©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS

WAVE THEORY OF LIGHT

Example

1. Define Snell's law of refraction. A ray of light
is incident on a glass slab at angle of
incidence of 60°. If the angle of refraction be 32.7°, calculate the refractive index of glass.
(Given: $\sin 60^{\circ}=0.866$ and $\left.\sin 32.7^{\circ}=0.540\right)$.
A. $\sin ^{-1}(0.5773)$
B. $\sin ^{-1}(0.638)$
C. $\sin ^{-1}(0.523)$
D. $\sin ^{-1}(0.4387)$

Answer: A

2. When a polaroid sheet is rotated between

two crossed polaroids, the intensity of the
transmitted will be maximum, when angle θ between pass axes is

$$
\begin{aligned}
& \text { A. } \frac{\pi}{2} \\
& \text { B. } \frac{3 \pi}{4} \\
& \text { C. } \frac{\pi}{4} \\
& \text { D. } \frac{2 \pi}{3}
\end{aligned}
$$

Watch Video Solution

3. Three identical polaroid sheets
P_{1}, P_{2} and P_{3} are oriented, so that the pass axis of P_{2} and P_{3} are inclined at angles of 60° and 90° respectively with respect to the pass axis of P_{1}. A monochromatic source S of unpolarised light of intensity I is kept in front of the polaroid sheet P_{1} as shown in the figure.

Determine the intensities of light as observed
by the observers O_{1}, O_{2} and O_{3} as shown in the figure.
A. $I_{0} \cos ^{2} \theta, \frac{I_{0} \cos ^{2} \theta}{4}$ and 0
B. $0, I_{0} \cos ^{2} \theta$ and $\frac{I_{0} \cos ^{2} \theta}{4}$
C. $I_{0} \cos ^{2} \theta, 0$ and $\frac{I_{0} \cos ^{2} \theta}{4}$
D. None of the above

Answer: A

D View Text Solution
4. Two polaroid A and B are kept in crossed position. How should a third polaroid C be placed between them so that the intensity of polarized light transmitted by polaroid B reduces to $\frac{1}{8} t h$ of the intensity of unplarised light incident on A ?
A. 45°
B. 60°
C. 30°
D. 90°

Answer: A

D Watch Video Solution

5. If a glass plate refractive index is 1.732 is to
be used as a polariser, what would be the angle of refraction?
A. 30°
B. 60°
C. 45°
D. 35°

Answer: A

D Watch Video Solution

6. What speed should a galaxy move with
respect to us so that the sodium line at
589.0 nm is observed at 589.6 nm ?
A. $106 \mathrm{~km} \mathrm{~s}^{-1}$
B. $306 \mathrm{~km}^{-1}$
C. $513 k m s^{-1}$
D. $50 \mathrm{~km}^{-1}$

Answer: B

- Watch Video Solution

7. The spectral line for a given element in the
light received from a distant star is shifted towards longer wavelength side by 0.032%. Deduce the velocity of star in the line of sight.
A. $9.6 \times 10^{4} m s^{-1}$
B. $11.6 \times 10^{-4} \mathrm{~ms}^{-1}$
C. $12.6 \times 10^{-4} \mathrm{~ms}^{-1}$

D. None of these

Answer: A

D Watch Video Solution

Exercise 1

1. Wave theory of light is not initially accepted
because
A. it does not explain reflection and refraction processes
B. it does not explain photoelectric effect
C. it does not explain Doppler's effect
D. it does not explain propagation of light
through vacuum

Answer: D

D Watch Video Solution

2. Young's experiment establishes that
A. light consists of waves
B. light consists of particles
C. light consists of neither particles nor
waves
D. light consists of both paricles and waves

Answer: A

3. In geometrical optics, a ray of light is defined as
A. path of propagation of light
B. path of propagation of shadows
C. direction of formation of image
D. path of propagation of energy for

$$
\lambda \rightarrow 0
$$

Answer: D

4. The phenomenon of interference is shown by
A. only longitudinal mechanical waves
B. only transverse mechanical waves
C. only electromagnetic waves
D. All of the above

Answer: D

5. Select the correct option in the following.
A. Christian Huygens a contemporary of

Newton established the wave theory of
light by assuming that light waves were
transverse
B. Maxwell provided the compelling
theoretical evidence that light is
transverse wave
C. Thomas Young experimentally proved
the wave behaviour of light and Huygens

D. All the statements given above, correctly

answers the question what is light

Answer: B

D View Text Solution

6. According to Maxwell's electromagnetic theory, following phenomenon can be explained
II. Interference of light
III. Polarisation of light
IV. Photoelectric effect
A. I, II and III
B. I, II and IV
C. I, III and IV
D. II, III and IV

Answer: C

D Watch Video Solution
7. By corpuscular theory of light, the phenomenon which cannot be explained is
A. refraction
B. interference
C. diffraction
D. polarisation

Answer: A

8. According to corpuscular theory of light, the different colours of light are due to
A. different electromagnetic waves
B. different force of attraction among the corpuscles
C. different size of the corpuscles
D. None of the above

Answer: C

9. For a ray of light, which of the following statements holds true?
A. A ray is defined as the path of energy
propagation
B. The wavelength for a ray of light in
geometrical optics is assumed to be
negligible, standing to zero
C. A ray of light travels in a straight line
D. All of the above

Answer: D

- Watch Video Solution

10. Which of the following generates a plane wavefront?
A. α - rays
B. β - rays
C. $\gamma-$ rays
D. None of these

Answer: D

D Watch Video Solution

11. When a ray of light is incident normally on
a surface, then
A. total internal reflection takes place
B. it passes undeviated
C. it undergoes dispersion
D. it gets absorbed by the surface

Answer: B

D Watch Video Solution

12. A wavefront is..........of all the particales of a medium which are.
A. a surface imagined parallel and coplanar with light rays
B. a surface around a source such that
each point of it is at a constant distance
from the source
C. a surface which contains the plane of oscillations of electric field of light
D. a surface which is created by medium

particles oscillating in same phase

Answer: D

D Watch Video Solution

13. Which of the following statement (s) is/are

correct?

I. A point source emitting waves uniformly in all directions.
II. In spherical wave, the locus of point which
have the same amplitude and vibrate in same phase are spheres.
III. At a small distance from the source, a small portion of sphere can be considered as plane wave.

B. Both I and II

C. Only III

D. All of these

Answer: B

D Watch Video Solution
14. The idea of secondary wavelets for the propagation of a wave was first given by
A. Newton
B. Huygens
C. Maxwell
D. Fresnel

Answer: B

- Watch Video Solution

15. A shortcoming of Huygen's model could not
A. explaining the absence of the backwave
B. determine the shape of the wavefront for a plane wave
C. explain the point source emitting waves
uniformly in all directions
D. All of the above

Answer: A

D Watch Video Solution

16. Ray diverging from a point source from a wave front that is
A. cylindrical
B. spherical
C. plane
D. cubical

Answer: B

D Watch Video Solution
17. Wavefront is the locus of all points, where the particles of the medium vibrate with the same
A. phase
B. amplitude
C. frequency
D. period

Answer: A

18. Light waves travel in vacuum along the y axis. Which of the following may represent the wavefront?
A. $y=$ constant
B. $x=$ constant
C. z = constane
D. $x+y+z=$ constant

Answer: A

D Watch Video Solution
19. A light wave travels through a medium carrying energy in three dimensional space.

Energy spread is described by
A. rays originating from the source
B. beam of light originating from source
consisting of a branch of rays
C. wavefronts originating from source
travelling in medium with speed of light
D. imagining light consisting of particles
moving through medium with speed of
light

Answer: C

D View Text Solution

20. According to Huygens' principle, a wavefront propagates through a medium by
A. pushing medium particles
B. propagating through medium with
speed of light

C. carrying particles of same phase along

with it

D. creating secondary wavelets which forms

a new wavefront

Answer: D

D Watch Video Solution

21. In given figure, light passes from denser medium 1 to rarer medium 2.

When $i>i_{0}$ (critical angle of incidence). Then, wavefront EC is
A. formed further deep in medium 2
B. formed closer to surface line AC
C. formed perpendicular to AC
D. formed in medium 1 (on same side of $A B$)

Answer: D

D View Text Solution

22. Figure shows behaviour of a wavefront when it passes through a prism.

Which of the following statement(s) is/are correct?
I. Lower portion of wavefront (B^{\prime}) is delayed resulting in a tilt.
II. Time taken by light to reach A^{\prime} from A is equal to the time taken to reach B^{\prime} from B.
III. Speed of wavefront is same everywhere.
IV. A particle on wavefront $A^{\prime} B^{\prime}$ is in phase with
a particle on wavefront $A B$.
A. I and II
B. II and III
C. III and IV
D. I and III

Answer: A

D View Text Solution
23. If a source of light is moving away from a stationary observer, then the frequency of light wave appears to change because of
A. Doppler's effect
B. interference
C. diffraction
D. None of these

Answer: A

D Watch Video Solution
24. If a star is moving towards the earth, then
the lines are shifted towards
A. red
B. infrared
C. blue
D. green

Answer: C

D Watch Video Solution

25. It is believed that the universe is expanding
and hence the distant stars are receding from
us. Light from such a star will show
A. shift in frequency towards longer
wavelengths
B. shift in frequency towards shorter
wavelengths
C. no shift in frequency but decrease in
intensity
D. a shift in frequency sometimes towards
longer and sometimes towards shorter
wavelengths

- Watch Video Solution

26. In case of reflection of a wavefront from a reflecting surface,

R
I. points A and E are in same phase.
II. Points A and C are in same phase.

III points A and B are in same phase.
IV. Points C and E are in same phase.

Which of the following is correct?
A. I and II

B. II and III

C. III and IV

D. I and IV

Answer: C

D View Text Solution

27. If $A B$ is incident wavefront, then refracted wavefront is
A.
B.
C.
D.

Answer: B

D View Text Solution

28. In the context of Doppler effect in light, the

term red shift signifies
A. decrease in frequency
B. increase in frequency
C. decrease in intensity
D. increase in intensity

Answer: A

D Watch Video Solution

29. If source and observer are moving towards
each other with a velocity $v_{\text {radial }}$ anf c indicates
velocity of light, then, fractional change in
frequency of light due to Doppler's effect will be

> A. $\frac{\Delta v}{v}=\frac{v_{\text {radial }}}{c}$
> B. $\frac{\Delta v}{v}=\frac{-v_{\text {radial }}}{c}$
> C. $\frac{\Delta v}{v}=\frac{c}{v_{\text {radial }}}$
> D. $\frac{\Delta v}{v}=\frac{-c}{v_{\text {radial }}}$

Answer: B

D Watch Video Solution

30. Monochromatic light of wavelength 589 nm
is incident from air on a water surface. Given, refractive index of water is 1.33 .

Which of the following statement(s) is/are correct?
I. Frequency of reflected light and refracted
light are same.
II. Wavelength of reflected light is more than that of refracted light.
III. Speed of reflected light is equal to that of refracted light.
IV. Intensity of reflected light is always more than that of refracted light.
A. I and III
B. II and IV
C. I and II
D. III and IV

Answer: C

- Watch Video Solution

31. The critical angle of a certain medium is $\sin ^{-1}\left(\frac{3}{5}\right)$. The polarizing angle of the medium is :
A. $\sin ^{-1}\left(\frac{4}{5}\right)$
B. $\tan ^{-1}\left(\frac{5}{3}\right)$
C. $\tan ^{-1}\left(\frac{3}{4}\right)$
D. $\tan ^{-1}\left(\frac{4}{3}\right)$

Answer: B

D Watch Video Solution

32. When the angle of incidence on a material
is 60°, the reflected light is completely polarised. The velocity of the refracted ray inside the materials is (in $\mathrm{m} / / \sec ^{\wedge}(-1)$)
A. 3×10^{8}
B. $\left(\frac{3}{\sqrt{2}}\right) \times 10^{8}$
C. $\sqrt{3} \times 10^{8}$
D. 0.5×10^{8}

Answer: C

33. Two Nicols are oriented with their principal planes making an angle of 60°. The percentage of incident unpolarised light which passes through the system is
A. 50%
B. 100%
C. 12.5%
D. 37.5%

- Watch Video Solution

34. Which of the following is a dichroic crysral?

A. Quartz
B. Tourmaline
C. Mica
D. Selenite
35. The graph showing the dependence of intensity of transmitted light on the angle between polariser and analyser is
A.

B.
C.
D.
36. Sound wave in air cannot be polarised because
A. their speed is small
B. they require medium
C. these are longitudinal
D. their speed is temperature dependent

Answer: C
37. In case of linearly polarised light, the magnitude of the electric field vector
A. does not change with time
B. varies periodically with time
C. increases and decreases linearly with
time
D. is parallel to the direction of
propagation

Answer: B

- Watch Video Solution

38. Which of the following statement(s) is/are correct?
I. A polaroid consists of long chain molecules aligned in a particular direction.
II. Electric vectors along the direction of the aligned molecule in a polaroid gets absorbed.
III. An unpolarised light wave is incident on polaroid, then it will get linearly polarised.

A. Only I

B. Both II and III

C. Only III
D. All of the above

Answer: D

- Watch Video Solution

39. Polaroids are used in
A. photographic cameras
B. 3D movies cameras
C. Both (a) and (b)
D. Neither (a) nor (b)

Answer: C

D Watch Video Solution

40. Figure shows the process of
A. polarisation by scattering

B. polarisation of reflection

C. diffraction
D. None of the above

Answer: A

D View Text Solution

41. Which of the following statement(s) is/are correct with reference to the figure given below?
I. Dots and arrows indicate that both
polarisations are present in the incisent and refracted waves.
II. The reflected light is not linearly polarised.
III. Transmitted intensity will be zero when the axis of the analyser is in the plane of the figure i.e. the plane of incidence.
A. Only I
B. Only II
C. Both I and III
D. Both I and II

Answer: C

D View Text Solution

42. The Brewster angle for the glass air interface is 54.74° if a ray of light going from air to glass strikes at an angle of incidence 45° then the angle of refraction is
A. 60°
B. 30°
C. 25°

D. 54.74°

Answer: B

D Watch Video Solution

43. Which of the following phenomenon is not common to sound and light waves ?
A. Interference
B. Diffraction
C. Polarisation

D. Reflection

Answer: C

D Watch Video Solution

44. In case of linearly polarised light, the magnitude of the electric field vector
A. does not change with time
B. varies periodically with time
C. increases and decreases linearly with
time
D. is parallel to the direction of
propagation

Answer: B

D Watch Video Solution

45. Light is incident on a glass surface at polarising angle of 57.5° Then the angle
between the incident ray and the refracted ray
is
A. 57.5°
B. 115°
C. 65°
D. 205°

Answer: D
(Watch Video Solution
46. When the angle of incidence is 60° on the surface of a glass slab, it is found that the reflected ray is completely polarised. The velocity of light in glass is
A. $\sqrt{2} \times 10^{8} m s^{-1}$
B. $\sqrt{3} \times 10^{8} m s^{-1}$
C. $2 \times 10^{8} \mathrm{~ms}^{-1}$
D. $3 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: B
47. Which of the following diagrams represent
the veriation of electric field vector with time
for a circularly polarised light
A.
B.
c.
D.

Answer: B
48. A calcite crystal is placed over a dot on a
piece of paper and rotated, on seeing through
the calcite one will be see
A. a single dot
B. two stationary dots
C. two rotating dots
D. one dot rotating about the other

- Watch Video Solution

49. For the study of the helical structure of nucleic acids, the property of electromagnetic radiation generally used is
A. reflection
B. interference
C. diffraction
D. polarisation
50. When light passes through two polaroids
P_{1} and P_{2}, then transmitted polarisation is the component parallel to the polaroid axis. Which of the following is correct?
A.
B.
c.
D.

D View Text Solution

51. Polarising angle for water is $53^{\circ} 4$ '. If light
is incident at this angle on the surface of water and reflected, the angle of refraction is
A. $30^{\circ} 4^{\prime}$
B. $36^{\circ} 56^{\prime}$
C. $37^{\circ} 5^{\prime}$
D. $29^{\circ} 2^{\prime}$

Answer: B

- Watch Video Solution

Exercise 2 Miscellaneous Problems

1. Which phenomenon best supports the
theory that matter has a wave nature?
A. Electron momentum
B. Electron diffraction
C. Photon momentum

D. Photon diffraction

Answer: B

D Watch Video Solution

2. Which of the following cannot be polarised?

A. Ultraviolet rays
B. Ultrasonic waves
C. X-rays
D. Radio waves

- Watch Video Solution

3. An optically active compound
A. rotates the plane polarised light
B. changing the direction of polarised light
C. do not allow plane polarised light to
pass through
D. None of the above

Answer: A

D Watch Video Solution

4. If the polarizing angle of a piece of glass for green light is 54.74°, then the angle of minimum deviation for an equilateral prism made
of same glass is
[Given: $\left.\tan 54.74^{\circ}=1.414\right]$
A. 45°
B. 54.74°
C. 60°
D. 30°

Answer: D

- Watch Video Solution

5. When unpolarised light beam is incident from air onto glass ($n=1.5$) at the polarising angle
A. reflected beam is polarised 100%
B. reflected and refracted beams are partially polarised
C. the reason for (a) is that almost all the
light is reflected
D. All of the above

Answer: A

- Watch Video Solution

6. When both the components of electric field of light waves are present such that one is stronger than the other and such light is viewed through a rotating analyser, one sees a maximum and a minimum of intensity but not complete darkness. This kind of light is called
A. polarised
B. linearly polarised
C. partially polarised
D. None of these

Answer: C

- Watch Video Solution

7. In the propagation of electromagnetic waves the angle between the direction of propagation and plane of polarisation is
A. 0°
B. 90°
C. 45°
D. 80°

Answer: A

D Watch Video Solution

8. An unpolarised beam of intensity I_{0} is incident on a pair of nicols making an angle of 60° with each other. The intensity of light emerging from the pair is
A. I_{0}
B. $I_{0} / 2$
C. $I_{0} / 4$

D. $I_{0} / 8$

Answer: D

- Watch Video Solution

9. A beam of unpolarised light is passed first
through tourmaline crystan A and then through another tourmaline crystal B oriented so that its principal plane is parallel to that of
A. The intensity of the emergent light is I. If A now rotated by 45° in a plane perpendicular
to the direction of the incident ray, the intensity of the emergent light will be
A. $2 I_{0}$
B. $I_{0} / 2$
C. $I_{0} / 4$
D. $I_{0} / \sqrt{2}$

Answer: C
(Watch Video Solution
10. If the plane of vibrations of the string is
changed randomly in a very short intervals of
time, it is known as
A. polarised wave
B. plane polarised wave
C. unpolarised wave
D. Both (a) and (b)

Answer: C

- Watch Video Solution

11. According to Newton's corpuscular theory,
the speed of light is
A. same in all the media
B. lesser in rarer medium
C. lesser in denser medium
D. independent of the medium

Answer: B
(D) Watch Video Solution
12. A beam of natural light falls on a system of

5 polaroids, which are arranged in succession
such that the pass axis of each polaroid is turned through 60° with respect to the precending one. The friction of the incident light intensity that passes through the system is:

> A. $\frac{1}{64}$
> B. $\frac{1}{32}$
> C. $\frac{1}{256}$
> D. $\frac{1}{512}$

Answer: D

D Watch Video Solution

13. A ray of light is incident on a medium
boundry at polarising angle such that its deviation is 24°, then angle of incidence is :
A. 24°
B. 57°
C. 66°
D. 90°

D Watch Video Solution

14. Polarisation of light proves the -
A. light is a longitudinal wave
B. light is a transverse wave
C. light is not a wave
D. light travels with the velocity of
$3 \times 10^{8} m s^{-1}$

Answer: B

D Watch Video Solution

15. Unpolarized light is incident on a plane glass surface. What should be the angle of incidence so that the reflected and refracted rays are perpendicular to eachother ?
A. 60°
B. 90°
C. 0°
D. 57°

Answer: D

D Watch Video Solution

16. If the string always remains confined to the xy-plane, then it represents
A. a plane polarised wave
B. an unpolarised wave
C. linearly polarised wave

D. Both (a) and (c)

Answer: D

D Watch Video Solution

17. Unpolarized light of intensity I_{0} is incident on surface of a block of glass at brewster's angle. In that case, which one of the following statements is true-
A. Reflected light is completely polarised
with intensity less than $\frac{I_{0}}{2}$
B. Transmitted light is completely polarised
with intensity less than $\frac{I_{0}}{2}$
C. Transmitted light is partially polarised
with intensity $\frac{I_{0}}{2}$
D. Reflected light is partially polarised with
intensity $\frac{I_{0}}{2}$

Answer: A

18. A polarised light intensity I_{0} is passed through another polariser whose pass axis makes an angle of 60° with the pass axis of the former, What is the intensity of emergent polarised light from second polarised?
A. $I=I_{0}$
B. $I=\frac{I_{0}}{6}$
C. $I=\frac{I_{0}}{5}$
D. $\frac{I_{0}}{4}$

Answer: D

- Watch Video Solution

Mht Cet Corner

1. From Brewster's law, except for polished metallic surfaces, the polarising angle
A. depends on wavelength and is different for different colours
B. independent of wavelength and is different for different colours
C. independent of wavelength and is same
for different colours
D. depends on wavelength and is same for different colours

Answer: A

D Watch Video Solution

2. For the same angle of incidence the angles
fo refreaction in media P, Q, R and S are $50^{\circ}, 40^{\circ}, 30^{\circ}, 20^{\circ}$ respectively the speed of lights is minimum in medium
A. P
B. Q
C. R
D. S

Answer: D

3. Light is incident at an angle i on a glass
slab. The reflected ray is completely polarished
. The angle of refraction is
A. $90^{\circ}-i$
B. $180^{\circ}-i$
C. $90^{\circ}+i$
D. i

Answer: A
4. When an unpolarized light of intensity I_{0} is
incident on a polarizing sheet, the intensity of
the light which does not get transmitted is
A. $\frac{1}{2} I_{0}$
B. $\frac{1}{4} I_{0}$
C. zero
D. I_{0}

- Watch Video Solution

