びdoubtnut

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

ROTATIONAL MOTION'

Example

1. Two points masses of 2 kg and 3 kg lie at 5 m
and 9 m away from origin O respectively. Find
out the distance of centre of mass of these point masses from the origin.
A. 14.2 m
B. 7.4 m
C. 20 m
D. 6 m

Answer: B

- Watch Video Solution

2. Three point masses m_{1}, m_{2} and m_{3} are located at the vertices of an equilateral triangle of side α. What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?

$$
\begin{aligned}
& \text { A. } \frac{a^{2}}{2}\left(m_{2}+m_{3}\right) \\
& \text { B. } \frac{a^{2}}{2}\left(m_{1}+m_{3}\right) \\
& \text { C. } \frac{a^{2}}{4}\left(m_{2}+m_{3}\right) \\
& \text { D. } \frac{a^{2}}{4}\left(m_{1}+m_{2}\right)
\end{aligned}
$$

Answer: C

- Watch Video Solution

3. (a) Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of inertia of the sphere about any of its diameters to be $2 M R^{2} / 5$, where M is the mass of the sphere and R is the radius of the sphere.
(b) Given the moment of inertia of a disc of mass M and radius R about any of its diameters to be $\frac{1}{4} M R^{2}$, find the moment of
inertia about an axis normal to the disc passing through a point on its edge.
A. $\frac{8}{5} M R^{2}$
B. $\frac{7}{5} M R^{2}$
C. $\frac{5}{2} M R^{2}$
D. $\frac{8}{2} M R^{2}$

Answer: B

D Watch Video Solution

4. Find the moment of inertia of a uniform rign of mass M and radius R about a diameter.

> A. $\frac{M R^{2}}{4}$
> B. $\frac{M R^{2}}{2}$
C. $2 M R^{2}$
D. $4 M R^{2}$

Answer: B
(Watch Video Solution
5. Four masses are rotated about an axis as
shown. What is the radius of gyration of the system?
A. r
B. r^{2}
C. r^{4}
D. $\sqrt{2 r}$

Answer: A

D View Text Solution
6. A wheel of mass 10 kg and radius of gyration

50 cm is rotating at 300 rpm . Then, the rotational kinetic energy of the wheel is
A. 8 kJ
B. 6.4 kJ
C. 1.2 kJ
D. 2.2 kJ

Answer: C

7. Find the torque of a force $(7 \hat{i}+3 \hat{j}-5 \hat{k})$ about the origin. The force acts on a particle whose position vector is $(\hat{i}-\hat{j}+\hat{k})$.
A. $2 \hat{i}-12 \hat{j}+10 \hat{k}$
B. $2 \hat{i}+12 \hat{j}+10 \hat{k}$
C. $2 \hat{i}-12 \hat{j}-10 \hat{k}$
D. $2 \hat{i}+12 \hat{j}-10 \hat{k}$

Answer: B
8. In a hydrogen atom, electron revolves in a circular orbit of radis $0.53 \AA$ with a velocity of $2.2 \times 10^{6} \mathrm{~ms}^{-1}$ and angle between its position and velocity is 30°. If the mass of electron is $9 \times 10^{-31} \mathrm{~kg}$. Find its angular momentum.

$$
\begin{aligned}
& \text { А. } 5.247 \times 10^{-37} k g-m^{2} s^{-1} \\
& \text { В. } 2.345 \times 10^{-30} k g-m^{2} s^{-1} \\
& \text { C. } 6.372 \times 10^{-36} k g-m^{2} s^{-1}
\end{aligned}
$$

D. None of these

Answer: A

D Watch Video Solution

9. A unit mass at position vector $\vec{r}=(3 \hat{i}+\hat{j})$ is moving with velocity $\vec{v}=(5 \hat{i}-6 \hat{j}) . \quad$ What is the angular momentum of the body about the origin?
A. 0 and $8 \hat{i}+8 \hat{k} N-m$
B. 0 and $4 \hat{i}+4 \hat{k} N-m$
C. 0 and $2 \hat{i}+2 \hat{k} N-m$
D. None of these

Answer: A

D Watch Video Solution

10. A star of mass equal to two solar masses
and radius $10^{6} \mathrm{~km}$ rotates about its axis with an angular speed of $10^{-6} \mathrm{rads}^{-1}$. What is the angular speed of the star, when it collapses
(due to inward gravitational forces) to a radius of $10^{4} \mathrm{~km}$?
A. $10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
B. $10^{-2} \mathrm{rad} \mathrm{s}^{-1}$
C. $10^{-3} \mathrm{rad} \mathrm{s}^{-1}$
D. $10^{-4} \mathrm{rad} \mathrm{s}^{-1}$

Answer: B
(Watch Video Solution
11. A hoop of radius $2 m$ weight 100 kg .lt rolls
along a horizontal floor so that its centre of
mass has a speed of $20 \mathrm{cms}^{-1}$. How much work has to be done to stop it ?
A. 1
B. 20
C. 2
D. 4

Answer: D
12. A solid sphere rolls down without slipping on an inclined plane at angle 60° over a distance of 5 m . The acceleration (in $m s^{-2}$) is
A. 5.23
B. 7.07
C. 6.06
D. 3.23

Answer: B

PRACTICE EXERCISE (Exercise 1 (TOPICAL

 PROBLEMS))1. The moment of inertia of a circular disc of radius 2 m and mass 1 kg about an axis passing through the centre of mass but perpendicular to the plane of the disc is 2 kg m^{2}. Its moment of inerti about an axis parallel to this axis but passing through the edge of
the dics is (see the given figure).
A. $8 k g-m^{2}$
B. $4 k g-m^{2}$
C. $10 \mathrm{~kg}-\mathrm{m}^{2}$
D. $6 \mathrm{~kg}-\mathrm{m}^{2}$

Answer: D

D View Text Solution
2. The moment of inertia of a circular dics about one of its diameters is I. What will be its moment of inertia about a tangent parallel to the diameter?
A. $4 l$
B. $2 l$
c. $\frac{5 l}{2}$
D. $5 l$

Answer: D

3. The moment of inertia of a sphere of mass
M and radius R about an axis passing through
its centre is $\frac{2}{5} M R^{2}$. The radius of gyration of the sphere about a parallel axis to the above and tangent to the sphere is
A. $\frac{7}{5} R$
B. $\frac{3}{5} R$
C. $\left(\sqrt{\frac{7}{4}}\right)$
D. $\left(\sqrt{\frac{3}{5}}\right)$

Answer: C

D Watch Video Solution

4. The moment of inertia of ring about an axis
passing through its diameter is I. Then moment of inertia of that ring about an axis passing through its centre and perpendicular to its plane is
A. $2 l$
B. $\frac{l}{2}$
C. $\frac{3}{2} l$
D. l

Answer: A

D Watch Video Solution

5. The ratio of the radii of gyration of a circular disc and a circular ring of the same radii about
a tangential axis perpendicular to plane of disc or ring is
A. $1: 2$
B. $\sqrt{5}: \sqrt{6}$
C. 2:3
D. $\sqrt{3}: 2$

Answer: D

D Watch Video Solution

6. The ratio of the radii of gyration of a circular disc to that of a circular ring, each of same
mass and radius, around their respective axes
is.
A. $\sqrt{3}: \sqrt{2}$
B. $1: \sqrt{2}$
C. $\sqrt{2}: 1$
D. $\sqrt{2}: \sqrt{3}$

Answer: B
(Watch Video Solution
7. From a circular disc od a radius R and mass

9M, a small disc of a radius $\frac{R}{3}$ is removed from the disc (as shown in figure) the moment of inertia of the remaining dics about an axis perpendicular to the plane of the disc and passing through O is
A. $4 M R^{2}$
B. $\frac{40}{9} M R^{2}$
C. $10 M R^{2}$
D. $\frac{37}{9} M R^{2}$

Answer: A

D View Text Solution

8. The moment of inertia of two equal masses
each of mass m at separtion L connected by a
rod of mass M about an axis passing through
centre and perpendicuar to length of a rod is
A. $\frac{(M+3 m) L^{2}}{12}$
B. $\frac{(M+6 m) L^{2}}{12}$
C. $\frac{M L^{2}}{4}$
D. $\frac{M L^{2}}{12}$

Answer: B

D Watch Video Solution

9. The moment of inerta of a ring of mass 1 kg about an axis passing through its centre perpendicular to its surface is $4 \mathrm{kgm}^{2}$.

Calculate the radius of the ring.
A. 2 m
B. 4 m
C. 5 m
D. 6 m

Answer: B

D Watch Video Solution
10. The moment of inetia of a flywheel having
kinetic energy 360 J and angular speed of $20 \mathrm{rad} \mathrm{s}^{-1}$ is
A. $18 k g-m^{2}$
B. $1.8 \mathrm{~kg}-m^{2}$
C. $2.5 \mathrm{~kg}-m^{2}$
D. $9 \mathrm{~kg}-m^{2}$

Answer: B

D Watch Video Solution

11. Four similar point masses (m each) are symmetrically placed on the circumference of
a disc of mass M and radius R. Moment of
inertia of the system about an axis passing
through centre O and perpendicular to the plane of the disc will be
A. $M R^{2}+4 m R^{2}$
B. $M R^{2}+\frac{8}{5} m R^{2}$
C. $m R^{2}+4 M R^{2}$
D. $\frac{M R^{2}}{2}+4 m R^{2}$

Answer: D

D Watch Video Solution
12. Two disc have same mass and thickness.

Their materials have densities d_{1} and d_{2}. The
ratio of their moment of inertia about central
axis will be
A. $d_{1}: d_{2}$
B. $d_{1} d_{2}: 1$
C. $1: d_{1} d_{2}$
D. $d_{2}: d_{1}$

Answer: D

D Watch Video Solution
13. One quarter of the disc of mass m is removed. If r be the radius of the disc, the new moment of inertia is
A. $\frac{3}{2} m r^{2}$
B. $\frac{m r^{2}}{2}$
C. $\frac{3}{8} m r^{2}$
D. None of these

Answer: C

D Watch Video Solution
14. The radius of gyration of an uniform rod of
length L about an axis passing through its
centre of mass and perpendicular to its length
is.
A. $L / \sqrt{12}$
B. $L^{2} / 12$
C. $L / \sqrt{3}$
D. $L / \sqrt{2}$
15. The radius of gyration of a disc of mass 50 g and radius 2.5 cm , about an axis passing through its centre of gravity and perpendicular to the plane is
A. 6.54 cm
B. 3.64 cm
C. 1.77 cm
D. 0.88 cm

- Watch Video Solution

16. The radius of gyration of rod of length L
and mass M about an axis perpendicular to
its length and passing through a point at a distance $L / 3$ from one of its ends is
A. $\frac{\sqrt{7}}{6} L$
B. $\frac{L^{2}}{9}$
C. $\frac{L}{3}$
D. $\frac{\sqrt{5}}{2} L$

Answer: C

D Watch Video Solution

17. The moment of an inertia about an axis of a
body which is rotating with angular velocity
$1 \mathrm{rad} \mathrm{s}^{-1}$ is numerically equal to
A. one - fourth of its rotational kinetic energy

B. half of the rotational kinetic energy

C. rotational kinetic energy
D. twice the rotational kinetic energy

Answer: D

D Watch Video Solution

18. Two wheels A and B are mounted on the
same axle. Moment of inertia of A is $6 \mathrm{~kg} \mathrm{~m}{ }^{2}$
and is rotated at 600 rpm , when B is at rest.

What will be moment of inertia of B, if their

combined speed is 400 rpm ?

A. $8 k g-m^{2}$
B. $4 k g-m^{2}$
C. $3 k g-m^{2}$
D. $5 \mathrm{~kg}-\mathrm{m}^{2}$

Answer: C
(Watch Video Solution
19. Two thin uniform circular rings each of radius 10 cm and mass 0.1 kg are arranged
such that they have a common centre and their planes are perpendicular to each other.

The moment of inertia of this system about an
axis passing through their common centre and perpendicular to the plane of one of the rings in $k g-m^{2}$ is
A. 1.5×10^{-3}
B. 5×10^{-3}
C. 1.5×10^{-6}

D. 18×10^{-4}

Answer: A

D Watch Video Solution

20. Three identical thin rods each of length l
and mass M are joined together to from a
letter H. What is the moment of inertia of the
system about one of the sides of H ?

$$
\text { A. } \frac{M l^{2}}{4}
$$

B. $\frac{M l^{2}}{3}$
C. $2 \frac{M l^{2}}{3}$
D. $4 \frac{M l^{2}}{3}$

Answer: D

- Watch Video Solution

21. Of the two eggs which have identical sizes,
shapes and weights, one is raw and other is
half boiled. The ratio between the moment of
inertia of the raw to the half boiled egg about
central axis is:
A. one
B. greater than one
C. less than one
D. not comparable

Answer: B
(Watch Video Solution
22. Moment of inertia of a solid cylinder of length L and diameter D about an axis passing through its centre of gravity and perpendicular to its geometric axis is

$$
\begin{aligned}
& \text { A. } M\left(\frac{D^{2}}{4}+\frac{L^{2}}{12}\right) \\
& \text { B. } M\left(\frac{L^{2}}{16}+\frac{D^{2}}{8}\right) \\
& \text { C. } M\left(\frac{D^{2}}{4}+\frac{L^{2}}{6}\right) \\
& \text { D. } M\left(\frac{L^{2}}{12}+\frac{D^{2}}{16}\right)
\end{aligned}
$$

Answer: D

23. Four spheres of diameter $2 a$ and mass M are placed with their centres on the four corners of a square of side b. Then moment of inertia of the system about an axis about one of the sides of the square is :-
A. $\frac{4}{5} M a^{2}+2 M b^{2}$
B. $\frac{8}{5} M a^{2}+2 M b^{2}$
C. $\frac{8}{5} M a^{2}$
D. $\frac{4}{5} M a^{2}+4 M b^{2}$

Answer: B

- Watch Video Solution

24. The ratio of the radii of gyration of a circular disc about a tangential axis in the plane of the disc and a circular ring of the same radius about a tengential axis in the plane of the ring is
A. $2: 3$
B. 2:1
C. $\sqrt{5}: \sqrt{6}$
D. $1: \sqrt{2}$

Answer: C

D Watch Video Solution

25. Three point masses, each of mass m, are placed at the corners of an equilateral triangle of side L. The moment of inertia of this system about an axis along one side of the triangle is
A. $3 m l_{2}$
B. $\frac{3}{2} m l^{2}$
C. $m l^{2}$
D. $\frac{3}{4} m l^{2}$

Answer: D

D Watch Video Solution

26. A thin rod of length L and mass M is bent at the middle point O at an angle of 60°. The moment of inertia of the rod about an axis
passing through O and perpendicular to the plane of the rod will be

> A. $\frac{M L^{2}}{6}$
> B. $\frac{M L^{2}}{12}$
> C. $\frac{M L^{2}}{24}$
> D. $\frac{M L^{2}}{3}$

Answer: B

D View Text Solution
27. The diameter of a flywheel is increased by
1%. Increase in its moment of interia about
the central axis is
A. 1%
B. 0.5%
C. 2%
D. 4%

Answer: C
28. About which axis in the following figure the moment of inertia of the rectangular lamina is maximum ?
A. 1
B. 2
C. 3
D. 4

Answer: C
29. Moment of inertia of a thin rod of a mass
M and length L about an axis passing through
its centre is $\frac{M L^{2}}{12}$. Its moment of inertia about
a parallel axis at a distance of ${ }^{`}(\mathrm{~L}) /(4)$ from this
acis is given by

$$
\begin{aligned}
& \text { A. } \frac{M L^{2}}{48} \\
& \text { B. } \frac{M L^{3}}{48} \\
& \text { C. } \frac{M L^{2}}{12} \\
& \text { D. } \frac{7 M L^{2}}{48}
\end{aligned}
$$

Answer: D

- Watch Video Solution

30. A mass is whirled in a circular path with a constant angular velocity and its angular momentum is L . If the string is now halved keeping the angular velocity same, the angular momentum is
A. $L / 4$
B. $L / 2$
C. less than one
D. 2 L

Answer: A

D Watch Video Solution

31. A spherical solid ball of 1 kg mass and radius 3 cm is rotating about an axis passing through its centre with an angular velocity of $50 \mathrm{rad} s^{-1}$. The kinetic energy of rotation is
A. 450 J
B. 45 J
C. 90 J
D. 0.45 J

Answer: D

D Watch Video Solution

32. The torque of the force
$\vec{F}=(2 \hat{i}-3 \hat{j}+4 \hat{k}) N$ acting at the point
$\vec{r}=(3 \hat{i}+2 \hat{j}+3 \hat{k}) m$ about the origin be
A. $-17 \hat{i}+6 \hat{j}+13 \hat{k}$
B. $-6 \hat{i}+6 \hat{j}-12 \hat{k}$
C. $17 \hat{i}-6 \hat{j}-13 \hat{k}$
D. $6 \hat{i}+6 \hat{j}+12 \hat{k}$

Answer: C

D Watch Video Solution

33. A thin rod of mass m and length $2 L$ is made to rotate about an axis passing through
its center and perpendicular to it. If its angular
velocity changes from O to ω in time t, the torque acting on it is
A. $\frac{m l^{2} \omega}{12 t}$
B. $\frac{m l^{2} \omega}{3 t}$
C. $\frac{m l^{2} \omega}{t}$
D. $\frac{4 m l^{2} \omega}{3 t}$

Answer: B
34. The instantaneous angular position of a point on a rotating wheel is given by the equation
$\theta(t)=2 t^{3}-6 t^{2}$

The torque on the wheel becomes zero at
A. $\mathrm{t}=0.5 \mathrm{~s}$
B. $t=0.25 \mathrm{~s}$
C. $t=2 \mathrm{~s}$
D. $\mathrm{t}=1 \mathrm{~s}$

Answer: D
35. If r is the distance between the Earth and
the Sun. Then, angular momentum of the
Earth around the sun is proportional to
A. $r^{3 / 2}$
B. r
C. \sqrt{r}
D. r^{2}
36. A battet dancer spins with 2.8 rps with her arms out stretched. When the moment of inertia about the same axis becomes 0.7 l . the new rate of spin is
A. 3.2 rps
B. 4.0 rps
C. 4.8 rps
D. 5.6 rps

Answer: B

D Watch Video Solution

37. If the earth suddenly charges its radius x
times the present value, the new period of rotation would be
A. $6 x^{2} h$
B. $12 x^{2} h$
C. $24 x^{2} h$
D. $48 x^{2} h$

Answer: C

- Watch Video Solution

38. A thin uniform rod $A B$ of mass m and length I is hinged at one end to the level floor and stands vertically. If it s allowed to fall, with what angular velocity will it strike the floor?
A. $\left(\frac{m g}{L}\right)$
B. $\left(\frac{m g}{3 L}\right)^{1 / 2}$
C. $\left(\frac{g}{L}\right)$
D. $\left(\frac{3 g}{L}\right)^{1 / 2}$

Answer: D

D Watch Video Solution

39. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular momentum of the projectile abut the point of projection when the particle is at its maximum height h is.
A. zero
B. $\frac{m v h^{2}}{\sqrt{2}}$
C. $\frac{m v^{2} h}{2}$
D. $\frac{m v h}{\sqrt{2}}$

Answer: D

D Watch Video Solution

40. The angular momentum of a rotating body
changes from A_{0} to $4 A_{0}$ in 4 min . The torque acting on the body is
A. $\frac{3}{4} A_{0}$
B. $4 A_{0}$
C. $3 A_{0}$
D. $\frac{3}{2} A_{0}$

Answer: A

D Watch Video Solution
41. What torque will increase angular velocity of a solid disc of mass 16 kg and diameter 1 m
from zero to 2 rpm in 8 s ?
A. $\left(\frac{\pi}{4}\right) N-m$
B. $\left(\frac{\pi}{2}\right) N-m$
C. $\left(\frac{\pi}{3}\right) N-m$
D. $(\pi) N-m$

Answer: D

D Watch Video Solution

42. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular
momentum of the projectile abut the point of projection when the particle is at its maximum height h is.
A. Zero
B. $m v^{3} / 4 \sqrt{2} g$
C. $m v^{2} / \sqrt{2} g$
D. $m\left(2 g h^{3}\right)$

Answer: B

D Watch Video Solution
43. Total kinetic energy of a rolling solid spher of mass m with velocity is

$$
\begin{aligned}
& \text { A. } \frac{7}{10} M v^{2} \\
& \text { B. } \frac{5}{6} M v^{2} \\
& \text { C. } \frac{7}{5} M v^{2} \\
& \text { D. } \frac{10}{7} M v^{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

44. A force of 100 N is applied perpendicularly to the left edge of the rectangle as shown in
the figure. The torque (magnitude and direction) produced by this force with respect to an axis perpendicular to the plane of the rectangular at corner A and with respect to a similar axis at corner B are respectively.
A. $75 \mathrm{~N}-\mathrm{m}$ counter - clockwise, $125 \mathrm{~N}-\mathrm{m}$
counter - clockwise
B. 125 N-m counter - clockwise, $75 \mathrm{~N}-\mathrm{m}$
clockwise
C. 125 N-m clockwise, 75 N -m clockwise
D. 125 N-m counter - clockwise, 75 N-m
clockwise

Answer: C

D View Text Solution
45. The moment of inertia of the body about an axis is 1.2 kg m . Initially the body is at rest.

In order to produce a rotational kinetic energy of 1500 J, an angualr acceleration of $25 \mathrm{ra} \frac{\mathrm{d}}{\mathrm{s}^{2}}$ must be applied about the axis for the duration of
A. 4 s
B. 2 s
C. 8 s
D. 10 s

Answer: B

- Watch Video Solution

46. A particle performing uniform circular motion gas angular momentum L. If its angular frequency is double and its kinetic energy halved, then the new angular momentum is :
A. 2 L
B. 4 L
C. L/ 2
D. L/ 4

Answer: D

D Watch Video Solution

47. An ice skater spins at $3 \pi \operatorname{rads}^{-1}$ with hers arms extended. If her moment of inertia with arms folded is 75% of that with arms extended, her angular velocity when she fold her arms is
A. $(\pi) \mathrm{rad} \mathrm{s}^{-1}$
B. $(2 \pi) \mathrm{rad} \mathrm{s}^{-1}$
C. $(3 \pi) \mathrm{rad}^{-1}$
D. $(4 \pi) \mathrm{rad} \mathrm{s}^{-1}$

Answer: D

D Watch Video Solution

48. A wheel having moment of inertia $2 \mathrm{kgm}^{2}$
about its vertical axis, rotates at the rate of
$60 r \pm$ about this axis. The torque which can
stop the wheel's rotation in one minute would be

$$
\begin{aligned}
& \text { A. } \frac{2 \pi}{15} N-m \\
& \text { B. } \frac{\pi}{12} N-m \\
& \text { C. } \frac{\pi}{15} N-m \\
& \text { D. } \frac{\pi}{18} N-m
\end{aligned}
$$

Answer: C
(Watch Video Solution
49. A cord is wound round the circumference of wheel of radius r. The axis of the wheel is horizontal and fixed and moment of inertia about it is I. A weight $m g$ is attached to the end of the cord and falls from rest. After
falling through a distance h, the angular velocity of the wheel will be.
A. $\left(\frac{2 g h}{l+m r}\right)^{1 / 2}$
B. $\left(\frac{2 m g h}{l+m r^{2}}\right)^{1 / 2}$
C. $\left(\frac{2 m g h}{l+2 m}\right)^{1 / 2}$

D. $(2 g h)^{1 / 2}$

Answer: B

D Watch Video Solution

50. A ring of diameter 0.4 m and of mass 10 kg
is rotating about its axis at the rate of 2100
rpm. Calculate moment of inertia, angular momentum and rotational $K E$ of the ring.
A. $60.28 \mathrm{~kg}-\mathrm{m}^{2} \mathrm{~s}^{-1}$
B. $55.26 \mathrm{~kg}-m^{2} s^{-1}$
C. $40.28 \mathrm{~kg}-\mathrm{m}^{2} s^{-1}$
D. $50.28 \mathrm{~kg}-m^{2} s^{-1}$

Answer: D

D Watch Video Solution

51. A solid sphere is rotating about a diameter at an angular velocity ω. If it cools so that its radius reduces to $1 / n$ of its original value, its angular velocity becomes
A. $\frac{\omega}{n}$
B. $\frac{\omega}{n^{2}}$
C. $n \omega$
D. $n^{2} \omega$

Answer: D

D Watch Video Solution

52. A 3 kg moves with constant speed of
$2 m s^{-1}$ in the xy-plane in the y-direction along
the line $x=4 \mathrm{~m}$. the angular momentum (in
$k g-m^{2} s^{-1}$) relative to the original and the torque about the original needed to maintain this motion are respectively
A. 12,0
B. 24,0
C. 0,24
D. 0,12

Answer: B

D Watch Video Solution
53. A disc of mass 2 kg and radius 0.2 m is rotating with angular veocity $30 \mathrm{rads}^{-1}$. What is angular velocity, if a mass of 0.25 kg is put on periphery of the disc?
A. $24 \mathrm{rad} \mathrm{s}^{-1}$
B. $36 \mathrm{rad} \mathrm{s}^{-1}$
C. $15 \mathrm{rad} \mathrm{s}^{-1}$
D. $26 \mathrm{rad} \mathrm{s}^{-1}$

Answer: A

- Watch Video Solution

54. in a circular motion the angle between a particle's linear momentum and its angular moment is
A. 0°
B. 45°
C. 90°
D. 180°

Answer: C
55. When a celling fan is switched off, its angular velocity falls to half while it makes 36 rotations. How many more rotations will it make before coming to rest ?
A. 36
B. 24
C. 18
D. 12
56. Two bodies have their moments of inertia I
and $2 I$ respectively about their axis of rotation. If their kinetic energies of rotation are equal, their angular momenta will be in the ratio.
A. 2:1
B. 1:2
C. $\sqrt{2}: 1$

D. $1: \sqrt{2}$

Answer: B

D Watch Video Solution

57. A wheel of mass 8 kg and radius 40 cm is
rolling on a horizontal road with angular
velocity $15 \mathrm{rad} / \mathrm{s}$. If moment of inertia of the wheel about its axis is $0.64 \mathrm{kgm}^{2}$, then the rolling kinetic energy of wheel will be
A. 288 J
B. 216 J
C. 72 J
D. 144 J

Answer: B

D Watch Video Solution

58. A sphere and a hollow cylinder roll without slipping down two separate inclined planes and travel the same direction in the same time. If the angle of the plane dowm which the
sphere rolls is 30°, the angle of the other pane is
A. 60°
B. 53°
C. 37°
D. 45°

Answer: D
(Watch Video Solution
59. A solid cylinder rolls down an inclined plane of height $3 m$ and reaches the bottom of plane with angular velocity of $2 \sqrt{2} \mathrm{rad} / \mathrm{s}$. The radius of cylinder must be [take $g=10 \mathrm{~m} / \mathrm{s}^{2}$]
A. 5 cm
B. 0.5 cm
C. $\sqrt{10} \mathrm{~cm}$
D. $\sqrt{5} m$

Answer: D

60. If a sphere rolling on an inclined plane with
velocity v without slipping, the vertical height of the inclined in terms of velocity will be

> A. $\frac{7 v}{10 g}$
> B. $\frac{7 v^{2}}{10 g}$
> C. $\frac{2 v^{2}}{5 g}$
> D. $\frac{3 v}{5 g}$

Answer: B

D View Text Solution

61. A cylinder is rolling down on a inclined
plane of inclination 60°. What is iths acceleration?
A. $g / 3$
B. $g / \sqrt{3}$
C. $\sqrt{\frac{2 g}{3}}$
D. None of these

Answer: B

- Watch Video Solution

62. The speed of a homogeneous solid sphere after rolling down an inclined plane of vertical height h from rest without slipping will be.
A. $\sqrt{\frac{10}{7} g h}$
B. $\sqrt{\frac{4}{3} g h}$
C. $\sqrt{g h}$
D. $\sqrt{\frac{6}{5} g h}$

Answer: A

D Watch Video Solution

63. A rupee coin, starting from rest rolls down
a distance of 1 m on a plane inclined at an
angle of 30° with the horizontal. Assuming
that $g=9.81 m s^{-2}$, time taken is :-
A. 0.78 s
B. 0.6 s
C. 0.5 s

D. 0.7 s

Answer: A

D Watch Video Solution

64. When a uniform solid sphere and a disc of
the same mass and of the same radius roll down an inclined smooth plane from rest to
the same distance, then ratio of the time taken by them is
A. $15: 14$
B. $15^{2}: 14^{2}$
C. $\sqrt{14}: \sqrt{15}$
D. $14: 15$

Answer: C

D Watch Video Solution

65. A thin metal disc of radius $0.25 m$ and mass

2 kg starts from rest and rolls down an inclined plane. If its rotational kinetic energy is
$4 J$ at the foot of the inclined plane, then its linear velocity at the same point is

D Watch Video Solution

66. An iron rod of mass M and length L is cut into n equal parts by cutting it perpendicular to its length. If I is the M.I. of the rod, about an axis passing through its centre and perpendicular to its axis, then the moment of interia of each part about the similar axis

$$
\text { A. } \frac{l}{n}
$$

B. $\frac{l}{n^{2}}$
C. $\frac{l}{n^{3}}$
D. $\frac{l}{n^{2}}$

Answer: C

D Watch Video Solution

67. A round disc of moment of inertia I_{2} about its axis perpendicular to its plane and passing through its centre is placed over another disc of moment of inertia I_{1} rotating with an
angular velocity ω about the same axis. The
final angular velocity of the combination of discs is.

$$
\begin{aligned}
& \text { A. } \frac{\left(l_{1}+l_{2}\right) \omega_{1}}{l_{1}} \\
& \text { B. } \frac{l_{1} \omega_{1}}{l_{1}+l_{2}} \\
& \text { C. } \omega_{1} \\
& \text { D. } \frac{l_{2} \omega_{1}}{l_{1}+l_{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution
68. Two discs cone of density $7200 \mathrm{~kg} / \mathrm{m}^{3}$ and another of density $9000 \mathrm{~km} / \mathrm{m}^{3}$ have the same mass and thickness. What is the ratio of their moments of inertia?
A. $\frac{4}{5}$
B. $\frac{5}{4}$
C. $\frac{5}{9}$
D. $\frac{1}{9 \times 7.2}$

Answer: B
69. A thin rod of length L and mass M is bent at its midpoint into two halves so that the angle between them is 90°. The moment of inertia of the bent rod about an axis passing through the bending point and perpendicular to the plane defined by the two halves of the rod is.
A. $\frac{M L^{2}}{6}$
B. $\frac{\sqrt{2} M L^{2}}{24}$
c. $\frac{M L^{2}}{24}$
D. $\frac{M L^{2}}{12}$

Answer: D

D Watch Video Solution

70. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre at O as shown in the figure. What is the moment of inertia of the loop anout the axis

XX'?

$$
\text { A. } \frac{\rho L^{3}}{16 \pi^{2}}
$$

B. $\frac{\rho L^{2}}{8 \pi^{2}}$
C. $\frac{5}{16} \rho L^{3} \pi$
D. $\frac{3 \rho L^{3}}{8 \pi^{2}}$

Answer: D

D Watch Video Solution

PRACTICE EXERCISE (Exercise 2 (MISCELLANEOUS PROBLEMS))

1. Three identical square plates rotate about
the axes shown in the figure in such a way that
their kinetic energies are equal. Each of the rotation axis passes through the centre of the square. Then, the ratio of angular speeds $\omega_{1}: \omega_{2}: \omega_{3}$ is
A. $1: 1: 1$
B. $\sqrt{2}: \sqrt{2}: 1$
C. $1: \sqrt{2}: 1$

D. $1: 2: \sqrt{2}$

Answer: A

D View Text Solution

2. Match the following column.

Choose the correct option regarding above column.

$$
\text { A. } \begin{array}{llll}
A & B & C & D \\
3 & 1 & 2 & 4
\end{array}
$$

$$
\begin{array}{llll}
\text { B. } \begin{array}{lll}
A & B & C \\
3 & 2 & 1
\end{array} \\
\text { C. } \\
A & B & C & D \\
2 & 1 & 2 & 5 \\
A & B & C & D \\
\text { D. } & 2 & 1 & 4
\end{array}
$$

Answer: B

D View Text Solution

3. The $M I$ of a disc of mass M and radius R, about an axis passing through the centre O and perpendicular to the plane of the disc is $M R^{2}$ $\frac{M R}{2}$. If one quarter of the disc is removed,
the new moment of inertia of the disc will be

> A. $\frac{M R^{2}}{3}$
> B. $\frac{M R^{2}}{4}$
> C. $\frac{3}{8} M R^{2}$
> D. $\frac{3}{2} M R^{2}$

Answer: C

D View Text Solution
4. A rope is wound round a hollow cylinder of mass 3 kg and radius 40 cm . If the rope is pulled with a force of $30 N$, what is the angualr acceleration of the cylinder?
A. $25 \mathrm{rad} \mathrm{s}^{-2}$
B. $10 \mathrm{rad} \mathrm{s}^{-2}$
C. $35 \mathrm{rad} \mathrm{s}^{-2}$
D. $40 \mathrm{rad} \mathrm{s}^{-1}$

Answer: A

5. A force $F=2 \mathrm{~N}$ acts on a particle P in the $x z-$
plane. The force F is parallel to X-axis. The particle P (as shown in the figure) is at a distance 3 m and the line joining P with the origin makes angle 30° with the X -axis. The magnitude of torque on P with respect to orgin $\mathrm{O}($ in $\mathrm{N}-\mathrm{m})$ is
A. 2
B. 3
C. 4
D. 5

Answer: B

D View Text Solution

6. The ratio of the accelerations for a solid sphere (mass m, and radius R) rolling down
an incline of angle θ without slipping, and
slipping down the incline without rolling is
A. $5: 7$
B. 2:3
C. $2: 5$
D. 7:5

Answer: A

D Watch Video Solution
7. A solid sphere is given a kinetic energy E .

What fraction of kinetic energy is associated
with rotation
A. $3 / 7$
B. $5 / 7$
C. $1 / 2$
D. $2 / 7$

Answer: D

D Watch Video Solution

8. A body of moment of inertia about its axis of rotation is $3 \mathrm{kgm}^{2}$ and angular velocity 3 $\mathrm{rad} / \mathrm{s}$. The kinetic energy of rotating body is
same as that of body of mass 27 kg moving with a speed of
A. $1 m s^{-1}$
B. $0.5 m s^{-1}$
C. $2 m s^{-1}$
D. $1.5 m s^{-1}$

Answer: A

D Watch Video Solution
9. Three identical spheres, each of mass 1 kg are kept as shown in figure below, touching each other, with their centres on a straight line. If their centres are marked P, Q, R respectively the distance of centre of mass of the system from P is

$$
\begin{aligned}
& \text { A. } \frac{P Q+P R+Q R}{3} \\
& \text { B. } \frac{P Q+P R}{3} \\
& \text { C. } \frac{P Q+Q R}{3}
\end{aligned}
$$

D. $\frac{P R+Q R}{3}$

Answer: B

D View Text Solution

10. A thin uniform rod of length l and mass m
is swinging freely about a horizontal axis
passing through its end. Its maximum angular speed is ω. Its centre of mass rises to a maximum height of -

$$
\text { A. } \frac{1}{2} \frac{l^{2} \omega^{2}}{g}
$$

B. $\frac{1}{6} \frac{l \omega}{g}$
C. $\frac{1}{2} \frac{l^{2} \omega^{2}}{g}$
D. $\frac{1}{6} \frac{l^{2} \omega^{2}}{g}$

Answer: D

D Watch Video Solution

11. A body is rolling down an inclined plane. If kinetic energy of rotation is 40% of kinetic energy in translatory start then the body is a.
A. solid cylinder
B. solid sphere
C. disc
D. ring

Answer: B

D Watch Video Solution
12. Three masses are placed on the x-axis : $300 g$ at origin. 500 g at $x=40 \mathrm{~cm}$ and 400 g at
$x=70 \mathrm{~cm}$. The distance of the centre of mass
from the origin is.
A. 40 cm
B. 45 cm
C. 50 cm
D. 30 cm

Answer: A
(Watch Video Solution
13. The angular speed of a body changes from
ω_{1} to ω_{2} without applying a torque but due to
change in its moment of inertia. The ratio of radii of gyration in the two cases is :-

> A. $\sqrt{\frac{\omega_{2}}{\omega_{1}}}$
> B. $\sqrt{\frac{\omega_{1}}{\omega_{2}}}$
C. $\omega_{2}: \omega_{1}$
D. $\omega_{1}: \omega_{2}$

Answer: A
14. A thin hollow sphere of mass m is completely filled with a liquid of mass m. What the sphere rolls with a velocity v, kinetic energy of the system is (neglect friciton)
A. $\frac{1}{2} m v^{2}$
B. $m v^{2}$
C. $\frac{4}{3} m v^{2}$
D. $\frac{4}{5} m v^{2}$

D Watch Video Solution

15. Two circular rings A and B of radii $n R$ and R are made from the same wire. The Ml of A about an axis passing through the centre and perpendicular to the plane of A is 27 times
that of the smaller loop B. What is the value of n if the length of $A=n$ (length of $B)$?
A. 2
B. 3
C. 4
D. 5

Answer: B

D Watch Video Solution

16. A system consists of 3 particles each of mass ' m ' are located at $(1,1)(2,2)$ and $(3,3)$.

The co-ordinates of the centre of mass are
A. $(6,6)$
B. $(3,3)$
C. $(1,1)$
D. $(2,2)$

Answer: D

D Watch Video Solution

17. A thin horizontal circular disc is roating about a vertical axis passing through its centre. An insect is at rest at a point near the
rim of the disc. The insect now moves along a diameter of the disc to reach its other end.

During the journey of the insect, the angular speed of the disc.
A. continuously decreases
B. continuously increases
C. first increases and then decreases
D. remains unchanged

Answer: C

18. A solid sphere of radius R has moment of
inetia I about its geometrical axis. If it is melted into a disc of radius r and thickness t. If
its moment of inertia about the tangential axis (which is perpencidular to plane of the disc), is also equal to I, then the value of r is equal to

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{15}} R \\
& \text { B. } \frac{2}{\sqrt{5}} R
\end{aligned}
$$

C. $\frac{3}{\sqrt{15}} R$
D. $\frac{\sqrt{3}}{\sqrt{15}} R$

Answer: A

D View Text Solution

19. Four point masses, each of value m, are placed at the corners of a square $A B C D$ of side
I. The moment of inertia of the is system about an axis passing through A and parallel to $B D$ is
A. $2 m l^{2}$
B. $\sqrt{3} m l^{2}$
C. $3 m l^{2}$
D. $m l^{2}$

Answer: C

D Watch Video Solution
20. A circular disc of radius R and thickness
$R / 6$ has moment of inertia I about an axis
passing through its centre and perpendicular
to its plane. It is melted and recast into a solid
sphere. The M.I of the sphere about its diameter as axis of rotation is

> A. $\frac{l}{10}$
> B. $\frac{2 l}{6}$
C. l
D. $\frac{l}{5}$

Answer: D

- Watch Video Solution

21. A thin circular ring of mass m and radius R
is rotating about its axis with a constant angular velocity ω. Two objects each of mass
M are attached gently to the opposite ends of
a diameter of the ring. The ring now rotates
with an angular velocity $\omega^{\prime}=$
A. $\frac{\omega(m+2 M)}{m}$
B. $\frac{\omega(m-2 M)}{(m+2 M)}$
C. $\frac{\omega m}{(m+M)}$
D. $\frac{\omega m}{(m+2 M)}$

Answer: D

D Watch Video Solution

22. if the earth is treated as a sphere of radius

Radn mass M, Its angular momentum about the axis of its rotation with period T , is

$$
\begin{aligned}
& \text { A. } \frac{\pi M R^{3}}{T} \\
& \text { B. } \frac{M R^{2} \pi}{T} \\
& \text { C. } \frac{2 \pi M R^{3}}{5 T} \\
& \text { D. } \frac{4 \pi M R^{2}}{5 T}
\end{aligned}
$$

Answer: D

D Watch Video Solution

23. Consider a body, shown in the figure, consisting of two identical balls, each of mass
M connected by a light rigid rod. If an impulse $J=M v$ is imparted to the body at one of its ends, what would be its angular velocity?
A. v / L
B. $2 \mathrm{v} / \mathrm{L}$
C. $\mathrm{v} / 3 \mathrm{~L}$
D. $\mathrm{v} / 4 \mathrm{~L}$

Answer: A

D View Text Solution

24. A dancer is standing on a stool rotating about the vertical axis passing through its centre. She pulls her arms towards the body reducing her moment of inertia by a factor of
n . The new angular speed of turn table is

proportional to

A. n
B. n^{-1}
C. n^{0}
D. n^{2}

Answer: A
(Watch Video Solution
25. Three identical spheres of mass M each are
placed at the corners of an equilateral triangle of side 2 m . Taking one of the corners as the origin, the position vector of the centre of mass is

$$
\begin{aligned}
& \text { A. } \sqrt{3}(\hat{i}-\hat{j}) \\
& \text { B. } \frac{\hat{i}}{\sqrt{3}}+\hat{j} \\
& \text { C. } \hat{i}+\hat{j} / 3 \\
& \text { D. } \hat{i}+\hat{j} / \sqrt{3}
\end{aligned}
$$

- Watch Video Solution

26. Two thin discs each of mass M and radius R are placed at either and of a rod of mass m length I and radius r. Moment of inertia of the system about an axis passing through the centre of rod and perpendicular to its length is

$$
\begin{aligned}
& \text { A. } \frac{m L^{2}}{12}+\frac{1}{2} M R^{2}+\frac{1}{2} M L^{2} \\
& \text { B. } \frac{M L^{2}}{12}+\frac{1}{2} m R^{2}+\frac{1}{2} m L^{2}
\end{aligned}
$$

C. $\frac{1}{2} m L^{2}+\frac{m R^{2}}{2}+\frac{M L^{2}}{12}$
D. $\frac{m L^{2}}{12}+M R^{2}+\frac{1}{2} M L^{2}$

Answer: A

D View Text Solution

27. Four particles, each of mass m, are lying symmetrically on the rim of a disc of mass M and radius R. M.I. of this system about an axis passing through one of the particles and perpendicular to plane of disc is
A. $16 m r^{2}$
B. $(3 M+19 m) \frac{R^{2}}{2}$
C. $(3 M+12 m) \frac{R^{2}}{2}$
D. zero

Answer: B

D Watch Video Solution

28. Bodies of regular geometrical shape were allowed to roll on a horizontal surface. It was
found that for one rolling body, die
translational KE was equal to rotational KE,
the body must be
A. a solid sphere
B. a hollow sphere
C. a disc
D. a thin ring

Answer: D
(Watch Video Solution
29. Two sphere each of mass M and radius $R / 2$ are connected with a massless rod of length 2
R as shown in the moment of inertia of the
system about an axis passing through the
centre of one of the sphere and perpendicular
to the rod?
A. $\frac{21}{5} M R^{2}$
B. $\frac{2}{5} M R^{2}$
C. $\frac{5}{2} M R^{2}$

D. $\frac{5}{21} M R^{2}$

Answer: A

D View Text Solution

30. A uniform rod of mass m and length I is suspended by means of two light inextansible
strings as shown in the figure. Tension in one string immediately after the other string is cut is
A. $\frac{m g}{2}$
B. $m g$
C. $2 m g$
D. $\frac{m g}{4}$

Answer: D

D View Text Solution

31. A particle of mass 2 kg is on a smooth horizontal table and moves in a circular path of radius 0.6 m . The height of the table from
the ground is 0.8 m . If the angular speed of the particle is $12 \mathrm{rads}^{-1}$, the magnitude of its angular momentum about a point on the ground right under the centre of the circle is
A. $14.4 k g-m^{2} s^{-1}$
B. $8.64 k g-m^{2} s^{-1}$
C. $20.16 k g-m^{2} s^{-1}$
D. $11.52 \mathrm{~kg}-m^{2} s^{-1}$

Answer: A

32. The mass of the earth is increasing at the rate 1 part in 5×20^{19} per day by the accretion of meteors falling normally upon the earth's surface. Find the corresponding rate of change of the period of rotation of the earth supporting the earth to be a sphere of uniform density.
[Hint: Consider the deposit as a spherical shell and apply principle of conservation of angular momentum]

$$
\text { A. } 2.0 \times 10^{-30}
$$

B. 2.66×10^{-19}
C. 4.33×10^{-18}
D. 5.66×10^{-17}

Answer: A

D Watch Video Solution

33. Four holes of radius R are cut from a thin square plate of side $4 R$ and mass M. The moment of inertia of the remaining portion
about Z-axis is

> A. $\frac{\pi}{12} M R^{2}$
> B. $\left(\frac{4}{3}-\frac{\pi}{4}\right) M R^{2}$
> C. $\left(\frac{4}{3}-\frac{\pi}{6}\right) M R^{2}$
> D. $\left(\frac{8}{3}-\frac{10 \pi}{16}\right) M R^{2}$

Answer: D
(D) View Text Solution
34. Three identical spherical shells, each of mass m and radius r are placed as shown in
figure. Consider an axis XX ', which is touching diameter of third shell. Moment of inertia of the system consisting of these three spherical shells about $X X$ ' axis is
A. $\frac{11}{5} m r^{2}$
B. $m r^{2}$
C. $\frac{16}{5} m r^{2}$

D. $4 m r^{2}$

Answer: D

D View Text Solution

35. A string of negligible thickness is wrapped several times around a cylinder kept on a rough horizontal surface. A boy standing at a distance I from the cylinder holds one end of the string and pulls the cylinder toward him. Assuming no slipping the length of the thread
passed through the hands of the man is
A. $\frac{l}{2}$
B. l
C. $2 l$
D. $\frac{3 l}{2}$

Answer: C
(D) View Text Solution
36. A solid cylinder of mass 20 kg rotates about its axis with angular speed $100 s^{-1}$. The radius of the cylinder is 0.25 m . What is the kinetic energy associated with the rotation of the cylinder ? What is the magnitude of angular momentum of the cylinder about its axis ?
A. $3200 \mathrm{~J}, 62.5 \mathrm{~J}-\mathrm{s}$
B. $3125 \mathrm{~J}, 62.5 \mathrm{~J}-\mathrm{s}$
C. $3500 J, 68 J-s$
D. $3400 \mathrm{~J}, 63.3 \mathrm{~J}-s$

Answer: B

D Watch Video Solution

37. A uniform $\operatorname{rod} A B$ of mass m and length l
at rest on a smooth horizontal surface. An impulse P is applied to the end B. The time taken by the rod to turn through a right angle
is :

A. $2 \pi \frac{m l}{P}$
B. $\frac{\pi P}{m l}$
C. $\frac{\pi}{12} \frac{m l}{P}$
D. $\frac{\pi P}{m l}$

Answer: C

D Watch Video Solution

38. A particle of mass moves along line PC with velocity v as shown in the figure. What is
the angular momentum of the particle about

O?
A. mvL
B. mvl
C. mvr
D. zero

Answer: B

D View Text Solution

39. A ring of mass M and radius R is rotating about its axis with angular velocity ω. Two identical bodies each of mass m are now gently attached at the two ends of a diameter
of the ring. Because of this, the kinetic energy

loss will be :

$$
\begin{aligned}
& \text { A. } \frac{m(M+2 m)}{M} \omega^{2} R^{2} \\
& \text { B. } \frac{M m}{(M+2 m)} \omega^{2} R^{2} \\
& \text { C. } \frac{M n}{(M-2 m)} \omega^{2} R^{2} \\
& \text { D. } \frac{(M+m) M}{(M+2 m)} \omega^{2} R^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

40. A hoop of radius r and mass m rotating with an angular velocity ω_{0} is placed on a rough horizontal surface. The initial velocity of the centre of the hoop is zero. What will be the velocity of the centre of the hoop when it ceases ot slip?
A. $\frac{r \omega_{0}}{4}$
B. $\frac{r \omega_{0}}{3}$
C. $\frac{r \omega_{0}}{2}$
D. $r \omega_{0}$

Answer: C

D Watch Video Solution

41. A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass is k. If radius of the ball be R, then the fraction of total energy associated with its rotation will be.
A. $\frac{K^{2}}{K^{2}+R^{2}}$
B. $\frac{R^{2}}{K^{2}+R^{2}}$

> C. $\frac{K^{2}+R^{2}}{R^{2}}$
> D. $\frac{K^{2}}{R^{2}}$

Answer: A

D Watch Video Solution

42. The moment of inertia of a uniform rod about a perpendicular axis passing through one end is I_{1}. The same rod is bent into a ring and its moment of inertia about a diameter is
I_{2}. Then I_{1} / I_{2} is
A. $\frac{2}{3} \pi^{2}$
В. $\frac{3}{2} \pi^{2}$
C. $\frac{5}{3} \pi^{2}$
D. $\frac{8}{3} \pi^{2}$

Answer: A

D Watch Video Solution

43. A solid sphere rolls down a smooth
inclined plane of height h. If it stats from rest
then the speed of the sphere when it reaches
the bottom is given by

> A. $\sqrt{g h}$
> B. $\sqrt{\frac{10}{7} g h}$
> C. $\sqrt{\frac{4}{7} g h}$
> D. $\sqrt{\frac{5}{4} g h}$

Answer: B

D Watch Video Solution
44. A child is standing with folded hands at
the center of a platform rotating about its central axis. The kinetic energy of the system is
K. The child now stretches his arms so that the moment of inertia of the system doubles.

The kinetic energy of the system now is
A. K
B. 2 K
c. $\frac{K}{2}$
D. $\frac{K}{4}$

Answer: C

D Watch Video Solution

45. The moments of inertia of two rotating bodies A and are I_{A} and $I_{B}\left(I_{A}>I_{B}\right)$. If their angular momenta are equal then.
A. $K_{A}=K_{B}$
B. $K_{A}>K_{B}$
C. $K_{A}<K_{B}$
D. $K_{A}=\frac{K_{B}}{2}$

Answer: B

- Watch Video Solution

46. Two wheels of radii 10 cm and 30 cm are connected to each other by a belt. What is the ratio of the moment of inertia of the larger wheel to that of the smaller wheel, when both of them have the same angular momentum?
A. 2
B. 3
C. 4
D. 5

Answer: B

D Watch Video Solution

47. Two spheres of unequal masses but of the same radii are released from the top of a smooth inclined plane. They roll down the plane without slipping. Which one will reach the bottom first?
A. Both will reach the bottom at the same
time
B. Heavier sphere
C. Lighter sphere

D. None of the above

Answer: A

(Watch Video Solution

1. A circular disc of radius R and thickness
$R / 6$ has moment of inertia I about an axis passing through its centre and perpendicular to its plane. It is melted and recast into a solid sphere. The M.I of the sphere about its diameter as axis of rotation is
A. $\frac{1}{5}$
B. $\frac{1}{6}$
C. $\frac{1}{32}$
D. $\frac{1}{64}$

Answer: A

D Watch Video Solution

2. Let M be the mass and L be the length of a
thin uniform rod. In first case, axis of rotation
is passing through centre and perpendicular to the length of the rod. In second case, axis of rotation is passing through one end and perpendicular to the length of the rod. The ratio of radius of gyration in first case to second case is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer: B

D Watch Video Solution

3. A cord is wound round the circumference of
wheel of radius r. The axis of the wheel is
horizontal and fixed and moment of inertia
about it is I. A weight $m g$ is attached to the end of the cord and falls from rest. After falling through a distance h, the angular velocity of the wheel will be.
A. $[m g h]^{1 / 2}$
B. $\left[\frac{2 m g h}{1+2 m r^{2}}\right]^{1 / 2}$
C. $\left[\frac{2 m g h}{1+m r^{2}}\right]^{1 / 2}$
D. $\left[\frac{m g h}{1+m r^{2}}\right]^{1 / 2}$

Answer: C
4. A satellite of mass m is in a circular orbit of radius r round the Earth. Calculate its angular momentum with respect to the centre of the orbit in terms of the mass M of the Earth and G.
A. $(G M m r)^{1 / 2}$
B. $\left(G M m^{2} r\right)^{1 / 2}$
C. $\left(G M m^{2} r^{2}\right)^{1 / 2}$
D. $\left(G M^{2} m^{2} r\right)^{1 / 2}$

Answer: B

D Watch Video Solution

5. A ring and a disc roll on the horizontal surface without slipping, with same linear velocity. If bolh have same mass and radius and total kinetic energy of the ring is 4 J , then total kinetic energy of the disc is
A. 3 J
B. 4 J
C. 5 J
D. 6 J

Answer: A

D Watch Video Solution

6. A circular disc of radius R and thickness
$R / 6$ has moment of inertia I about an axis
passing through its centre and perpendicular to its plane. It is melted and recast into a solid
sphere. The $M . I$ of the sphere about its diameter as axis of rotation is

> A. $\frac{l}{5}$
> B. $\frac{l}{6}$
> C. $\frac{l}{32}$
> D. $\frac{l}{64}$

Answer: A
(Watch Video Solution
7. Let M be the mass and L be the length of a
thin uniform rod. In first case, axis of rotation
is passing through centre and perpendicular to the length of the rod. In second case, axis of rotation is passing through one end and perpendicular to the length of the rod. The ratio of radius of gyration in first case to second case is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{4}$

D. $\frac{1}{8}$

Answer: B

D Watch Video Solution

8. An object of radius R and mass M is rolling horizontally without slipping with speed v. It then rolls up the hill to a maximum height $h=\frac{3 v^{2}}{4 g}$. The moment of inertia of the object is ($g=$ acceleration due to gravity)

$$
\text { A. } \frac{2}{5} M R^{2}
$$

B. $\frac{M R^{2}}{2}$
C. $M R^{2}$
D. $\frac{3}{2} M R^{2}$

Answer: B

D Watch Video Solution
9. The moment of inertia of a uniform rod about a perpendicular axis passing through one end is I_{1}. The same rod is bent into a ring
and its moment of inertia about a diameter is
I_{2}. Then I_{1} / I_{2} is

$$
\begin{aligned}
& \text { A. } \frac{4 \pi}{3} \\
& \text { B. } \frac{8 \pi^{2}}{3} \\
& \text { C. } \frac{5 \pi}{3} \\
& \text { D. } \frac{8 \pi^{2}}{5}
\end{aligned}
$$

Answer: B
(Watch Video Solution
10. Three identicle particle each of mass 1 kg are placed with their centres on a straight line.

Their centres are marked A, B and C respectively. The distance of centre of mass of the system from A is.

$$
\begin{aligned}
& \text { A. } \frac{A B+A C}{2} \\
& \text { B. } \frac{A B+B C}{2} \\
& \text { C. } \frac{A C-A B}{3} \\
& \text { D. } \frac{A B+A C}{3}
\end{aligned}
$$

11. A rod $P Q$ of mass M and length L is hinged at end P. The rod is kepts horizontal by a massless string tied to point Q as shown in
the figure. When string is cut, the initial angular acceleration of the rod is
A. $\frac{3 g}{2 L}$
B. $\frac{g}{L}$
C. $\frac{2 g}{L}$
D. $\frac{2 g}{3 L}$

Answer: A

D View Text Solution

12.

A small object of uniform density rolls up a curved surface with an initial velocity v. It reaches up to a maximum height of $\frac{3 v^{2}}{4 g}$ with
respect to the initial position. The object is
(a). Ring
(b). solid sphere
(c). hollow sphere
(d). disc
A. ring
B. solid sphere
C. hollow sphere
D. disc

Answer: D
13. A circular disc is to be made by using iron
and aluminium, so that it acquires maximum moment of inertia about its geometrical axis.

It is possible with
A. iron and aluminium layers in alternate order

B. aluminium at interior and iron

surrounding it

C.iron at interior and aluminium

surrounding it
D. Either (a) or (c)

Answer: B

D Watch Video Solution

14. When a disc is rotating with angular velocity ω, a particle situated at a distance of 4 cm just begins to slip. If the angular velocity
is doubled, at what distance will the particle
start to slip?
A. 1 cm
B. 2 cm
C. 3 cm
D. 4 cm

Answer: A
(Watch Video Solution
15. Which relation is not correct of the following ?
A. Torque $=$ Moment of inerita \times angular
acceleration
B. Torque $=$ Dipole moment \times magnetic

induction

C. Moment of inertia $=$ Torque \times angular

acceleration

D. Linear moment $=$ Moment of inertia \times

 angular velocity.
Answer: C

D Watch Video Solution

16. The moment of inertia of a uniform thin rod of length L and mass M about an axis passing through a point at a distance of $L / 3$ from one of its ends and perpendicular to the rod is
A. $\frac{M L^{2}}{12}$
B. $\frac{M L^{2}}{9}$
C. $\frac{7 M L^{2}}{48}$
D. $\frac{M L^{2}}{48}$

Answer: B

D Watch Video Solution
17. Moment of inertia of a uniform circular disc
about a diameter is I. Its moment of inertia
about an axis perpendicular to its plane and passing through a point on its rim will be.
A. 61
B. 4 L
C. 21
D. 81

Answer: A

D Watch Video Solution
18. The moment of inertia of two freely rotating bodies A and B are l_{A} and l_{B} respectively. $\quad l_{A}>l_{B}$ and their angular momenta are equal. If K_{A} and K_{B} are their kinetic energies,then
A. $K_{A}=K_{B}$
B. $k K_{A} \neq K_{B}$
C. $K_{A}<K_{B}$
D. $K_{A}=2 K_{B}$

Answer: C
19. Moment of inertia of big drop is I. If 8 droplets are formed from big drop, then moment of inertia of small droplet is
A. $\frac{l}{32}$
B. $\frac{l}{16}$
C. $\frac{l}{6}$
D. $\frac{l}{4}$
20. Moment of inertia of a rod of mass M and
length L about an axis passing through a point midway between centre and end is

$$
\begin{aligned}
& \text { A. } \frac{M L^{2}}{6} \\
& \text { B. } \frac{M L^{2}}{12} \\
& \text { C. } \frac{7 M L^{2}}{24} \\
& \text { D. } \frac{7 M L^{2}}{48}
\end{aligned}
$$

- Watch Video Solution

21. From a disc of radius R, a concentric circular portion of radius r is cut out so as to
leave an annular disc of mass M. The moment of inertia of this annular disc about the axis perpendicular to its plane and passing through its centre of gravity is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} M\left(R^{2}+r^{2}\right) \\
& \text { B. } \frac{1}{2} M\left(R^{2}-r^{2}\right) \\
& \text { C. } \frac{1}{2} M\left(R^{4}+r^{4}\right)
\end{aligned}
$$

$$
\text { D. } \frac{1}{2} M^{\prime}\left(R^{4}-r^{4}\right)
$$

Answer: A

D Watch Video Solution

22. Two spheres of equal masses, one of which
is a thin spheical shelll and the other a solid,
have the same moment of inertia about their respective diameters. The ratio of their radii well be
A. $5: 7$
B. $3: 5$
C. $\sqrt{3}: \sqrt{5}$

$$
\text { D. } \sqrt{3}: \sqrt{7}
$$

Answer: C

D Watch Video Solution

23. The moment of inertia of a uniform circular disc of radius R and mass M about an axis passing from the edge of the disc and normal to the disc is.
A. $M R^{2}$
B. $\frac{2}{5} M R^{2}$
C. $\frac{3}{2} M R^{2}$
D. $\frac{1}{2} M R^{2}$

Answer: C

D Watch Video Solution

24. The moment of inertia of a solid sphere about an axis passing through the centre radius is $\frac{1}{2} M R^{2}$, then its radius of gyration
about a parallel axis at a distance $2 R$ from
first axis is
A. 5 R
B. $\sqrt{\frac{22}{5}} R$
C. $\frac{5}{2} R$
D. $\sqrt{\frac{12}{5}} R$

Answer: B
(Watch Video Solution
25. Moment of inertia of a disc about an axis which is tangent and parallel to its plane is I.

Then the moment of inertia of disc about a tangent, but perpendicular to its plane will be
A. $\frac{3 l}{4}$
B. $\frac{5 l}{6}$
C. $\frac{3 l}{2}$
D. $\frac{6 l}{5}$

Answer: D

26. By keeping moment of inertia of a body constant, if we double the time period, then angular momentum of body
A. remains constant
B. becomes half
C. doubles
D. quadruples

Answer: B
27. A disc of moment of inertia $9.8 / \pi^{2} \mathrm{kgm}^{2}$ is
rotating at 600 rpm . If the frequency of rotation changes from 600 rpm to 300 rpm , then what is the work done?
A. 1470 J
B. 1452 J
C. 1567 J
D. 1632 J

Answer: A

D Watch Video Solution

28. The center of mass of a system of two particles divides the distance between them.
A. in inverse ratio of square of masses of
particles
B. in direct ratio of square of masses of particles
C. in inverse ratio of masses of particles
D. in direct ratio of masses of particles

Answer: C

D Watch Video Solution

29. A thin circular ring of mass m and radius R
is rotating about its axis with a constant angular velocity ω. Two objects each of mass
M are attached gently to the opposite ends of
a diameter of the ring. The ring now rotates with an angular velocity $\omega^{\prime}=$

$$
\begin{aligned}
& \text { A. } \frac{2 \omega M}{(M-2 m)} \\
& \text { B. } \frac{(M-2 m)}{M} \\
& \text { C. } \frac{\omega M}{(M+2 m)} \\
& \text { D. } \frac{2 \omega M}{(M-2 m)}
\end{aligned}
$$

Answer: C

D Watch Video Solution

30. Moment of inertia depends on
A. distribution of particles
B. mass
C. position of axis of rotation
D. All of the above

Answer: D
31. Moment of inertia of a disc about its own axis is I. Its moment of inertia about a tangential axis in its plane is

$$
\begin{aligned}
& \text { A. } \frac{m R^{2}}{4} \\
& \text { B. } \frac{3 M R^{2}}{2} \\
& \text { C. } \frac{5}{4} M R^{2} \\
& \text { D. } \frac{7 M R^{2}}{4}
\end{aligned}
$$

Answer: C

D Watch Video Solution
32. A sphere of mass 0.5 kg and diameter 1 m rolls without sliding with a constant velocity of $5 \mathrm{~m} / \mathrm{s}$. What is the ratio of the rotational K.E. to the total kinetic energy of the sphere?

$$
\begin{aligned}
& \text { A. } \frac{7}{10} \\
& \text { B. } \frac{5}{7} \\
& \text { C. } \frac{2}{7} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

Answer: C

33. A body of moment of inertia of $3 \mathrm{kgm}^{2}$
rotating with an angular velocity of $2 \mathrm{rad} / \mathrm{s}$
has the same kinetic energy as that that of mass 12 kg moving with a velocity of
A. $8 m s^{-1}$
B. $0.5 m s^{-1}$
C. $2 m s^{-1}$
D. $1 m s^{-1}$

Answer: D

- Watch Video Solution

34. The moment of inertia of a thin circular disc of mass M and radius R about any diameter is
A. $2 M R^{2}$
B. $\frac{M R^{2}}{4}$
C. $\frac{M R^{2}}{2}$
D. $M R^{2}$

Answer: B

D Watch Video Solution

35. The radius of gyration of a disc of mass 100 g and radius 5 cm about an axis pasing through centre of gravity and perpendicular to the plane is
A. 3.54 cm
B. 1.54 cm
C. 4.54 cm

D. 2.54 cm

Answer: A

- Watch Video Solution

