© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

PRACTICE PAPER

Practice Paper

1. Let X, Y be non-empty sets such that $|X|=m$ and $|Y|=n$. If $m<n$, then how many one-to-one can be defined from X to Y ?
2. What is the value of $\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}\left(\cot ^{-1} 3\right)$?

- Watch Video Solution

3. With 4 different elements how many different determinant of order 2 can be constructed.
A. Complete dominance
B. Codominance
C. incomplete dominance
D. complete recessive

Answer: C

4. If A is a square matrix of order 3 such that $|A|=5$, then what is the value of $|\operatorname{adj}(\operatorname{adj} A)|$?
A. S. griseus
B. S. aureofacienns
C. S. noursil
D. saccharomyces cerevisiae

Answer: A

- Watch Video Solution

5. If $f(x)=(1+2 x)^{\frac{1}{x}}, x \neq 0$ is continuous at $\mathrm{x}=0$, then
what is the value of $f(0)$?
A. Ex-situ conservation
B. In-situ conservation
C. in vitro conservation
D. in vivo conservation

Answer: B

- Watch Video Solution

6. Write the least value of $f(x)=a x+\frac{b}{x}$, where $a>0, b>0$ and $x>0$.

- Watch Video Solution

7. Write the value of $\int \frac{\left(x^{2}+1\right) d x}{1+x^{4}}$.

D Watch Video Solution

8. What will be the substitution for which the equation $\frac{d y}{d x}+p(x) \cdot y=q(x) \cdot y^{n}, n>2$ can be reduced to linear form.

D Watch Video Solution

9. If $\vec{a}=2 \vec{b}$ and $\vec{c}=-3 \vec{b}$, then what is the angle between \vec{a} and \vec{c} ?
10. What is the number of independent constants that occur in the general equation of a plane.

- Watch Video Solution

11. Show that the relation R on $Z-\{0\}$ defined by $R=\left\{(m, n) \left\lvert\, \frac{m}{n}\right.\right.$ is power of 5$\}$ is an equivalence relation.

- Watch Video Solution

12. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{ll}x^{2}-\frac{1}{x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is onto but not one-to-one.
13. Solve for $\mathrm{x}, \cos ^{-1} x+\sin ^{-1}\left(\frac{x}{2}\right)=\frac{\pi}{6}$.

D Watch Video Solution

14.

Prove
that
$\cos ^{-1}\left(\frac{b+a \cos x}{a+b \cos x}\right)=2 \tan ^{-1}\left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right)$

- Watch Video Solution

15. A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 units of calories. Two foods A and B, are available at a cost of Rs. 4
and Rs. 3 per unit respectively. If one unit of A contains

200 , units of vitamin, 1 unit of mineral and 40 calories and one units of B contains 100 units of vitamins, 2 units of minerals and 40 calories. Formulate the LPP to minimize the cost of foods.

- Watch Video Solution

16. Prove that $\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$

- Watch Video Solution

17. Find inverse of the following matrices by elementary
$\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$

- Watch Video Solution

18. If $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 3 & 1 & -1\end{array}\right]$
$B\left[\begin{array}{cc}2 & 4 \\ 1 & 2 \\ 3 & -1\end{array}\right]$ verify
that $(A B)^{T}=B^{T} A^{T}$.

- Watch Video Solution

19. Without expanding prove that $\left|\begin{array}{llll}1 & a & a^{2} & -b c \\ 1 & b & b^{2} & -c a \\ 1 & c & c^{2} & -a b\end{array}\right|=0$
A. Mutualism

B. Commensalism

C. Amensalism
D. Competition

Answer: A

- Watch Video Solution

20. Verify that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
satisfies the equation $A^{2}-(a+d) A+(a d-b c) I=0$
where I is the 2×2 unit matrix.

- Watch Video Solution

21. Test differentiability and continuity of the following functions.
$\left|1-\frac{1}{x}\right|$ at $\mathrm{x}=1$
A. 0.25
B. 0.5
C. 0.75
D. 1

Answer: B

- Watch Video Solution

22. If $x=\sin t, y=\sin 2 t$ then prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0$
A. Methane
B. Carbon dioxide
C. Carbon monoxide
D. Hydrogen sulphide

Answer: A

D Watch Video Solution

23. Find $d y / d x$ if
$y=x \cot ^{-1}\left(\frac{x}{y}\right)$
A. 1992
B. 1996
C. 2000
D. 2002

Answer: D

- Watch Video Solution

24. Find the point (S) on the curve
$x=\frac{3 a t}{1+t^{2}}, y=\frac{3 a t^{2}}{1+t^{2}}$
where the tangent is perependicular to the line $4 x+3 y+5=0$.
25. Show that $2 \sin x+3 \tan x>3 x$ for all $\xi n\left(0, \frac{\pi}{2}\right)$

- Watch Video Solution

26. Evaluate $\int e^{\tan -1} x\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x$.

- Watch Video Solution

27. $\int_{\frac{\pi}{5}}^{3 \frac{\pi}{10}} \frac{\sin x d x}{\sin x+\cos x}$

- Watch Video Solution

28. Find the area of the region bounded by $y=6 x-x^{2} x$ axis and between ordinates $\mathrm{x}=0$ and $\mathrm{x}=6$.

- Watch Video Solution

29. Solve $: \frac{d y}{d x}=\sin (x+y)+\cos (x+y)$

- Watch Video Solution

30. From a differential equation from the equation $y=a e^{2 x}+b e^{-x}$ by eliminating the arbitrary constants.

- Watch Video Solution

31. Prove the following by vector method. An angle inscribed in a semi-circle is a right angle.

- Watch Video Solution

32. Find the area of the triangle $A B C$ with vertices $A(1,2,4)$, $B(3,1,-2)$ and $C(4,3,1)$ by vector method.

- Watch Video Solution

33. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.
34. Prove that the two lines whose direction cosines are connected by the equations
$l+2 m+3 n=0,3 l m-4 \ln +m n=0$ are
perpendicular to each other.

- Watch Video Solution

35. passing through the point ($-1,3,2$) perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.

- Watch Video Solution

36. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that gof is bijective if both f and g are bijective. Also prove that
$(g o f)^{-1}=f^{-1} o g^{-1}$.

- Watch Video Solution

37. If $\sin ^{-1}\left(\frac{x}{a}\right)+\sin ^{-1}\left(\frac{y}{b}\right)=\sin ^{-1}\left(\frac{c^{2}}{a b}\right)$,
then prove that $b^{2} x^{2}+2 x y \sqrt{a^{2} b^{2}-c^{4}}+a^{2} y^{2}=c^{4}$

- Watch Video Solution

38. Solve the following LPP graphically Maximize
$z=20 x_{1}+10 x_{2}$

Subject to $x_{1}+2 x_{2} \leq 40$
$3 x_{1}+x_{2} \geq 30$
$4 x_{1}+3 x_{2} \geq 60$
$x_{1}, x_{2} \geq 0$

D Watch Video Solution

39. Solve the following system of equations by the matrix inversion method.
$x-y+z=4$
$2 x+y-3 z=0$
$x+y+z=2$

- Watch Video Solution

40. Prove that the following. $\left[\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right]=(b-c)(c-a)(a-b)$
(bc+ca+ab)
41. If $A=\left[\begin{array}{cc}0 & -\tan \left(\frac{\alpha}{2}\right) \\ \tan \left(\frac{\alpha}{2}\right) & 0\end{array}\right]$ show that
$(I+A)=(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- Watch Video Solution

42. If $e^{y / x}=\frac{x}{a+b x}$ then show that
$x^{3} \frac{d}{d x}\left(\frac{d y}{d x}\right)=\left(x \frac{d y}{d x}-y\right)^{2}$
(D) Watch Video Solution
43. Find the altitude of a right circular cylinder of maximum volume inscribed in a sphere of radius r.
44. Evaluate $\int \frac{d x}{\cos x(1+2 \sin x)}$

- Watch Video Solution

45. Find the area of the regions into which the circle $x^{2}+y^{2}=4$ is divided by the line $x+\sqrt{3} y=2$.

- Watch Video Solution

46. Prove the following by vector method. Altitudes of a triangle are concurrent.
47. Find the distance of the point $(1,-1,-10)$ from the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ measured parallelto the line $\frac{x+2}{2}=\frac{y-3}{-3}=\frac{z-4}{8}$

- Watch Video Solution

48. If a relation is symmetric and transitive on any nonempty set, then it is reflexive. Is it true or false? State with reason.

- Watch Video Solution

49. What is the value of $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$?

- Watch Video Solution

50. If A and B are symmetric matrices of the same order with $A B \neq B A$, final whether $\mathrm{AB}-\mathrm{BA}$ is symmetric or skew symmetric.

- Watch Video Solution

51. If $a_{i j}$ is an element in ith row and j th column of a 3rd order determinant and $c_{i j}$ be the cofactor of $a_{i j}$, then what is the value of $a_{12} c_{12}-a_{21} c_{21}+a_{13} c_{13}-a_{31} c_{31}$?
52. What is the derivative of $\operatorname{cosec}^{-1} x$ if $x<0$?

- Watch Video Solution

53. State Rolle.s theorem.

- Watch Video Solution

54. What is the value of $\int_{-1}^{1} \ln \left(\frac{4-x}{4+x}\right) d x$?

- Watch Video Solution

55. Write the order and degree of the differential equation
$\frac{d y}{d x}=\left[1+\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\right]^{\frac{2}{3}}$

D Watch Video Solution

56. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=$ $\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

57. If a line is perpendicular to z-axis and makes an angle measuring 60° with x-axis, then the angle it makes with y axis measures \qquad .
58. Show that the relation \sim on $\mathbb{Z}-\{0\} \times \mathbb{Z}-\{0\}$ defined by $(m, n) \sim(p, q) \Leftrightarrow m q=n p$ is an equivalence relation.

- Watch Video Solution

59. If $f(x)=\sqrt{x}$ and $g(x)=1-x^{2}$, then find gof and fog. If $h(x)=1-x$, then whether gof=h?

- Watch Video Solution

60.

$\sin ^{-1}\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x, 0<x<1$

D Watch Video Solution

61. Solve: $\sin ^{-1} 2 x+\sin ^{-1} x=\frac{\pi}{3}$.

D Watch Video Solution

62. Solve the following LPP graphically. Minimize
$z=30 x_{1}+45 x_{2} \quad$ subject \quad to $\quad 2 x_{1}+6 x_{2} \geq 4$,
$5 x_{1}+2 x_{2} \geq 5$ and $x_{1}, x_{2} \geq 0$
63. A trust fund has Rs. 50,000 that is to be invested in two
types of bonds. The first and second bonds respectively pay annual interest at the rate of 5% and 6% respectively .Using matrix multiplication, determine how to invest the money in these bonds so as to get a total annual interest of Rs. 2780.

D Watch Video Solution

64. Express $\left[\begin{array}{ccc}2 & -1 & 3 \\ 5 & 7 & -2 \\ 1 & 4 & 6\end{array}\right]$ as a sum of a symmetric and a skew symmetric matrix.
65. Show that $x=2$ is a root of

$$
\left[\begin{array}{ccc}
x & -6 & -1 \\
2 & -3 x & x-3 \\
-3 & 2 x & x+2
\end{array}\right]=0
$$

Solve this completely,

D Watch Video Solution

66. Prove the following : $\left[\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right]=\left(1-x^{3}\right)^{2}$

D Watch Video Solution

67. If $A=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$
and $C=\left[\begin{array}{ccc}1 & 0 & 2 \\ -2 & 3 & 0\end{array}\right]$, verify $(A+B) C=A C+B C$
68. Test differentiability of the following function at the indicated points.
$f(x)=\left[x^{2}+1\right]$ atx $=-\frac{1}{2}$

D Watch Video Solution

69. If $y=\tan ^{-1}\left(\frac{1+\sin x}{1-\sin x}\right)^{\frac{1}{2}}$ and $z=\log \left(\frac{1+\cos x}{1-\cos x}\right)$
, then prove that $\frac{d y}{d x}=\frac{-\sin x}{4}$

- Watch Video Solution

70. If $y \sqrt{x^{2}+1}=\log \left\{\sqrt{x^{2}+1}-x\right\}$ then prove that $\left(x^{2}+1\right) \frac{d y}{d x}+x y+1=0$

(Watch Video Solution

$$
\begin{aligned}
& \text { 71. Find the tangent to the curve } \\
& y=\cos (x+y), 0 \leq x \leq 2 \pi \text { which is parallel to the line } \mathrm{x} \\
& +2 \mathrm{y}=0
\end{aligned}
$$

- Watch Video Solution

72. Find the intervals where the function
$f(x)=\tan x-4(x-2)$ is increasing and decreasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

D Watch Video Solution

73. Evaluate, $\int \frac{1}{(2-x) \sqrt{5-4 x+x^{2}}} d x$

- Watch Video Solution

74. Evaluate $\int \frac{2 \cos x+7}{4-\sin x} d x$

- Watch Video Solution

75. Evaluate, $\int_{0}^{\pi / 4} \sin x d x$

Watch Video Solution

76. Solve the following differential equations

$$
\left(1-x^{2}\right) \frac{d y}{d x}+2 x y=x \sqrt{1-x^{2}}
$$

- Watch Video Solution

77. solve: $e^{-x} \frac{d^{2} y}{d x^{2}}=x$

- Watch Video Solution

78. Find the scalar and vector projections of the vector $2 \hat{i}-3 \hat{j}-6 \hat{k}$ on the line joining the points $(3,4,-2)$ and $(5,6,-3)$.
79. In any triangle $A B C$, prove by vector method that $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

- Watch Video Solution

80. Show that $(\vec{a} \times \vec{b})^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$.

D Watch Video Solution

81. Find the image of the point $(3,5,7)$ with respect to the plane $2 x+y+z=6$.
82. A variable plane is at a constant distance p from the origin and meets the axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ plane are drawn parallel to the co-ordinate planes. Show that the locus of their points of intersection is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$.

- Watch Video Solution

83. Give an example of a relation f such that $\mathrm{f}=f^{-1}$

- Watch Video Solution

84. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$, show that $x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}=2 x y z$
85. Solve the following LPP graphically Optimize

$$
\begin{array}{lc}
Z=5 x_{1}+25 x_{2} & \text { subject } \\
-0.5 x_{1}+x_{2} \leq 2, x_{1}+x_{2} \geq 2, & \text { to } \\
x_{1}+5 x_{2} \geq 5, x_{1}, x_{2} \geq 0
\end{array}
$$

- Watch Video Solution

86.

Prove

that the
following.

$$
\left|\begin{array}{ccc}
(v+w)^{2} & u^{2} & u^{2} \\
v^{2} & (w+u)^{2} & v^{2} \\
w^{2} & w^{2} & (u+v)^{2}
\end{array}\right|=2 u v w(u+v+w)^{3}
$$

- Watch Video Solution

87. Find the inverse of the matrix $\left|\begin{array}{ccc}3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2\end{array}\right|$

- Watch Video Solution

88. If $\quad A=\left|\begin{array}{ccc}1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0\end{array}\right|, B=\left|\begin{array}{ccc}1 & 2 & 3 \\ 1 & 1 & -1 \\ 4 & -3 & 2\end{array}\right|$ and
$C=\left|\begin{array}{ccc}1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2\end{array}\right|$ then prove that $A(B C)=(A B) C$

- Watch Video Solution

89. If $x=\frac{1-\cos ^{2} \theta}{\cos \theta}, y=\frac{1-\cos ^{2 n} \theta}{\cos ^{n} \theta}$ then show that
$\left(\frac{d y}{d x}\right)^{2}=n^{2}\left(\frac{y^{2}+4}{x^{2}+4}\right)$
90. Find the coordinates of the point on the curve
$x^{2} y-x+y=0$
where the slope of the tangent is maximum.

D Watch Video Solution

91. Evaluate $\int \ln \left(x^{2}+x+2\right) d x$

D Watch Video Solution

92. Evaluate $\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x$
93. Solve the differential equation.
$x(x+y) d y=\left(x^{2}+y^{2}\right) d x$

- Watch Video Solution

94. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magnitude, then prove that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c} with an angle of measure $\cos ^{-1} \frac{1}{\sqrt{3}}$
95. Prove that the lines $\frac{x+3}{2}=\frac{y+5}{3}=\frac{z-7}{-3}$ and $\frac{x+1}{4}=\frac{y+1}{5}=\frac{z+1}{-1}$ are coplanar. Find the equation of plane containing them.

D Watch Video Solution

