at a
height of 18 m from the surface of water, directly above his eyes. For the swimmer the bird appears to be at a distance from the
surface of water equal to (Refractive Index of water is 4/3)
A. 24 m
B. 12 m
C. 18 m
D. 9 m

Answer:
(Watch Video Solution
14. A vessel of depth 2 d cm is half filled with a
liquid of refractive index μ_{1} and the upper half with a liquid of refractive index μ_{2}. The apparent depth of the vessel seen perpendicularly is

$$
\begin{aligned}
& \text { A. } d\left[\frac{\mu_{1} \mu_{2}}{\mu_{1}+\mu_{2}}\right] \\
& \text { B. } d\left[\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right] \\
& \text { C. } 2 d\left[\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right] \\
& \text { D. } 2 d\left[\frac{1}{\mu_{1} \mu_{2}}\right]
\end{aligned}
$$

- Watch Video Solution

15. Three immiscibles transparent liquids with
erefractive indices $3 / 2,4 / 3$ and $6 / 5$ are arranged one on top of another. The depth of the liquid are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 6 cm respectively.

The apparent depth of the vessel is
A. 10 cm
B. 9 cm
C. 8 cm

Answer:

D Watch Video Solution

16. The optical path of a monochromatic light
is same if it goes through 4.0 cm of glass or
4.5 cm of water. If the refractive index of glass
is 1.53 , the refractive index of the water is
A. 1.30
B. 1.36
C. 1.42
D. 1.46

Answer:

D Watch Video Solution

17. A diver at a depth of 12 m in water ($\mu=4 / 3)$ sees the sky in a cone of semi-
vertical angle
A. $\sin ^{-1}\left(\frac{4}{3}\right)$
B. $\tan ^{-1}\left(\frac{4}{3}\right)$
C. $\sin ^{-1}\left(\frac{3}{4}\right)$
D. 90°

Answer:

D Watch Video Solution

18. In a lake, a fish rising vertically to the surface of water uniformly at the rate of $3 \mathrm{~m} / \mathrm{s}$, observes a bird diving vertically towards the
water at the rate of $9 \mathrm{~m} / \mathrm{s}$. The actual velocity of the dive of the bird is (given, refractive index of water $=4 / 3$)
A. $3.6 \mathrm{~m} / \mathrm{s}$
B. $4.5 \mathrm{~m} / \mathrm{s}$
C. $6.0 \mathrm{~m} / \mathrm{s}$
D. $12.0 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution
19. A circular beam of light (diameter d) falls on a plane surface of a liquid. The angle of incidence is 45° and refractive index of the liquid is μ. The diameter of the refracted beam is
A. d
B. $(\mu-1) d$
C. $\frac{\sqrt{2 \mu^{2}-1}}{\mu} d$
D. $\frac{\sqrt{\mu^{2}-1}}{\mu} d$

- Watch Video Solution

20. Which one of the following is not associated with the total internal reflection?
A. The mirage communication
B. Optical fibre communication
C. The glittering of diamond

D. Dispersion of light

Answer:

21. The wavelength of light in two liquids ' x '
and ' y ' is $3500 \AA$ and $7000 \AA$, then the critical
angle of x relative to y will be
A. 60°
B. 45°
C. 30°
D. 15°

Answer:
22. White light is incident on the interface of glass and air as shown in the figure. If green
light is just totally internally reflected, then
the emerging ray in air contains
A. yellow, orange, red
B. violet, indigo, blue
C. all colours
D. all colours except green

Answer:

D View Text Solution

23. The critical angle of a prism is 30°. The velocity of light in the medium is
A. $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $4.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. None of these

Answer:

D Watch Video Solution

24. A ray of light travelling in a transparent medium falls on a surface separating the medium from air at an angle of incidence of
45°. The ray undergoes total internal reflection. If n is the refractive index of the medium with respect to air, select the possible value of n from the following.
A. 1.2
B. $4 / 3$
C. 1.4
D. 1.5

Answer:

D Watch Video Solution

25. A glass slab has a critical angle of 30° when placed in air. What will be the criticle
angle when it is placed in liquid of refractive index 6/5 index?
A. 45°
B. $37{ }^{\circ}$
C. 53°
D. 60°

Answer:
(Watch Video Solution
26. When a ray is refracted from one medium
into another, the wavelegths changes from
$6000 \AA$ to $4000 \AA$. The critical angle for a ray
from the second medium will be
A. $\cos ^{-1}\left(\frac{2}{3}\right)$
B. $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
C. $\sin ^{-1}\left(\frac{2}{3}\right)$
D. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Answer:
27. If a ray of light in a denser medium strikes
a rarer medium at an angle of incidence i, the angles of reflection and refraction are respectively, r and r if the reflected and refraction rays are at right angles to each other, the critical angle for the given pair of media is
A. $\sin ^{-1}\left(\tan r^{\prime}\right)$
B. $\sin ^{-1}(\tan r)$

> C. $\tan ^{-1}(\sin i)$
> D. $\cot ^{-1}(\tan i)$

Answer:

D Watch Video Solution

28. A ray of light is incident at an angle of 60°
on one face of a prism of angle 30°. The ray
emerging out of the prism makes an angle of
30° with the incident ray. The emergent ray is
A. normal to the face through which it emerges

B.inclined at 30° to the face through

which it emerges
C. inclined at 60° to the face through
which it emerges
D. None of these

Answer:

- Watch Video Solution

29. When light rays are incident on a prism at an angle of 45°, the minimum deviation is obtained. If refractive index of the material of prism is $\sqrt{2}$, then the angle of prism will be
A. 30°
B. 75°
C. 90°
D. 60°

Answer:

30. A ray of light passes through an equilateral glass prism in such a manner that the angle of incidence is equal to the angle of emergence and each of these angles is equal to $3 / 4$ of the angle of the prism. The angle of deviation is
A. 45°
B. 39°
C. 20°
D. 30°

Answer:

D Watch Video Solution

31. A ray of light is incident on an equilateral glass prism placed on a horizontal table. For minimum deviation which of the following is true?
A. PQ is horizontal
B. QR is horizontal
C. RS is horizontal
D. Either PQ or RS is horizontal

Answer:

D View Text Solution

32. In a thin prism of glass (refractive index
1.5), which of the following relations between
the angle of minimum deviations δ_{m} and angle of prism r will be correct?
A. $\delta_{m}=r$
B. $\delta_{m}=1.5$
C. $\delta_{m}=2 r$
D. $\delta_{m}=r / 2$

Answer:

D Watch Video Solution

33. The refractive index of a prism for a monochromatic wave is $\sqrt{2}$ and its refracting
angle is 60° for minimum deviation, the angle

of indidence will be

A. 30°
B. 45°
C. 60°
D. 75°

Answer:
(Watch Video Solution
34. Angle of minimum deviation for a prism of refractive index 1.5 is equal to the angle of prism The angle of prism is $\left(\cos 41^{\circ}=0.75\right)$
A. 21°
B. 42°
C. 60°
D. 82°

Answer:

D Watch Video Solution
35. When light of wavelength λ on an equilateral prism, kept on its minimum deviation position, it is found that the angle of deviation equals the angle the angle of the prism itself. The refractive index of the material of the prism for the wavelength λ is
A. $\sqrt{3}$
B. $\frac{\sqrt{3}}{2}$
C. 2
D. $\frac{2}{\sqrt{2}}$

Answer:

D Watch Video Solution

36. Under minimum deviation condition in a
prism, if a ray is incident at an angle 30°, the angle between the emergent ray and the second refracting surface of the prism is
A. 0°
B. 30°
C. 45°

D. 60°

Answer:

- Watch Video Solution

37. Two beam of red and violet colors are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be
A. greater for red colour

B. equal but not 30° for both the colours

C. greater for violet colour
D. 30° for both the colours

Answer:

D Watch Video Solution

38. A ray of light passing through a prism of refraction angle 60° has to deviate by atleast 30°. Then, refractive index of prism should be
A. $\leq \sqrt{2}$
B. $\geq \sqrt{2}$
C. $\leq \sqrt{3}$
D. $\leq \sqrt{3}$

Answer:

D Watch Video Solution
39. A ray of light is incident at 60° on one face of a prism of angle 30° and the emergent ray
makes 30° with the incident ray. The refractive index of the prism is
A. 1.732
B. 1.414
C. 1.5
D. 1.33

Answer:
(Watch Video Solution
40. One face of prism of refracting angle 30° and refractive index 1.414 is silvered. At what angle must a ray of light fall on the unsilvered face so that it retraces its path out of the prism ?
A. 0°
B. 30°
C. 60°
D. 45°
41. What is the angle of incidence for an equilateral prism of refractive index $\sqrt{3}$ so that the ray si parallel to the base inside the prism?
A. 30°
B. 45°
C. 60°
D. 75°

Answer:

D Watch Video Solution

42. An equilateral prism deviates a ray through
45° for the two angles of incidence differing by 20°. The angle of incidence is
A. 62.5°
B. 42.5°
C. Both are correct
D. Both are wrong

Answer:

D Watch Video Solution

43. The face $P R$ of a prism $P Q R$ of angle 30° is
silvered. A ray is incident on face $P Q$ at an
angle of 45° as shown in figure. The refracted ray undergoes reflection on face $P R$ and retraces its path. The refractive index of the prism is
A. $\sqrt{2}$

B. $3 / \sqrt{2}$

C. 1.5
D. 1.33

Answer:

D View Text Solution

44. Dispersive power depends upon
A. the angle of prism
B. material of prism

C. deviation produced by prism

D. height of the prism

Answer:

- Watch Video Solution

45. A thin prism P_{1} with angle 6° and made from glass of refractive index 1.54 is combined with another thin prism P_{2} of refractive index
1.72 to produce dispersion without deviation.

The angle of prism P_{2} will be
A. $5^{\circ} 24^{\prime}$
B. $4^{\circ} 30^{\prime}$
C. 6°
D. 8°

Answer:

D Watch Video Solution

46. A thin prism P with angle 4° and made from glass of refractive index 1.54 is combined with another thin prism P made from glass of
refractive index 1.72 to produce dispersion without deviation The angle of prism P is
A. 5.33°
B. 4°
C. 2.6°
D. 3°

Answer:
(Watch Video Solution

47. The rainbow is formed due to

A. refraction
B. reflection
C. dispersion

D. All of the above

Answer:

48. Phenomena associated with scattering is/are
A. blue colour of the sky
B. appearance of reddish sun during
sunset and sunrise
C. both a. and b.
D. None of the above

Answer:

- Watch Video Solution

49. In Raman effect, the scattering of light beams shows
A. elastic scattering
B. inelastic scattering
C. no scattering actually takes place
D. None of the above

Answer:

D Watch Video Solution

1. When light is passed through a prismm when.........colour shows maximum deviation.
A. red
B. violet
C. yellow
D. green

Answer:

D Watch Video Solution
2. The phenomena involved in the reflected of radiowaves by ionosphere is similar to.
A. reflection of light by a plane mirror
B. total internal reflection of light in air during a mirage
C. dispersion of light by water molecules
during the formation of a rainbow
D. scattering of light by the particles of air

Answer:

- Watch Video Solution

3. A passenger in an aeroplane shall
A. should see a rainbow
B. may see a primary and a secondary
rainbow as concentric circles
C. may see a primary and a secondary

D. should never see a secondary rainbow

Answer:

D Watch Video Solution

4. When light wave suffers reflection at the
interface from air to glass, then the change in phase of the reflected wave is equal to
A. zero
B. $\frac{\pi}{2}$
C. π
D. 2π

Answer:

D Watch Video Solution

5. There are certain materials developed in
laboratories which have a negative refractive
index, Fig. A ray incident from air (medium 1)
into such a medium (medium 2) shall follow a
path given by

A.
B.
c.
D.

Answer:

- Watch Video Solution

6. The reason for shining of air bubble in water is
A. diffraction of light
B. dispersion of light
C. scattering of light
D. total internal reflection of light

Answer:

- Watch Video Solution

7. Rainbow is observed when the sun is

A. in front of the observer
B. behind the observer
C. vertically above the observer
D. in any of these positions

Answer:

- Watch Video Solution

8. Sun is visible a little before the actual sunrise and until a little after a actual sunset.

This is due to
A. total internal reflection
B. relfection
C. refraction
D. polarisation

Answer:

D Watch Video Solution

9. A mark at the bottom of a liquid appears to

rise by $0.1 m$. The depth of the liquid is $1 m$.

The refractive index of the liquid is
A. 1.33
B. $9 / 10$
C. $\frac{10}{9}$
D. 1.5

Answer:

D Watch Video Solution
10. A prism can have a maximum refracting
angle of ($C=$ critical angle for the material of
the prism)
A. 60°
B. C
C. 2C
D. slightly less than 180°

Answer:

D Watch Video Solution
11. You are given four sources of light each one providing a light of a single colour-red, blue,green and yellow. Suppose the angle of refraction for a beam of yellow light corresponding to a particular angle of incidence at the interface of two media is 90°.

Which of the folowing statements is correct it
the source of yellow light is replaced with that of other lights without changing the angle of incidence?
A. The beam of red ligth would undergo tota internal reflection
B. The beam of red light would bend
towards normal while it gets refracted
through the second medium
C. The beam of blue light would undergo
total internal reflection
D. The beam of green light would bend
away from the normal as it gets

Answer:

D Watch Video Solution

12. When a lens of refractive index n_{1}, then the
lens looks to be dissapeared only, if
A. $\mu_{1}=\mu_{2} / 2$
B. $\mu_{1}=3 \mu_{2} / 2$
C. $\mu_{1}=\mu_{2}$
D. $\mu_{1}=5 \mu_{2} / 2$

Answer:

D Watch Video Solution

13. When sun light is scatterred by minute particles of atmosphere, then the intensity of light scattered away is proportional to
A. (wavelength of light) ${ }^{4}$
B. (frequency of light) $)^{4}$
C. (wavelength of light) ${ }^{2}$
D. $(\text { frequency of light })^{2}$

Answer:

- Watch Video Solution

14. Match Column I (Phenomenon) with

Column II (Principle) and select the correct answer using the codes given below the

Column.

Mark the correct option from the codes given below

AB C D
A.
$s \quad q \quad r \quad p$
A B C D
B.
$r \quad q \quad p \quad r$
AB CD
$r \quad p \quad q \quad s$
A B C D
$s \quad p \quad q \quad s$

Answer:

D View Text Solution

15. Light travels in two media A and B with
speeds $\quad 1.8 \times 10^{8} \mathrm{~ms}^{-1}$ and $2.4 \times 10^{8} \mathrm{~ms}^{-1}$
respectively. Then the critical angle between
them is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{2}{3}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{3}{4}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{2}{3}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

16. A ray of light falls on a denser-rarer boundary from denser side. The critical angle
is 45°. The maximum deviation the ray can undergo is
A. 30°
B. 45°
C. 90°
D. 120°

Answer:

17. If light travels a distance x in $t_{1} \mathrm{sec}$ in air and $10 x$ distance in $t_{2} \mathrm{sec}$ in a medium, the critical angle of the medium will be

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{t_{1}}{t_{2}}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{t_{1}}{t_{2}}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{10 t_{1}}{t_{2}}\right) \\
& \text { D. } \tan ^{-1}\left(\frac{10 t_{1}}{t_{2}}\right)
\end{aligned}
$$

Answer:
18. A thin prism of angle 6° made up of glass of refractive index 1.5 is combined with anorher prism made up of glass of refractive index 1.75 to produce dispersion without deviation. The angle of second prism is
A. 7°
B. 9°
C. 4°
D. 5°

Answer:

- Watch Video Solution

19. When sunlight is scattered by atmospheric atoms and molecules, the amount of
scattering of light of wavelength 440 nm is A .

The amount of scattering for the light of wavelength 660 nm is approximately
A. $\frac{4}{9} A$
B. $2.25 A$
C. $1.5 A$
D. $\frac{A}{6}$

Answer:

D Watch Video Solution

20. When a ray of light is incident normally on one refracting surface of an equilateral prism
(Refractive index of the material of the prism
$=1.5$
A. emerging ray is deviated by 30°
B. emerging ray is deviated by 45°
C. emerging ray just grazes the second rerfracting surface
D. the ray undergoes total internal
reflection at the second refracting
surface

Answer:

D Watch Video Solution

21. A glass prism has a refractive angle of 90°
and a refractive index of 1.5. A ray is incident at
an angle of 30°. The ray emerges from an adjacent face at an angle of
A. 60°
B. 30°
C. 45°
D. the ray does not emerge

Answer:

22. A ray falls on a prism $A B C(A B=B C)$ and travels as shown in figure. The minimum refractive index of the prism material should be

- View Text Solution

23. In the measurement of the angle of a prism
using a spectrometer, the readings of first
reflected image are vernier I: $320^{\circ} 40^{\prime}$, vernier

II : $140^{\circ} 30^{\prime}$ and those of the second reflected image are vernier I : $80^{\circ} 38^{\prime}$, vernier II : 260° 24 '. Then, the angle of the prism is
A. $60^{\circ} 58^{\prime}$
B. $59^{\circ} 58^{\prime}$
C. $60^{\circ} 2^{\prime}$
D. $60^{\circ} 4^{\prime}$

Answer:

24. A ray incident at a point at an angle of incidence of 60° enters a glass sphere with refractive index $\sqrt{3}$ and it is reflected and refracted at the farther surface of the sphere.

The angle between the reflected and refracted
rays at this surface is:
A. 50°
B. 60°
C. 90°
D. 40°

Answer:

D Watch Video Solution

25. A ray $P Q$ incident on the refracting face $B A$
is refracted in the prism $B A C$ as shown in the
figure and emerges from the other refracting
face $A C$ as $R S$, such that $A Q=A R$. If the angle of
prism $A=60^{\circ}$ and the refractive index of the
material of prism is $\sqrt{3}$, then the angle of deviation of the ray is
A. 60°
B. 45°
C. 30°
D. None of these

Answer:

- View Text Solution

