đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

SURFACE TENSION

Example

1. A U-shaped wire is dipped in a soap solution,
and removed. A thin soap film formed between
the wire and a light slider supports a weight of $1.5 \times 10^{-2} N$ (which includes the small weigh of the slider). The length of the slider is 30 cm . What is the surface tension of the film?

$$
\begin{aligned}
& \text { A. } 5.6 \times 10^{-4} \mathrm{Nm}^{-1} \\
& \text { B. } 3.8 \times 10^{-6} \mathrm{Nm}^{-1} \\
& \text { C. } 2.5 \times 10^{-2} \mathrm{Nm}^{-1} \\
& \text { D. } 7.3 \times 10^{-5} \mathrm{Nm}^{-1}
\end{aligned}
$$

Answer: C

2. A rectangular plate of dimension
$6 \mathrm{~cm} \times 4 \mathrm{~cm}$ and thickness 2 mm is placed with
its largest face flat on the surface of water.

Find the downward force on the plate due to
surface tension. Surface tension of water is
$7.0 \times 10^{-2} \mathrm{Nm}^{-1}$.
A. $1.8 \times 10^{-2} N$
B. $1.4 \times 10^{-2} N$
C. $2 \times 10^{-2} N$
D. $2.5 \times 10^{-2} N$

Answer: B

D Watch Video Solution

3. What should be the pressure inside a small air bubble of 0.1 mm radius situated just below the water surface? Surface tension of water is
$7.2 \times 10^{-2} \mathrm{Nm}^{-1}$ and atmospheric pressure is $1.013 \times 10^{5} \mathrm{Nm}^{-2}$.
A. $2.13 \times 10^{3} \mathrm{Nm}^{-2}$
B. $1.027 \times 10^{5} \mathrm{Nm}^{-2}$

C. $2.5 \times 10^{5} \mathrm{Nm}^{-2}$

$$
\text { D. } 1.5 \times 10^{-2} \mathrm{Nm}^{-2}
$$

Answer: B

D Watch Video Solution

4. What is the excess pressure inside a bubble of soap solution of radius 5.00 mm , given that the surface tension of soap solution at the temperature $\left(20^{\circ} \mathrm{C}\right)$ is $2.50 \times 10^{-2} \mathrm{Nm}^{-1}$? If an air bubble of the same dimension were
formed at a depth of 40.0 cm inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble? (1atm. is $\left.1.01 \times 10^{5} \mathrm{~Pa}\right)$.
A. $2 \times 10^{4} P a$
B. $1.06 \times 10^{5} \mathrm{~Pa}$
C. $3 \times 10^{4} \mathrm{~Pa}$
D. $5 \times 10^{3} \mathrm{~Pa}$

Answer: B
5. What will happen to the motor bike, if some water is poured in its machinery parts?
A. Machinery parts are jammed due to decrease in surface tension
B. Machinery parts are jammed due to decrease calorific value
C. Machinery parts are jammed due to increase in surface tension

D. nothing will happen

Answer: A

D Watch Video Solution

6. A rectangular film of liquid is extended from
$5 \mathrm{~cm} \times 3 \mathrm{~cm} \rightarrow 6 \mathrm{~cm} \times 5 \mathrm{~cm}$. If the work done
is $3.0 \times 10^{-4} \mathrm{~J}$. The surface tension of liquid is
A. $0.5 \mathrm{Nm}^{-1}$
B. $0.1 \mathrm{Nm}^{-1}$

C. $0.2 \mathrm{Nm}^{-1}$

$$
\text { D. } 2 N m^{-1}
$$

Answer: B

D Watch Video Solution

7. How much work will be done in increasing
the diameter of a soap bubble from 2 cm to
5 cm ? Surface tension solution is
$3.0 \times 10^{-2} N / m$.
A. $3.2 \times 10^{-4} J$
B. $3.9 \times 10^{-4} J$
C. $4.2 \times 10^{-4} J$
D. $4.7 \times 10^{-4} J$

Answer: B

D Watch Video Solution
8. Calculate the energy released when 1000 small water drops each of same radius $10^{-7} \mathrm{~m}$
coalesce to form one large drop. The surface tension of water is $7.0 \times 10^{-2} \mathrm{~N} / \mathrm{m}$.

$$
\begin{aligned}
& \text { A. } 7 \times 10^{-12} J \\
& \text { B. } 7.5 \times 10^{-12} J \\
& \text { C. } 7.9 \times 10^{-12} J \\
& \text { D. } 8.5 \times 10^{-12} J
\end{aligned}
$$

Answer: C

D Watch Video Solution
9. Two mercury droplets of radii 0.1 cm and 0.2
cm collapse into one single drop. What amount of energy is released? The surface tension of mercury $T=435.5 \times 10^{-3} \mathrm{Nm}^{-1}$
A. $3.22 \times 10^{-6} J$
B. $4 \times 10^{-4} J$
C. $9 \times 10^{-3} J$
D. $6 \times 10^{-4} J$

Answer: A
10. In figures, the contact angle between water and glass is
A. acute
B. obtuse
C. right angled
D. Neither (a) nor (b)

Answer: A

View Text Solution

11. The lower end of a capillary tube is dipped into water and it is seen that water rises through 7.5 cm in the capillary. Given surface tension of water is $7.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$ and angle of contact between water and glass capillary tube is zero, What will be diameter of the capillary tube ? (Given, $g=10 \mathrm{~ms}^{-2}$)

A. 0.2 mm

B. 0.3 mm
C. 0.4 mm
D. 0.5 mm

Answer: C

D Watch Video Solution

Exercise 1

1. Surface tension vanishes at
A. absolute zero temperature

B. transition temperature

C. critical temperature

D. None of these

Answer: C

D Watch Video Solution

2. The diameter of one drop of water is 0.2 cm .

The work done in breaking one drop into 1000 droplets will be (Given,
$S_{\text {water }}=7 \times 10^{-2} \mathrm{Nm}^{-1}$)
A. $7.9 \times 10^{-6} J$
B. $5.92 \times 10^{-6} \mathrm{~J}$
C. $2.92 \times 10^{-6} J$
D. $1.92 \times 10^{-6} J$

Answer: A

D Watch Video Solution

3. The surface tension of a liquid is 5 Newton per metre. If a film is held on a ring of area 0.02 metres 2, its surface energy is about :
A. $2 \times 10^{-2} J$
B. $2.5 \times 10^{-3} \mathrm{~J}$
C. $2 \times 10^{-1} J$
D. $3 \times 10^{-1} J$

Answer: C

D Watch Video Solution

4. A water film is formed between two parallel
wires of 10 cm length. The distance of 0.5 cm
between the wires is increased by 1 mm . What
will be the work done? (Given, surface tension of water of $72 \mathrm{Nm}^{-1}$)
A. 288 erg
B. 144 erg
C. 72 erg
D. 36 erg

Answer: B

- Watch Video Solution

5. The work done in blowing a soap bubble of
volume V is W. The work done in blowing a soap bubble of volume $2 V$ is
A. W
B. 2 W
C. $\sqrt{2} W$
D. $4^{1 / 3} W$

Answer: D

- Watch Video Solution

6. The excess pressure inside a spherical drop
of water is four times that of another drop.

Then, their respective mass ratio is
A. $1: 16$
B. $8: 1$
C. 1:4
D. 1: 64

Answer: D

- Watch Video Solution

7. Two liquid drop have diameters of 1 cm and
1.5 cm . The ratio of excess pressures inside them is
A. 1:1
B. 5:3
C. 2:3
D. 3:2

Answer: D

- Watch Video Solution

8. What should be the pressure inside a small air bubble of 0.1 mm radius situated just below the water surface? Surface tension of water is
$7.2 \times 10^{-2} \mathrm{Nm}^{-1}$ and atmospheric pressure is $1.013 \times 10^{5} \mathrm{Nm}^{-2}$.

> A. $2.012 \times 10^{5} \mathrm{Nm}^{-2}$
> B. $2.012 \times 10^{4} \mathrm{Nm}^{-2}$
> C. $1.027 \times 10^{5} \mathrm{Nm}^{-2}$
> D. $1.027 \times 10^{4} \mathrm{Nm}^{-2}$

Answer: C

- Watch Video Solution

9. A water drop is divided into 8 equal droplets. The pressure difference between the inner and outer side of the big drop will be
A. same as for smaller droplet
B. $\frac{1}{2}$ of that for smaller droplet
C. $\frac{1}{4}$ of that for smaller droplet
D. twice that for smaller droplet

- Watch Video Solution

10. A glass tube of uniform internal radius r has a valve separating the two identical ends. Initially, the valve is in a tightly closed position.

End 1 has a hemispherical soap bubble of radius r .

End 2 has sub-hemispherical soap bubble as shown in the figure. Just after opening the valve,
change in the volume of the soap
bubbles
B. air from End 1 flows towards End 2.

Volume of the soap bubble at End 1
decreases
C. air from End 2 flows towards End 1.

Volume of the soap bubble at End 1
increases
D. no change occurs

Answer: D

D View Text Solution

11. Match the following columns.
A. A-1, B-3, C-1
B. $A-1, B-2, C-3$
C. A-1, B-1, C-3
D. $A-2, B-1, C-3$

Answer: A

D View Text Solution

12. Find the difference of air pressure between
the inside and outside of a soap bubble is

5 mm in diameter, if the surface tension is
$1.6 \mathrm{Nm}^{-1}$.
A. $2560 \mathrm{Nm}^{-2}$
B. $3720 \mathrm{Nm}^{-2}$
C. $1208 \mathrm{Nm}^{-2}$

D. $10132 \mathrm{Nm}^{-2}$

Answer: A

D Watch Video Solution

13. If R is the radius of a soap bubble and S its
surface tension, then the excess pressure inside is

$$
\begin{aligned}
& \text { A. } \frac{2 S}{R} \\
& \text { B. } \frac{3 S}{R}
\end{aligned}
$$

c. $\frac{4 S}{R}$
D. $\frac{S}{R}$

Answer: C

D Watch Video Solution

14. The excess pressure inside one soap
bubble is three times that inside a second
bubble. The ratio of the volume of first bubble to that of the second
A. $1: 3$
B. 1:9
C. 1:27
D. $9: 1$

Answer: C

D Watch Video Solution
15. There is a small bubble at one end and bigger bubble at other end of a rod. What will
happen?
A. Smaller will grow until that collapse
B. Bigger will grow until they collapse
C. Remain in equilibrium
D. None of the above

Answer: B

D View Text Solution
16. Pressure inside two soap bubbles are 1.01
and 1.02 atmospheres. Ratio between their
volumes is
A. 2
B. 4
C. 6
D. 8

Answer: A

D Watch Video Solution
17. A thread is tied slightly loose to a wire frame as shown in the figure and the frame is dipped into a soap solution and taken out. The frame is completely covered with the film.

When the portion A is punctured with a pin,
the thread
A. become concave towards A
B. becomes convex towards A

C. either (a) or (b) depending on the

 position of A with respect to BD. remains in the initial position

Answer: C

D View Text Solution

18. If two soap bubbles of different radii are connected by a tube
A. air flows from the bigger bubble to the
smaller bubble till the sizes become
equal
B. air flows from bigger bubble to the
smaller bubble till the sizes are
interchanged
C. air flows from the smaller bubble to the
smaller bubble till the sizes are interchanged
D. there is no flow of air

Answer: C

D Watch Video Solution

19. The figure shows three soap bubbles A, B
and C prepared by blowing the capillary tube
fitted with soap cocks S, S_{1}, S_{2} and S_{3}. With
soap cock S closed and stop cocks S_{1}, S_{2} and
S_{3} opened. Then,
A. B will start collapsing with volume of A and C increasing
B. C will start collapsing with volume of A
and B increasing
C. volume of A, B and C will become equal
in equilibrium
D. C and A will both start collapsing with
volume of B increasing

Answer: B

20.

Two very wide parallel glass plates are held vertically at a small separation d, and dipped in water. Some water climbs up in the gap between the plate. Let S be the surface tension of water $P_{0}=$ atmospheric pressure,
$P=$ pressure of water just below the water surface in the region between the plates-

> A. $p_{0}-\frac{2 S}{r}$
> B. $p_{0}+\frac{2 S}{r}$
> C. $p_{0}-\frac{4 S}{r}$
> D. $p_{0}+\frac{4 S}{r}$

Answer: A

D Watch Video Solution

21. When two soap bubbles of radius r_{1} and $r_{2}\left(r_{2}>r_{1}\right)$ coalesce, the radius of curvature of common surface is
A. $\left(r_{2}-r_{1}\right)$
B. $\left(r_{2}+r_{1}\right)$
C. $\frac{r_{2}-r_{1}}{r_{1} r_{2}}$
D. $\frac{r_{1} r_{2}}{r_{2}-r_{1}}$

Answer: D

D Watch Video Solution

22. A soap bubble A of radius 0.03 m and another bubble B of radius 0.04 m are brought together, so that the combined
bubble has a common interface of radius r,
then the value of r is
A. $0.24 m$
B. 0.48 m
C. $0.12 m$
D. None of these

Answer: C
(Watch Video Solution
23. If two soap bubbles of equal radii r coalesce then the radius of curvature of interface between two bubbles will be
A. r
B. zero
C. infinity
D. $\frac{1}{2 r}$

Answer: C

D Watch Video Solution

24. A liquid will not wet the surface of a solid if

the angle of contact is
A. zero
B. equal to 45°
C. smaller than 90°
D. greater than 90°

Answer: D
(Watch Video Solution
25. Angle of contact of a liquid with a solid depends on
A. solid only
B. liquid only
C. both solid and liquid
D. orientation of the solid surface in liquid

Answer: C

- Watch Video Solution

26. Two capillary tubes of same diameter are put vertically one each in two liquids whose relative densities are 0.8 and 0.6 and surface tensions are 60 dyne/cm and 50 dyne/cm respectively. Ratio of heights of liquids in the two tubes $\frac{h_{1}}{h_{2}}$ is
A. $\frac{10}{9}$
B. $\frac{10}{3}$
C. $\frac{10}{3}$
D. $\frac{9}{10}$

Answer: D

- Watch Video Solution

27. A capillary tube (A) is dipped in water.

Another identical tube (B) is dipped in a soap-
water solution. Which of the following shows
the relative nature of the liquid columns in the
two tubes?
A.
B.
c.

D. 2

Answer: C

D Watch Video Solution

28. A 20 cm long capillary tube is dipped in
water. The water rises up to 8 cm . If the entire
arrangement is put in a freely falling elevator,
the length of water column in the capillary
tube will be
A. 8 cm
B. 10 cm
C. 4 cm
D. 20 cm

Answer: D

D Watch Video Solution

29. A vessel whose bottom has round holes
with diameter of 1 mm is filled with water

Assuming that surface tension acts only at
holes, then the maximum height to which the water can be filled in vessel without leakage is
(given surface tension of water is
$\left.75 \times 10^{-3} \mathrm{~N} / \mathrm{m}\right)$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$
A. 0.3 cm
B. 3 mm
C. 3 cm
D. 3 m

Answer: C

30. $T_{L A}, T_{S A}$ and $T_{S L}$ be the value of surface tension at liquid-air, solid air and solid-liquid interface, respectively. Match the following columns.
A. A-1, B-2, C-3
B. $A-2, B-3, C-1$
C. A-1, B-3, C-2
D. A-3, B-1, C-2

Answer: A

- View Text Solution

Exercise 2 Miscellaneous Problems

1. 8000 identical water drops are combined to
form a big drop then the ratio to the final
surface energy to the initial surface energy. If all the drops together is
A. $1: 10$
B. 1: 15
C. 1: 20
D. $1: 25$

Answer: c

D Watch Video Solution

2. The surface energy of a liquid drop is E. It is

 sprayed into 1000 equal droplets. Then its surface energy becomesA. u
B. 10 u
C. 100 u
D. 1000 u

Answer: B

D Watch Video Solution

3. A water drop of $0.05 \mathrm{~cm}^{3}$ is squeezed between two glass plates and spreads into area of $40 \mathrm{~cm}^{2}$. If the surface tension of water
is 70 dyne cm^{-1}, then the normal force
required to separate the glass plates from each other will be
A. 22.5 N
B. 45 N
C. 90 N
D. 450 N

Answer: B

D Watch Video Solution
4. What is the radius of the biggest aluminium coin of thickness t and density ρ, which will still be able to that on the water surface of surface tension S ?

$$
\begin{aligned}
& \text { A. } \frac{4 S}{3 \rho g t} \\
& \text { B. } \frac{3 S}{4 \rho g t} \\
& \text { C. } \frac{2 S}{\rho g t} \\
& \text { D. } \frac{S}{\rho g t}
\end{aligned}
$$

Answer: C
5. A sphere liquid drop of radius R is divided into eight equal droplets. If surface tension is S , then the work done in this process will be
A. $2 \pi R^{2} S$
B. $3 \pi R^{2} S$
C. $4 \pi R^{2} S$
D. $2 \pi R S^{2}$

Answer: C
6. A 10 cm long wire is placed horizontal on
the surface of water and is gently pulled up with a force of $2 \times 10^{2} \mathrm{~N}$ to keep the wire in equilibrium. The surface tension, in Nm^{-1} of water is
A. 0.002
B. 0.001
C. 0.2
D. 0.1

Answer: D

D Watch Video Solution

7. A drop of water breaks into two droplets of equal size. In this process which of the following statements is correct?
(1). The sum of temperature of the two droplets together is equal to the original temperature of the drop.
(2).the sum of masses of the two droplets is equal to the original mass of the drop.
(3). the sum of the radii of the two droplets is equal to the radius of the original drop.
(4). the sum of the surface areas of the two droplets is equal to the surface area of the original drop.
A. The sum of the temperatures of the two
droplets together is equal to
temperature of the original drop
B. The sum of the masses of the two
droplets is equal to mass of drop
C. The sum of the radii of the two droplets
is equal to the radius of the drop
D. The sum of the surface areas of the two
droplets is equal to the surface area of
the original drop

Answer: B

- Watch Video Solution

8. A mercury drop of radius 1.0 cm is sprayed into 10^{6} droplets of equal sizes. The energy expended in this process is (Given, surface tension of mercury is $32 \times 10^{-2} \mathrm{Nm}^{-1}$)
A. $3.98 \times 10^{-4} J$
B. $8.46 \times 10^{-4} J$
C. $3.98 \times 10^{-2} J$
D. $8.46 \times 10^{-2} J$

Answer: C

9. A mercury drop of radius 1 cm is broken into

10^{6} droplets of equal size. The work done is $\left(T=35 \times 10^{-2} \frac{N}{m}\right)$
A. $4.35 \times 10^{-2} J$
B. $4.35 \times 10^{-3} J$
C. $4.35 \times 10^{-6} J$
D. $4.35 \times 10^{-8} J$

Answer: A

Watch Video Solution

10. Under a pressure head, the rate of orderly
volume of liquid flowing through a capillary
tube is Q. If the length of capaillary tube were doubled and diameter of the bore is halved, the rate of flow would become
A. $\frac{Q}{4}$
B. 16 Q
C. $\frac{Q}{8}$
D. $\frac{Q}{32}$

Answer: D

D Watch Video Solution

11. Water flows through a frictionless tube
with a varying cross-section as shown in the
figure. Pressure p at points along the Y-axis is represented by
A.
B.
c.
D.

Answer: A

D View Text Solution
12. The ratio of radii of two bubbles is $2: 1$.

What is the ratio of excess pressures inside them ?
A. $1: 2$
B. 1: 4
C. 2:1
D. $4: 1$

Answer: A

- Watch Video Solution

13. $16 \mathrm{~cm}^{3}$ of water flows per second through a capillary tube of radius a cm and of length I cm when connected to a pressure head of h cm of water if a tube of the same length and
radius $a / 2 \mathrm{~cm}$ is connected to the same pressure head the quantity of water flowing through the tube per second will be-
A. $16 \mathrm{~cm}^{3}$
B. $1 \mathrm{~cm}^{3}$
C. $4 \mathrm{~cm}^{3}$
D. $8 \mathrm{~cm}^{3}$

Answer: B

D Watch Video Solution
14. At critical temperature, the surface tension of a liquid
A. zero
B. infinity
C. the same as that at any other
temperature
D. cannot be determined

Answer: A

D Watch Video Solution
15. The rate of flow of liquid through a capillary tube of radius r is V, when the pressure difference across the two ends of the capillary is p. If pressure is increased by $3 p$ and radius is reduced to $r / 2$, then the rate of flow becomes
A. $\mathrm{V} / 9$
B. $3 \mathrm{~V} / 8$
C. $\mathrm{V} / 4$
D. $\mathrm{V} / 3$

Answer: C

D Watch Video Solution

16. A frame made of metallic wire enclosing a
surface area A is covered with a soap film. If
the area of the frame of metallic wire is
reduced by 25%, the energy of the soap film
will be changed by
A. 1
B. 0.75
C. 0.5
D. 0.25

Answer: D

- Watch Video Solution

17. Two spherical soap bubbles of radii a and b
in vacuum coalesce under isothermal
conditions. The resulting bubble has a radius given by
A. $\frac{(a+b)}{2}$
B. $\frac{a b}{a+b}$
C. $\sqrt{a^{2}+b^{2}}$
D. $a+b$

Answer: C

D Watch Video Solution

18. The air pressure inside a soap bubbles of radius R exceeds the out side air pressure by 10 Pa. By how much will the pressure inside a
bubble of radius $2 R$ exceed the out side air pressure.
A. 20 Pa
B. 40 Pa
C. 2.4 Pa
D. 5 Pa

Answer: A
(Watch Video Solution
19. On mixing the salt in water, the surface tension of water will
A. increases
B. decreases
C. may increase or decrease depending
upon salt

D. None of the above

Answer: A

D Watch Video Solution
20. Two capillary tubes of radii 0.2 cm and 0.4 cm are dipped in the same liquid. The ratio of height through which liquid will rise in the tube is
A. $1: 2$
B. 2:1
C. 1: 4
D. $4: 1$

- Watch Video Solution

21. By inserting a capillary tube upto a depth I in water, the water rises to height h. if the lower end of the capillary is closed inside water and the capillary is taken out and closed end opened, to what height the water will remain in the tube
A. zero
B. I+h
C. 2 h

D. h

Answer: C

D Watch Video Solution

22. A wire of length L metres, made of a material of specific gravity 8 is floating horizontally on the surface of water. If it is not wet by water, the maximum diameter of the
wire (in mm) upto which it can continue to
float is (surface tension of water is

$$
T=70 \times 10^{-3}{N m^{-1}}^{-1}
$$

A. 1.5
B. 1.1
C. 0.75
D. 0.55

Answer: B
(Watch Video Solution
23. A soap bubble in air (two surfaces) has
surface tension $0.03 \mathrm{Nm}^{-1}$. Find the excess pressure inside a bubble of diameter 30 mm .
A. 2 Pa
B. 4 Pa
C. 16 Pa
D. 8 Pa

Answer: D

D Watch Video Solution
24. If a liquid is placed in a vertical cylinerical
vessel and the vessel is rotated about its axis, the liquid will take the shape of figure.
A.
B.
c.
D.

Answer: C

- View Text Solution

25. Water rises in a capillary tube to a height h
. It will rise to a height more than h
A. on the surface of sun
B.in a lift moving down with an
acceleration
C. at the poles
D. in a lift moving up with an acceleration

Answer: B

26. The radius of a spherical drop of water is 1 mm . If surface tension of water be
$70 \times 10^{-3} \mathrm{Nm}^{-1}$, the pressure difference between inside and outside the drop will be
A. $70 \mathrm{Nm}^{-2}$
B. $140 \mathrm{Nm}^{-2}$
C. $280 \mathrm{Nm}^{-2}$
D. zero

- Watch Video Solution

27. What is ratio of surface energy of 1 small drop and 1 large drop, if 1000 small drops combined to form 1 large drop
A. $100: 1$
B. $1000: 1$
C. 10:1
D. 1: 1000

- Watch Video Solution

28. Water rises to a height of 10.3 cm in a capilaary of height 18 cm above the water level. If the tube is out at a height of 12 cm in the capillary tube
A. water will come as a fountain from the
capillary tube
B. water will stay at a height of 12 cm in the
capillary tube
C. the height of water in the capillary tube

will be 10.3 cm

D. water height flow down the sides of the

capillary tube

Answer: C

D Watch Video Solution

29. Water rises to a height of 10 cm in a capillary tube and mercury falls to a depth of
3.42 cm in the same capillary tube. If the
contact angle for mercury and surface tension of water and mercury is
A. $1: 0.15$
B. $1: 3$
C. $1: 6.5$
D. 1.5: 1

Answer: C

D View Text Solution
30. The amount of work done in blowing a soap bubble such that its diameter increases
from d to D is (T=surface tension of the solution)
A. $\pi\left(D^{2}-d^{2}\right) S$
B. $2 \pi\left(D^{2}-d^{2}\right) S$
C. $4 \pi\left(D^{2}-d^{2}\right) S$
D. $8 \pi\left(D^{2}-d^{2}\right) S$

Answer: B
31. A vessel, whose bottom has round holes with diameter of 0.1 mm , is filled with water.

The maximum height to which the water can be filled without leakage is (S.T. of water $=75$
dyne/cm , g=1000 cm/s)
A. 100 cm
B. 75 cm
C. 60 cm
D. 30 cm

Answer: D

- Watch Video Solution

32. The lower end of a capillary tube is dipped into water and it is seen that water rises through 7.5 cm in the capillary. Given surface tension of water is $7.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$ and angle of contact between water and glass capillary tube is zero, What will be diameter of the capillary tube ? (Given, $g=10 \mathrm{~ms}^{-2}$)
A. 0.2 mm
B. 0.33 mm
C. 0.4 mm
D. 0.5 mm

Answer: C

D Watch Video Solution

33. The work done in blowing a soap bubble of
surface tension $0.60 \mathrm{Nm}^{-1}$ from 2 cm radius
to 5 cm radius is

A. 0.004168 J

B. 0.003168 J
C. 0.003158 J

D. 0.004568 J

Answer: B

D Watch Video Solution

34. Several spherical drops of a liquid of radius

r coalesce to form a single drop of radius R. If
T is surface tension and V is volume under consideration, then the release of energy is

$$
\begin{aligned}
& \text { A. } 3 V S\left(\frac{1}{r}+\frac{1}{R}\right) \\
& \text { B. } 3 V S\left(\frac{1}{r}-\frac{1}{R}\right) \\
& \text { C. } V S\left(\frac{1}{r}-\frac{1}{R}\right) \\
& \text { D. } \operatorname{V} S\left(\frac{1}{r^{2}}+\frac{1}{(R)^{2}}\right)
\end{aligned}
$$

Answer: B

- Watch Video Solution

35. A drop of some liquid of volume $0.04 \mathrm{~cm}^{3}$ is
placed on the surface of a glass slide. Then, another glass forms a thin layer of area $20 \mathrm{~cm}^{2}$ between the surfaces of the two slides. To separate the slides a force of 16×10^{5} dyne
has to be applied normal to the surfaces. The surface tension of the liquid is (in dyne cm^{-1})
A. 60
B. 70
C. 80

D. 90

Answer: C

D Watch Video Solution

36. When a big drop of water is formed from n small drops of water, the energy loss is 3 E , where, E is the energy of the bigger drop. If R is the radius of the bigger drop and r is the radius of the smaller drop then number of smaller drops (n) is?
A. $\frac{4 R}{r^{2}}$
B. $\frac{4 R}{r}$
C. $\frac{2 R^{2}}{r}$
D. $\frac{4 R^{2}}{r^{2}}$

Answer: D

D Watch Video Solution

37. Two drops of equal radius coalesce to form
a bigger drop. What is ratio of surface energy
of bigger drop to smaller one?
A. $2^{1 / 2}: 1$
B. 1:1
C. $2^{2 / 3}: 1$
D. None of these

Answer: C

D Watch Video Solution

38. A capillary tube is taken from the Earth to
the surface of the moon. The rise of the liquid
column on the Moon (acceleration due to
gravity on the Earth is 6 times that of the

Moon) is
A. six times that on the earth's surface
B. $\frac{1}{6}$ that on the earth's surface
C. equal to that on the earth's surface
D. zero

Answer: A

- Watch Video Solution

39. Water rises in a capillary tube a height h.

Choose false statement regarding capillary rise from the following.
A. On the surface of jupiter, height will be
less than h
B. In a lift moving up with contact
acceleration height is less than h
C. On the surface of moon the height is
more than h
D. In a lift moving down with constant

acceleration height is less than h

Answer: D

D Watch Video Solution

40. Calculate the heat evolved for the rise of water when one end of the capillary tube of radius r is immeresed vartically into water.

Asssume surface tension $=T$ and density of water to be ρ
A. $\frac{2 \pi S}{\rho g}$
B. $\frac{\pi S^{2}}{\rho g}$
C. $\frac{2 \pi S^{2}}{\rho g}$
D. $\frac{4 \pi S^{2}}{\rho g}$

Answer: C

D Watch Video Solution

41. One end of a uniform glass capillary tube of radius $r=0.025 \mathrm{~cm}$ is immersed vertically in water to a depth $h=1 \mathrm{~cm}$. The excess pressure
(in Nm^{-2}) required to blow an air bubble out of the tube (Given, surface tension of water $=7 \times 10^{-2} \mathrm{Nm}^{-1}, \quad$ density of water
$=10^{-3} \mathrm{kgm}^{-3}$ and acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)
A. 0.0048×10^{5}
B. 0.0066×10^{5}
C. 1.0048×10^{5}
D. 1.0066×10^{5}

Answer: B
42. A glass capillary of radius 0.4 mm is inclined at 60° with the vertical in water. Find the length of water in the capillary tube.

A. 7.1 cm
B. 3.6 cm
C. 1.8 cm
D. 0.9 cm

Answer: A

D Watch Video Solution

Mht Cet Corner

1. In a capillary tube of radius ' R ' a straight thin
metal wire of radius ' r ' $(R>r)$ is inserted
symmetrically and one of the combination is
dipped vertically in water such that the lower end of the combination Is at same level. The rise of water in the capillary tube is [$\mathrm{T}=$ surface
tensiono of water $\rho=$ density of water, g =gravitational acceleration]

$$
\begin{aligned}
& \text { A. } \frac{T}{(R+r) \rho g} \\
& \text { B. } \frac{R \rho g}{2 T} \\
& \text { C. } \frac{2 T}{(R-r) \rho g} \\
& \text { D. } \frac{(R-r) \rho g}{T}
\end{aligned}
$$

Answer: C

D Watch Video Solution

2. A liquid drop having surface energy E is
spread into 512 droplets of same size. The final
surface energy of the droplets is
A. 2 E
B. 4 R
C. 8 E
D. 12

Answer: C

D Watch Video Solution
3. A large number of liquid drops each of radius 'a' coalesce to form a single spherical drop of radish b. The energy released in the process is converted into kinetic energy of the big drops formed. The speed of big drop will be
A. $\left[\frac{6 T}{\rho}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{1 / 2}$
B. $\left[\frac{6 T}{\rho}\left(\frac{1}{b}-\frac{1}{a}\right)\right]^{1 / 2}$
c. $\left[\frac{\rho}{6 T}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{1 / 2}$
D. $\left[\frac{\rho}{6 T}\left(\frac{1}{b}-\frac{1}{a}\right)\right]^{1 / 2}$

Answer: A

D Watch Video Solution

4. A liquid rises to a height of 1.8 cm in a glass
capillary A another glass capillary B having
diameter 90% of capillary A is immersed in the same liquid the rise of liquid in capillary B is
A. 1.4 cm
B. 1.8 cm
C. 2.0 cm

D. 2.2 cm

Answer: C

D Watch Video Solution

5. The wattability of a surface by a liquid depends primarily on
A. viscosity
B. surface tension
C. density

D. angle of contact between the surface

and the liquid

Answer: D

D Watch Video Solution

6. With an increase in temperature, surface tension of liquid (except molten copper and cadmium)
A. increases

B. remain same

C. decreases

D. first decreases, then increases

Answer: C

D Watch Video Solution

7. On the surface of the liquid in equilibrium , molecules of the liquid possess
A. maximum potential energy

B. minimum potential energy

C. maximum kinetic energy
D. minimum kinetic energy

Answer: A

D Watch Video Solution

8. The potential energy of molecule on the surface of a liquid as compared to in side the liquid is
A. zero
B. lesser
C. equal
D. greater

Answer: D

D Watch Video Solution

9. Work done in forming a liquid drop of radius R is W_{1} and that of radius 3 R is W_{2}. The ratio of work done is
A. $1: 3$
B. 1:2
C. 1:4
D. 1:9

Answer: D

D Watch Video Solution

10. A liquid rises in a capillary tube when the angle of contact is:
A. obtuse
B. 180°
C. acute
D. 90°

Answer: C

D Watch Video Solution
11. If the surface of a liquid is plane, then the angle of contact of the liquid with the walls of container is
A. acute angle
B. obtuse angle
C. 90°
D. 0°

Answer: C

- Watch Video Solution

12. The surface tension for pure water in a capillary tube experiment is
A. $\frac{p g}{2 h r}$
B. $\frac{2}{h r p g}$
C. $\frac{r p g}{2 h}$
D. $\frac{h r p g}{2}$

Answer: D

D Watch Video Solution

13. The work done in blowing a soap bubble of

10 cm radius is (Surface tension of the soap
solution is $\frac{3}{100} \mathrm{~N} / \mathrm{m}$)
A. $37.68 \times 10^{-4} J$
B. $75.36 \times 10^{-4} J$
C. 75.36 J
D. $150.72 \times 10^{-4} J$

Answer: B

D Watch Video Solution
14. A capillary tube when immersed vertically in a liquid records a rise of 3 cm .if the tube is immersed in the liquid at an angle of 60° with
the vertical, then find the length of the liqiud column along the tube.
A. 9 cm
B. 6 cm
C. 3 cm
D. 2 cm

Answer: B
(Watch Video Solution
15. The surface tension of a liquid is 10^{8} dyne cm^{-1}. It is equivalent to
A. $10^{-4} \mathrm{Nm}^{-1}$
B. $10^{5} \mathrm{Nm}^{-1}$
C. $10^{6} \mathrm{Nm}^{-1}$
D. $10^{7} \mathrm{Nm}^{-1}$

Answer: B

D Watch Video Solution

