# ©゙" doubtnut 

India's Number 1 Education App

## CHEMISTRY

## BOOKS - OSWAAL PUBLICATION

## CHEMISTRY (KANNADA ENGLISH)

## SOLID STATE

Example

1. A compound is formed by two elements $x$ and y . Atoms of the elements y make ccp (cubic
close packing) and those of the element $x$ occupy all the octahedral voids. What is the formula of the compound?

## D Watch Video Solution

2. b) Atoms of element B form hep lattice and
those of element A occupies $2 / 3^{r d}$ of tetrahedral voids. Calculate the formula of the compound formed by A and B.

## D Watch Video Solution

## Topic 1 Very Short Answer Type Questions

1. What is the number of lattice particles per unit cell of sodium chloride ?

- Watch Video Solution

2. What type of crystalline solid is graphite ?

- Watch Video Solution


## 3. Define unit cell.

## D Watch Video Solution

4. Define co-ordination number for a particle in a crystal.

## D Watch Video Solution

5. How many particles are present in a unit cell of fcc?

## - Watch Video Solution

6. Draw the unit cell of CsCl

## D Watch Video Solution

7. What is the contribution of a corner particle to a unit cell in a cubic crystal lattice?

D Watch Video Solution
8. What is the co-ordination number of a body centred cube ?

- Watch Video Solution

9. Give the differences between crystalline and amorphous solids with respect to shape and melting point.

- Watch Video Solution

10. What are interstitial in a crystal ?

## D Watch Video Solution

11. Define the term amorphous.

D Watch Video Solution
12. a) Calculate the packing efficiency of particles in a body centred cube.
13. Calculate the packing efficiency in a simple cubic lattice.

## D Watch Video Solution

14. The edge of the face-centred cubic unit cell of calcium is 556.5 pm . Calculate the radius of calcium atom.

## Topic 1 Short Answer Type Questions

1. Silver forms ccp lattice and $x$-ray studies of its crystals show that the edge length of its unit cell is 408.6 pm . Calculate the density of silver. (Atomic mass of $\mathrm{Ag}=107.9 \mathrm{u}$ )

## - Watch Video Solution

2. An element having atomic mass 60 amu . has
fcc unit cell. The edge length of the unit cell is
$4 \times 10^{2} \mathrm{pm}$. Find the density of the unit cell.
3. Calculate the number of particles per unit cell in fcc.

## - Watch Video Solution

4. A compound $A_{x} B_{y}$ crystallises on a fcc lattice in which A occupies each corner of a cube and $B$ occupies the centre of each face of
the cube. What is the formula of the compound?

D Watch Video Solution
5. Name any two crystal systems.

## D Watch Video Solution

6. What is meant by the term coordination number in solids? What is the coordination
number in a face centered cubic close packing structure?

D Watch Video Solution
7. Aluminium crystallizes in an fcc structure.

Atomic radius of the metal is 125 pm . Calculate
the edge length of the unit cell of the metal.

D Watch Video Solution
8. Give two difference between crystalline and amorphous solids.

- Watch Video Solution

9. Define the term 'amorphous'. Give a few examples of amorphous solids.

- Watch Video Solution

10. What makes a glass different from a solid such as quartz ? Under what condition could quartz be converted into glass ?

## - Watch Video Solution

11. Copper crystallizes into a fcc lattice with edge length $3.61 \times 10^{-8} \mathrm{~cm}$. Calculate the density of the crystal (Atomic mass of copper = $63.5 \mathrm{~g} / \mathrm{mol}$ and Avogadro number $=$ $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ )
12. Silver crystallizes in a face centered cubic structure. If the edge length is $4.077 \times 10^{-8}$ cm and density is $10.5 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the atomic mass of silver.

## D Watch Video Solution

13. Define radius ratio what is the coordination number, if the radius ratio in a compound is 0.52 ?
14. How many tetrahedral and octahedral voids are present if the number of close packed sphere in two layers is N ?

## D Watch Video Solution

15. A compound forms hep structure. What is
the total number of voids in 0.5 mol of it ?

How many of these are tetrahedral voids ?
16. An element crystallizes in a structure having fcc unit cell of an edge 200 pm.

Calculate the density if 200 g of this element contains $24 \times 10^{23}$ atoms.

## D Watch Video Solution

17. The unit cell of an element of atomic mass

108 u and density $10.5 \mathrm{~g} \mathrm{~cm}^{-3}$ is cube with edge length 409 pm. Find the type of unit cell
of the crystal. (Given : Avogadro's constant = $\left.6.023 \times 10^{23} \mathrm{~mol}\right)$

## D Watch Video Solution

18. Iron (II) oxide has a cubic structure and each unit cell has a size of $5 \AA$. If density of this oxide is $4 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the number of $\mathrm{Fe}^{2+}$ and $\mathrm{O}^{2-}$ ions present in each unit cell.
(Atomic mass of $\mathrm{Fe}=56, \mathrm{O}=16$, $N_{A}=6.023 \times 10^{23}$ and $\left.1 \AA=10^{-8} \mathrm{~cm}\right)$
19. (a) What are intrinsic semiconductors ?

Give an example.
(b) What is the distance between
$\mathrm{Na}^{+}$and $\mathrm{CI}^{-}$ions in NaCl crystal if tis density is $2.165 \mathrm{~g} \mathrm{~cm}^{-3}$ ?
[Atomic Mass of $\mathrm{Na}=23 \mathrm{u}, \mathrm{Cl}=35.5 \mathrm{u}$, Avogadro's number $=6.023 \times 10^{23}$ ]

D Watch Video Solution
20. Silver metal crystallises with a face centred cubic lattice. The length of unit cell is formed to be $4.077 \times 10^{-8} \mathrm{~cm}$. Calculate atomic radius and density of silver.
(Atomic mass of $\mathrm{Ag}=108 \mathrm{u}$,
$\left.N_{A}=6.023 \times 10^{23} \mathrm{~mol}^{-1}\right)$.

## D Watch Video Solution

21. Caleulate the packing efficiency in a unit cell of Cubic Close Packing(CCP) structure.
22. Silver crystallises with face-centred cubic unit cells. Each side of the unit cell has a length of 409 pm . Calculate the radius of silver atom. (Assume the atoms just touch each other on the diagonal across the face of the unit cell. That is each face atom is touching the four corner atoms.)

## D <br> Watch Video Solution

23. The edge of the face-centred cubic unit cell of aluminium is 404 pm. Calculate the radius of almunium atom.

## - Watch Video Solution

24. The well known mineral fluorite is chemically calcium fluoride. It is known that in one unit cell of this mineral there are $4 \mathrm{Ca}^{2+}$ ions and $8 F^{-}$ions and that $\mathrm{Ca}^{2+}$ ions are arranged in a fcc-lattice. The $F^{-}$ions fill all
the tetrahedral holes in the face centred cubic lattice of $C a^{2+}$ ions. The edge of the unit cell is $5.46 \times 10^{-8} \mathrm{~cm}$ in length. The density of the solid is $3.18 \mathrm{~g} \mathrm{~cm}^{-3}$. Use this information to calculate Avogadro's number. (Molar mass of $C a F_{2}=78.08 \mathrm{~g} \mathrm{~mol}^{-1}$ )

## D Watch Video Solution

25. An element with density $2.8 \mathrm{~g} \mathrm{~cm}^{-3}$ forms
a fcc unit cell with edge length $4 \times 10^{-8} \mathrm{~cm}$.

Calculate the molar mass of the element.
(Given : $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$ )

## D Watch Video Solution

26. Iron (II) oxide has a cubic structure and each unit cell has a size of $5 \AA$. If density of this oxide is $4 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the number of $\mathrm{Fe}^{2+}$ and $\mathrm{O}^{2-}$ ions present in each unit cell.
(Atomic mass of $\mathrm{Fe}=56, \mathrm{O}=16$,
$N_{A}=6.023 \times 10^{23}$ and $\left.1 \AA=10^{-8} \mathrm{~cm}\right)$

## D Watch Video Solution

27. Niobium crystallizes in body-centred cubic structure. If its density is $8.55 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate atomic radius of niobium, given its atomic mass 93 u .

## D Watch Video Solution

28. If NaCl is doped with $10^{-3}$ mole percent
$S r \mathrm{Cl}_{2}$, what will be the concentration of cation vacancies ? $\left(N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
29. What is the co-ordination number of an atom in each of the following types of cubic lattices ?
(a) Primitive (b) Body centred.

## D Watch Video Solution

30. An element with density $11.2 \mathrm{~g} \mathrm{~cm}^{-3}$ forms
a fcc lattice with edge length of $4 \times 10^{-8} \mathrm{~cm}$.

Calculate the atomic mass of the element. (Given : $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$ )

## D Watch Video Solution

## Topic 1 Long Answer Type Questions I

1. (a) Calculate the packing efficiency in c ccp crystal lattice.
(b) What is the number of particles per unit cell of a simple cube.
2. (a) Sodium metal crystallizes in bcc structure. Its unit cell edge length is 420 pm .

Calculate its density. (Atomic mass of sodium = $\left.23 \mathrm{u}, N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-}\right)$.
(b) What is Frenkel defect ? How does it affect the density of a crystal ?

## D Watch Video Solution

3. a) Calculate the packing efficiency of particles in a body centred cube.
4. Calculate the packing efficiency in a simple cubic lattice.

## - Watch Video Solution

5. An element occurs in bcc structure. It has a cell edge length of 250 pm. Calculate the molar mass if its density is $8.0 \mathrm{~g} \mathrm{~cm}^{-3}$. Also calculate radius of an atom of this element.

## Watch Video Solution

6. Tungsten crystallizes in body centred cubic unit cell. If the edge of the unit cell is 316.5 pm , what is the radius of Tungsten atom ?

## - Watch Video Solution

7. Iron has a body centred cubic unit cell with a cell dimension of 286.65 pm . The density of Iron is $7.874 \mathrm{~g} \mathrm{~cm}^{-3}$. Use this information to
calculate Avogadro's number. (At mass of $\mathrm{Fe}=$ 55.845 u).

## D Watch Video Solution

8. Copper crystallises with face-centred cubic unit cell. If the radius of copper atom is 127.8 pm, calculate the density of copper metal.
(Atomic mass of $\mathrm{Cu}=63.55 \mathrm{~g} / \mathrm{mol}$ and Avogadro's number $N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$ )
9. Silver crystallies in face centred cubic (fcc) unit cell. If the radius of silver atom is 145 pm , what is the length of each side of the unit cell ?

## - Watch Video Solution

10. The density of lead is $11.35 \mathrm{~g} \mathrm{~cm}^{-3}$ and the metal crystallizes with fcc unit cell. Estimate the radius of lead atom.
[Atomic mass of lead $=207 \mathrm{~g} \mathrm{~mol}$ and $\left.N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right]$
11. Calculate the packing efficiency in simple cubic lattice.

## - Watch Video Solution

12. Aluminium crystallies in a cubic close packed structure. Radius of the atom in the metal is 125 pm .
(i) What is the length of the side of the unit

## cell ?

(ii) How many unit cells are there in $1 \mathrm{~cm}^{3}$ of aluminium ?

## - Watch Video Solution

## Topic 1 Long Answer Type Questions li

1. (a) Calculate the number of atoms per unit cell of fcc.
(b) What is ferromagnetism ? Give an example
for ferromagnetic substance.
(c) Give an example for molecular solid.

D Watch Video Solution
2. What is packing efficiency in a crystal ? Draw
the unit cell of a simple cubic lattice and calculate the packing efficiency in a simple cubic lattice.
3. (a) Calculate the packing efficiency in hexagonal close packing arrangement.
(b) Mention one consequence of metal excess defect.

## - Watch Video Solution

## Topic 2 Very Short Answer Type Questions

1. Name the crystal defect which lowers the density in an ionic crystal

## Watch Video Solution

2. What is Frenkel defect? Give an example.

## - Watch Video Solution

## 3. Define radius ratio.

## - Watch Video Solution

4. Mention one property which is caused due to the presence of F-centre in a solid.

D Watch Video Solution
5. What are paramagnetic materials ? Give examples.

## D Watch Video Solution

6. Define ferromagnetism.

## - Watch Video Solution

7. Which point defect decreases the density of a solid?

## - Watch Video Solution

8. Express the relationship between atomic radius ( $r$ ) and edge length (a) in the bcc unit cell.

# 9. What type of stoichiometric defect is shown 

 by AgCl ?- Watch Video Solution

10. What type substances would make better permanent magnets, ferromagnetic or ferrimagnetic?
11. On heating a crystal of KCl in potassium vapour, the crystal starts exhibiting a violet colour. What is this due to ?

D Watch Video Solution
12. Which type of ionic substances show Schottky defect in solids ?
13. What is meant by 'doping' in a semiconductor?

D Watch Video Solution
14. How is the conductivity of an intrinsic semiconductor be increased?
( Watch Video Solution
15. Which stoichiometric defect increases the density of a solid?

D Watch Video Solution
16. What type of stoichiometric defect is shown by AgBr and Agl ?

- Watch Video Solution

17. What type of defect can arise when a solid
is heated?

D Watch Video Solution
18. Why does LiCl acquire pink colour when heated in Li vapours?

## - Watch Video Solution

19. What are n-type semiconductors ?

## - Watch Video Solution

20. Which type of substance wxhibit anti ferromagnetism ?

## - Watch Video Solution

21. What type of semiconductor is obtained when silicon is doped with arsenic ?
22. Give an example of an ionic compound which shows Frenkel defect.

## ( Watch Video Solution

23. Which point defect in crystals of a solid does not change the density of the solid ?

## D Watch Video Solution

1. Give two differences between p-type \& ntype semiconductors.

## D Watch Video Solution

2. Give any two differences between Frenkel and Schottky defects.

## - Watch Video Solution

3. Based on electron gas theory explain why metals are malleable.
4. Account for the malleability and ductility of metals on the basis of electron gas theory.

- Watch Video Solution

5. Based on electron gas theory explain why metals are malleable.

- Watch Video Solution

6. Describe the one major type of semiconductors and contrast their conduction mechanism.

## D View Text Solution

## 7. Define antiferromagnetism with example.

## - Watch Video Solution

8. Define ferrimagnetism with suitable examples.

## D Watch Video Solution

9. Examine the given defective crystal and

$$
\begin{array}{lllll}
A^{+} & B^{-} & A^{+} & B^{-} & A^{+} \\
B^{-} & 0 & B^{-} & A^{+} & B^{-} \\
A^{+} & B^{-} & A^{+} & 0 & A^{+} \\
B^{-} & A^{+} & B^{-} & A^{+} & B^{-}
\end{array}
$$

Answer the following questions :
(i) What type of stoichiometirc defect is shown
by the crystal ?
(ii) How is the density of the crystal affected by this defect?
(iii) What type of ionic substances show such defect?

## - Watch Video Solution

10. (i) What type of non-stoichiometric point defect is responsible for the pink colour of LiCl
?
(ii) What type of stoichiometric defect is shown by NaCl ?
11. How will you distinguish between the following pairs of terms :

Tetrahedral and octahedral voids.

Crystal lattice and unit cell.

## D Watch Video Solution

12. (i) Write the type of magnetism observed when the magnetic moments are oppositely aligned and cancel out each other.
(ii) Which stoichiometric defect does not change the density of the crystal ?

## D Watch Video Solution

13. (i) Write the type of magnetism observed when the magnetic moments are aligned in parallel and anti-parallel directions in unequal numbers.
(ii) Which stoichiometric defect decreases the density of the crystal ?
14. Account for the following :
(i) Schottky defects lower the density of related solids.
(ii) Conductivity of silicon increases on doping it with phosphorus.

## D Watch Video Solution

15. (a) Why does presence of excess of lithium makes LiCl crystals pink?
(b) A solid with cubic crystal is made of two
elements $P$ and Q . Atoms of Q are the corners of the cube and $P$ at the body centre. What is the formula of the compound?

## D Watch Video Solution

16. (a) What change occurs when AgCl is doped with $C d C l_{2}$ ?
(b) What type of semiconductor is produced when silicon is doped with boron?

## D Watch Video Solution

17. Explain the following terms with suitable examples : Ferromagnetism and

Ferrimagnetism.

## - Watch Video Solution

18. What is a semiconductior ? Give names the
two main types of Semi-conductors?

- Watch Video Solution

19. What are intrinsic semiconductors ? Give an example.

- Watch Video Solution

20. Explain the Schottky defect terms with suitable examples.
( Watch Video Solution
21. Explain the 12-16 compounds terms with one suitable example :

- Watch Video Solution

