

BIOLOGY

BOOKS - TRUEMAN'S BIOLOGY (ENGLISH)

RESPIRATION IN PLANTS

Multiple Choice Questions

- 1. Respiration is
 - A. anabolic and exothermic
 - B. anabolic and endothermic
 - C. catabolic and endothermic
 - D. catabolic exothermic

Answer: D

washiyasi o dalasi a

watch video Solution

2. in the process of repiration in plants 180 gms of sugar plus 192 gms of oxygen produce

A.
$$132gCO_2 + 54gH_2O + 337k$$
 cal

$${\rm B.}\ 264 gCO_2 + 108 gH_2O + 686k\ {\rm cal}$$

C. 528 g
$$CO_2$$
 + 216 g water+ 686 kcal

D. Large amount of CO_2 and energy

Answer: B

Watch Video Solution

3. When respiratory substrate is fat, respiration Is called

A. protoplasmic respiration

B. floating respiration

D. dark respiration
nswer: B
Watch Video Solution
. The efficiency of respiration is approximately
A. 45%
B. 50%
C. 90%
D. 30%
nswer: C
Watch Video Solution

C. cellular respiration

5. Glyceraldehyde phosphate is oxidised in glycolysis. What is the fate of hydrogen atom and electron liberated. They cause

A. They reduce $NAD^{\,+}$

B. They oxidise NAD^+

C. They are transferred to Pyruvic acid

D. They are removed by FAD

Answer: A

6. In the formation of Acetyl Co-A from pyruvic acid in mitochondria, pyruvic acid gets

A. oxidised

B. decarboxylated

C. both (1) and (2)

D. reduced and isomerised
nswer: C
Watch Video Solution
. When a yeast produces wine, which is not formed ?
A. Acetaldehyde
B. Ethyl Alcohol
$C.\mathit{CO}_2$
D. Acetyl coenzymeA

Answer: D

8. The net gain of glycolysis of one molecule of glucose is the formation of

A. 2NADH + $H^{\,+}\,$ + 4ATP+ 1 Pyruvic acid

B. 2NADH + $H^{\,+}$ + 2ATP+2 Pyruvic acid

C. SATP +2NADH + $H^{\,+}\,$ +2 Pyruvic acid

D. SATP+2NADH+ $H^{\,+}$ + 2 Pyruvic acid + CO_2

Answer: B

- **9.** During photosynthesis oxygen in glucose comes from
- A. $C_6H_{12}O_6$
 - B. O_2
 - $\mathsf{C}.\,CO_2$

D. both (1) and (2)

Answer: B

Watch Video Solution

10. How many oxygen molecules are used in glycolysis of one molecule of glucose ?

- A. 1/2
- B. 1
- C. 0
- D. 2

Answer: C

Watch Video Solution

11. Link between glycolysis, Krebs cycle and β -oxidation of fatty acid or carbohydrate and fat metabolism is

A. OAA

B. Cytochrome

C. Acetyl Co-A

D. Pyruvic acid

Answer: C

Watch Video Solution

A. (a)
$$C_2H_5OH+CO_2$$
 + Energy

12. When yeast ferments glucose, the products are:

B. (b)
$$C_2H_5OH$$
 + Energy

C. (c)
$$CO_2 + H_2O$$
 + Energy

D. (d)
$$CH_3OH + H_2O$$
 + Energy

Answer: A

13. Energy required to form glucose from pyruvate is equivalent to
A. 32 ATP
B. 16 ATP
C. 8 ATP
D. 4 ATP
Answer: C
Watch Video Solution
14. Which is formed through phosphorylation in glycolysis?
A. Fructose 1-6 Biphosphate
B. DHA-3- phosphate

C. Both are correct

D. Glyceraldehyde-3-phosphate

Answer: A

Watch Video Solution

15. Which step of glycolysis requires pyruvic kinase,

 Mg^{++}, K^{+} and ADP?

- A. Conversion of PEP into pyruvic acid
- B. Conversion of 3PGA into 2PGA
- C. Cleavage of Fructose 1-6 Biphosphate
- D. All of the above

Answer: A

16. One molecule of glucose requires 2 ATP to get phosphorylated to form
Fructose 1–6 Biphosphate in glycolysis. How many ATP are used in the
same process if the substrate is fructose ?
Λ 1

- A. 1
- B. 2
- C. 0
- D. 4

Answer: B

- 17. Amphibolic cycle that occurs only in aerobic condition is
- A. EMP pathway
 - B. Glycolysis
 - C. Krebs' cycle

	FTC.	
1)	FI (
┍.		

Answer: C

Watch Video Solution

- 18. During respiration, pyruvic acid is
 - A. broken to form a 2-carbon compound and ${\cal C}{\cal O}_2$
 - B. produced in Krebs' cycle
 - C. formed only if fat is used
 - D. produced only in aerobic condition

Answer: A

19. Krebs' cycle starts with the formation of a six carbon compound by reaction between A. OAA and puruvic acid B. OAA and Acetyl Co- A C. Pyruvic acid and Acetyl Co-A D. OAA and citrate synthetase **Answer: B Watch Video Solution 20.** Aerobic glycolysis is times efficient than anaerobic glycolysis A. 2 times B. 4 time C. 10 times D. 18 times

Answer: D

Watch Video Solution

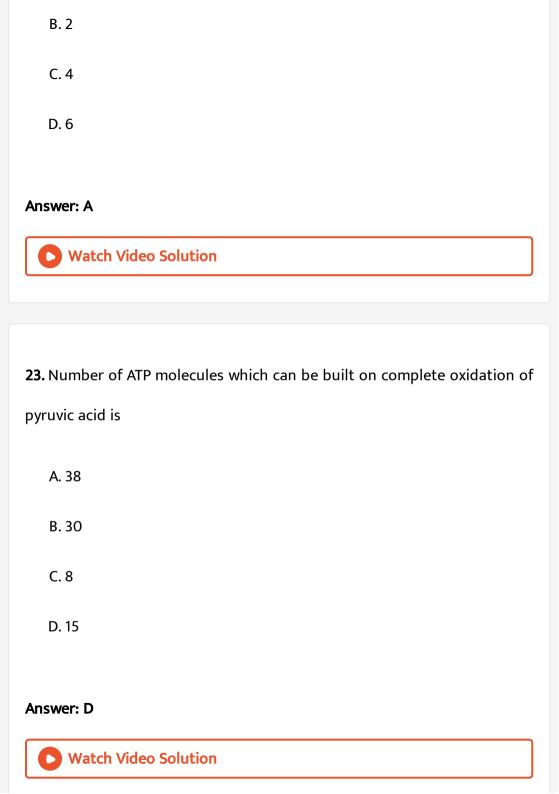
21. Ratio of CO_2 produced in aerobic and anaerobic respiration is

A. 3:1

B. 2:1

C. 4:1

D. 1:1


Answer: A

Watch Video Solution

22. Each molecule of pyruvic acid entering the Kreb's cycle produces

A. 3

24. How much energy is conserved as ATP per mole of ${\cal O}_2$ reduced into ${\cal H}_2{\cal O}$?

A. 36

B. 38

C. 6

D. 36 in eukaryotes and 38 in prokaryotes.

Answer: C

25. Amount of energy available per mole of oxygen used in biological oxidation is

A. 150

B. 3600

C. 686

D. 114

Answer: D

Watch Video Solution

26. Flow of electons in ETS is

A.
$$Fe+++
ightarrow Cu^+>Fe++$$

B.
$$Fe++ \rightarrow Fe+++$$

C.
$$Fe^{2+}
ightarrow Fe^{3+}
ightarrow Fe^{2+}$$

D. 110

Answer: C

27. Kreb's cycle was discovered by Krebs in pigeon muscles in 1940. Which step is called gateway step. Link reaction/transition reaction in respiration.

- A. Glycolysis
- B. Formation of acetyl Co-A
- C. Citric acid formation
- D. ETS Terminal oxidation

Answer: B

Watch Video Solution

28. In Kreb's cycle

- A. Acetyl coenzyme A undergoes 4 oxidations and 2 decarboxylations
- B. Pyruvic acid undergoes 4 oxidations and 2 decarboxylations
- C. TCA undergoes 4 oxidations and 4 decarboxylations

D. OAA undergoes 4 oxidations and 2 decarboxylations

Answer: A

Watch Video Solution

29. Flow of electrons in ETS is

.At three steps ATP is formed (oxidative phosphorylation). Where does II

 $NADH + H^+ ig(NADPH + H^+ig)
ightarrow FMNFeS \;\; ext{protein} \;\; CoQ
ightarrow cytb
ightarrow$

ATP is formed?

A. Between $NADH_2$ and FMN

B. Cytb and $Cytc_1$

C. Cyta and $Cyta_3$

D. FMN o FeS protein

Answer: B

30. For formation of ethanol, pyruvic acid is first changed to acetaldehyde by enzyme

A. decarboxylase

B. dehydrogenase

C. decarboxylase and dehydrogenase

D. oxidase and decarboxylase

Answer: C

31. Oxidation of one molecule of glucose yields 38 mols of ATP in the proportion of

A. all the 38 mols in mitochondrion

B. 8 outside mitochondrion and 30 inside mitochondrion

C. two glycolysis and 36 inside the Kreb cycle

D. two outside and 36 inside the mitochondrion

Answer: B

32. Inner mitochondrial membrane possesses enzymes

- A. ATPase, succinate dehydrogenase cytochrome oxidase.
- B. Malate dehydrogenase, citrate synthetase
- C. Diphosphokinase and cyclase
- D. citrate synthetase

Answer: A

33. In electron transport system (ETS) which of the following cytochromes reacts with oxygen

A. cyt b

B. $cytc_1$

C. cyt a

D. $cyta_3$

Answer: D

34. The molecule that regularly enters through the inner membrane of mitochondrion is

A. ATP

B. pyruvic acid

C. glucose

D. citric acid
nswer: B
Watch Video Solution
5. Cyt a_3 possesses
A. Fe and Cu
B. Fe
C. Mn
D. Fe, Mn + Cl
nswer: A

A. Substrate level phosphorylation B. Photophosphorylation C. $FADH_2$ formation D. Both occur in matrix of mitochondria Answer: A **Watch Video Solution** 37. ETS in bacteria is found A. cell membrane B. cell wall C. cytoplasm D. mitochondrion Answer: A Watch Video Solution

38. In cell respiration, which does not involove EMP pathway?

- A. Pyruvic acid into $CO_2 \ {
 m and} \ H_2O$
- B. Glucose into lactic acid
- C. Glucose into CO_2 and H_2O
- D. Glucose into alcohol

Answer: A

Watch Video Solution

39. Zymosis is also called

- A. fermentation
- B. action of zymogens
- C. pasteurization

D. synapsis of chromosomes

Answer: A

Watch Video Solution

- 40. Correct sequence of events in Krebs' cycle is
 - A. Acetyl CoA $\,
 ightarrow\,$ citrate $\,
 ightarrow\,$ pyruvate a-ketoglutarate $\,
 ightarrow\,$ succinate
 - ightarrow malate ightarrow fumarate ightarrow OAA
 - B. Acetyl CoA $\,
 ightarrow\,$ citric acid $\,
 ightarrow\,$ a-keto-glutaric acid $\,
 ightarrow\,$ succinic acid
 - ightarrow fumaric acid ightarrow malic acid ightarrow OAA
 - C. Acetyl CoA ightarrow citric acid ightarrow malic acid ightarrow lpha-ketoglutaric acid
 - ightarrow succinic acid ightarrow OAA
 - D. Pyruvic acid $\, o\,$ Acetyl CoA $\, o\,$ citrate $\, o\,$ malate $\, o\,$ fumarate

Answer: B

41. RQ is

- A. $\frac{\text{vol of } CO_2\text{released in respiration}}{\text{vol of } O_2\text{consumed in respiration}}$
- B. $\frac{\text{vol of } CO_2 \text{consumed in photosynthes is}}{\text{vol of } O_2 \text{consumed in respiration}}$
- C. $\frac{\text{vol of } CO_2 \text{taken in photosynthesis}}{\text{vol of } CO_2 \text{released in respiration}}$
- D. $\frac{\text{vol of } CO_2 \text{taken in photosynthesis}}{\text{vol of } CO_2 \text{released in photosynthesis}}$

Answer: A

Watch Video Solution

42. During starvation, RQ value will be

- A. (a) zero
- B. (b) less than unity
- C. (c) more than unity

D. (d) unity
Answer: B
Watch Video Solution
43. When respiratory substrate is cereal/ starch/ sprouting potato tuber,
then RQ value is

A. (a) zero

B. (b) unity

Answer: B

C. (c) greater than unity

Watch Video Solution

D. (d) less than unity

44. In anaerobic condition, value of RQ will be
A. 1
B. 2
C. infinity
D. 0
Answer: C
Watch Video Solution
45. If a substance is rich in oxygen, then value of RO (Respiratory Quotient) will be
A. unity
B. ess than 1
C. greater than 1
D. 0

Answer: C Watch Video Solution 46. RO value in succulents/CAM plants in night is A. >1 B. unity C. <1 D. Zero **Answer: D** Watch Video Solution **47.** When production of CO_2 is more than intake of O_2 , the respiratory substrate is

B. organic acid C. glucose D. fat/protein **Answer: B** Watch Video Solution 48. Enzyme ATPase is found in of oxysome. A. (a) Head (F_1) B. (b) Base (F_0) C. (c) Stalk D. (d) $F_0 - F_1$ **Answer: A Watch Video Solution**

A. sucrose

49. Which of the following observations most strongly support the view that mitochondria contain electron transport enzymes aggregated into compact association?

- A. (a) Mitochondria have a highly folded inner membrane
- B. (b) Disruption of mitochondria yield membrane fragments which are able to synthesize ATP
- C. (c) contractile protein able to utilize ATP is found in mitochondria
- D. (d) None of the above.

Answer: B

Watch Video Solution

50. The Nobel Prize for the discovery of TCA cycle and ATP biosynthesis was awarded to

A. Hans Krebs B. Lipman C. Krebs and Lipman jointly D. Vishniac and Ochoa **Answer: C Watch Video Solution** 51. In anaerobic respiration, pyruvic acid in muscles forms A. ATP B. Lactic acid C. Acetyl Co- A D. NAD **Answer: B** Watch Video Solution

52. Terminal oxidation in ETC is

A. (a) stoppage of oxidation

B. (b) final release of protons

C. (c) only step where actual oxidation using \mathcal{O}_2 occurs

D. (d) ETS initiation

Answer: C

53. Krebs' cycle also called TCA (Tricarboxylic acid cycle) or citric acid cycle (organic acid cycle). It is also called metabolic sink as it is

A. common pathway for carbohydrates . fats and proteins (amino acids)

B. common pathway for carbohydrates and fats only

C. common pathway for carbohydrates and organic acids only
D. none of the above
Answer: A
Watch Video Solution
54. One turn of Krebs' cycle for the oxidation of 1 mol of sucrose produce how many ATP molecules ?
now many Arr molecules :
A. 12
B. 24
C. 22
D. 11
Answer: A
Watch Video Solution

55. Acetaldehyde is intermediate product in
A. lactic acid fermentation
B. ethyl alcohol fermentation
C. Kreb's cycle
D. glycolysis
Answer: B
Watch Video Solution
56. One molecule of sucrose yields ATP in anaerobic respiration
56. One molecule of sucrose yields ATP in anaerobic respiration
56. One molecule of sucrose yields ATP in anaerobic respiration A. 2
56. One molecule of sucrose yields ATP in anaerobic respiration A. 2 B. 4

Answer: B

Watch Video Solution

57. One molecule of $NADH+H^+/NADPH+H^+$ has sufficient energy to generate 3 ATP through ETS. This energy is approximately

- A. 52.6 k cal
- B. 21.9 k cal
- C. 18 k cal
- D. 36 k cal

Answer: B

Watch Video Solution

58. Proteins enter into Krebs' cycle through

A. ∝ -Ketoglutarate B. OAA C. both (1) and (2) D. None of these **Answer: C** Watch Video Solution 59. If fructose 1-6 Bisphosphate is oxidised in aerobic respiration, the ATP production will be A. 36 B. 38 C. 32 D. 40 **Answer: D**

60. Respiration of starved leaves (consuming proteins) is called

- A. protoplasmic respiration
- B. floating respiration
- C. photorespiration
- D. oxidative phosphorylation

Answer: A

Watch Video Solution

61. To start respiration, a living cell requires

- A. only glucose
- B. glucose + \mathcal{O}_2
- C. glucose, ATP and enzymes

D. glucose + enzymes

Answer: C

Watch Video Solution

62. The rate of oxidative phosphorylation and ATP synthesis is related with

A. quantasomes

B. ribosomes

C. elementary particles

D. lysosomes

Answer: C

63. Enzymes involved in oxidative decarboxylation of pyruvic acid are found in

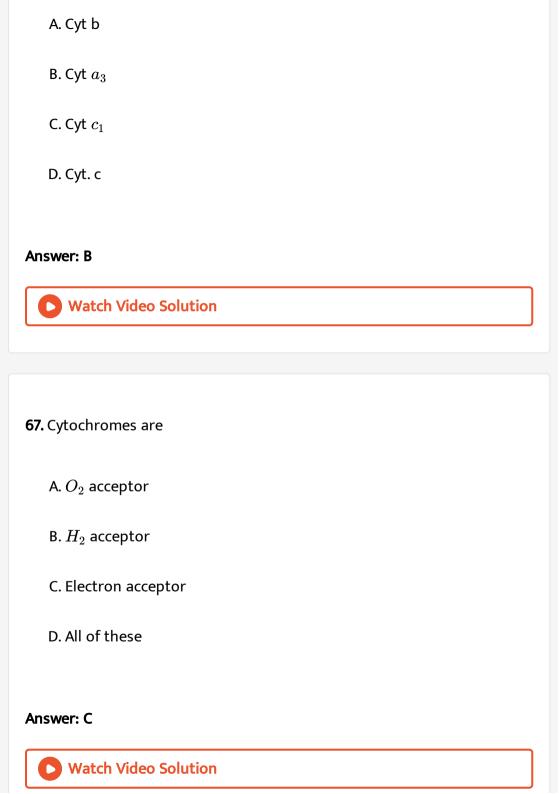
A. cytoplasm

B. matrix of Mitochondrion

C. F_0-F_1 particles

D. oxysomes

Answer: B


64. As compared to anaerobic respiration, the energy gained during aerobic respiration is

A. 8 times

B. 19 times

C. 12 times

D. 36 times
Answer: B
Watch Video Solution
65. Cytochromes are found in
A. entire inner mitochondrial membrane
B. cristae only
C. matrix of mitochondria
D. oxysomes
Answer: A
Watch Video Solution
66. Cytochrome oxidase is related with

- **68.** Rate of respiration shall
 - A. where no light is present
 - B. in winter
 - C. in high temperature
 - D. in rainy season

Answer: C

- **69.** All enzymes of TCA cycle except succinic dehyd rogenase and cytochrome oxidase are found in
 - A. cytosole and oxysomes
 - B. matrix of mitochondrion
 - C. inner membrane of mitochondrion

D. outer membrane of mitochondrion

Answer: B

Watch Video Solution

70. In the electron transport system, the reduced coenzymes are regenerated by

A. gain of protons

B. loss of electrons

C. addition of hydrogen

D. gain of electrons.

Answer: B

71. Poisons like cyanide inhibit Na^+ influx during cellular transport. This inhibitory effect is reversed by an injection of ATP. This demonstrates that

A. Na^+-K^+ pump operates in all cells

B. ATP is carrier protein

C. Energy for $Na^{\,+}\,-\,K^{\,+}\,$ pump come from ATP

D. ATP is hydrolysed by ATPase to release energy

Answer: C

Watch Video Solution

72. Proton channel occurs in

A. (a) F_0

B. (b) F_1

C. (c) F_4

D. (d) F_5

Answer: A

Watch Video Solution

73. The first 5C dicarboxylic acid in Krebs' cycle which is used in nitrogen metabolism is

- A. (a) OAA
- B. (b) Citric acid
- C. (c) α -ketoglutaric acid
- D. (d) Acetyl Co-A

Answer: C

Watch Video Solution

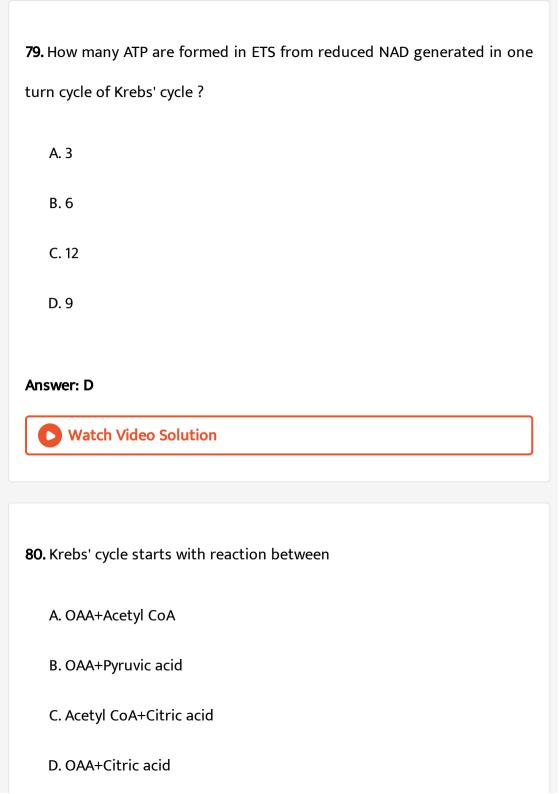
74. Hydrogen atoms released at succinate level in Krebs cycle are accepted by

A. FAD
B. NAD
C. ADP
D. FMN
Answer: A
Watch Video Solution
75. Fructose-6-phosphate is changed to Fructose 1-6 biphosphate with the help of enzyme
A. phosphoglycerate
B. enolase
C. phosphofructokinase
D. phosphatase
Answer: C

76. In ETS, ATP is not formed in which of the following steps

- A. FMN- UQ
- B. Cyt c-cyt a
- C. Cyt b cyt c
- D. Cyt a- cyt a_3

Answer: B


77. Krebs' cycle is completed with the formation of

- A. (a) citric acid
- B. (b) OAA
- C. (c) succinic acid

D. (d) malic acid
Answer: B
Watch Video Solution
78. The end product of oxidative phosphorylation is
A. ATP
$B.O_2$
C. $NADH_2$
D. $ATP\&H_2O$

Answer: A

Watch Video Solution

- **81.** ATP formation in chloroplast and mitochondrion is explained by
 - A. Lock and Key Theory of Fisher
 - B. Chemiosmotic Theory of Mitchell
 - C. Lipmann and Lohmann Theory
 - D. Chemical coupling theory

Answer: B

- 82. What is the main feature of -P bond in ATP
 - A. 2 bonds having high energy

C. 3 atoms of high energy phosphate D. None of these Answer: A **Watch Video Solution** 83. Which would be the last substrate to be used in respiration? A. Fat B. Protein C. Organic acid D. starch Answer: B **Watch Video Solution**

B. 2 Molecules of phosphrous in ATP

84. A mass of living cells are kept in a culture medium under anaerobic conditions. The cells were supplied with labelled c^{14} glucose. Pick up the true statement

- A. CO_2 will contain C^{14}
- B. cell would burst
- C. water will have radioactivity
- D. ATP will have radioactivity

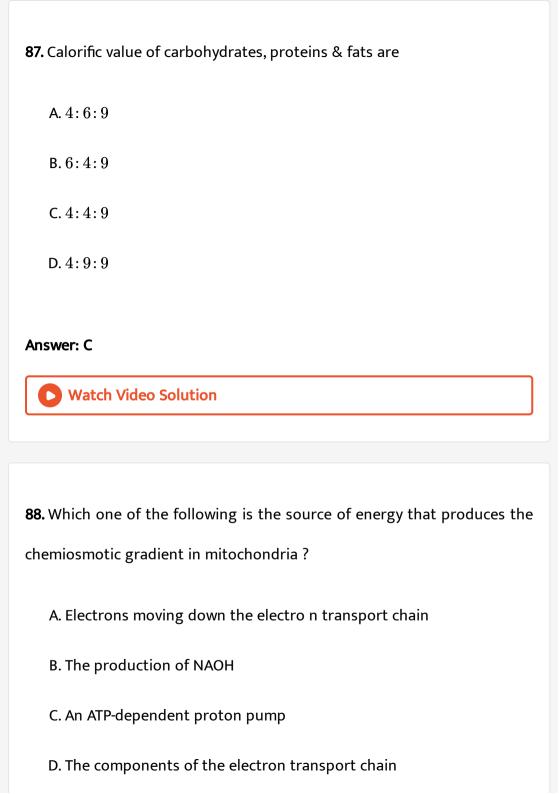
Answer: A

Watch Video Solution

85. Differences between photophosphorylation (PP) and oxidative phosphorylation (OP) is

- A. (a) In PP it is the synthesis of ATP while in OP it is of ADP
- B. (b) In PP, ${\cal O}_2$ is evolved while in OP ${\cal O}_2$ is used up

- C. (c) Both can not take place in light .


 D. (d) PP occurs in green leaves while OP cannot occur in green leaves

 Answer: B

 Watch Video Solution
- **86.** Which one is absent in erythrocytes?
 - A. Krebs' cycle
 - B. Enzymes
 - C. EMP pathway
 - D. Hyaloplasm

Answer: A

Answer: A

Watch Video Solution

89. When ${\cal O}_2$ is not available to a muscle, NAOH formed in glycolysis does not pass electrons to the ETC. Instead it passes them to

- A. Acetyl Co A
- B. pyruvic acid
- C. fructose
- D. ADP

Answer: B

Watch Video Solution

90. Number of Oxygen atoms required for complete oxidation of pyruvic acid is

A. 6 B. 12 C. 3 D. 8 Answer: A **Watch Video Solution** 91. Cyanide kills the organisms/stop cell activity by A. (a) reducing water potential B. (b) decreasing diffusion of oxygen C. (c) interfering in respiratory mechanism by preventing transfer of electron from copper of cyt a_3 to oxygen D. (d) coagulating proteins of carriers in ETC **Answer: C**

92. During oxidative phosphorylation, protons return to

A. (a) matrix from outside

B. (b) outside from matrix

C. (c) in both directions

D. (d) mitochondria to cytoplasm

Answer: A

Watch Video Solution

93. The energy from electron transport is utilized in transporting proton

 $\left(H^{\,+}
ight)$ from

A. (a) matrix to outside

B. (b) outside to matrix

C. (c) in both directions
D. (d) none of these
Answer: A
Watch Video Solution
94. Enzyme helping in oxidative decarboxylation of pyruvate is
A (a) nyruvate kinase

B. (b) pyruvate dehydrogenase

C. (c) succinic dehydrogenase

D. (d) pyruvate oxidase

Watch Video Solution

Answer: B

95. Glyceraldehyde phosphate is oxidised in glycolysis. What is the fate of hydrogen atom and electron liberated?

A. (a) reduce NAD^+

B. (b) oxidise NAD^+

C. (c) transferred to pyruvic acid

D. (d) eliminated

Answer: A

- **96.** In Which step, CO_2 is not released?
 - A. (a) Glycolysis
 - B. (b) Lactic acid fermentation
 - C. (c) Oxidation of malic acid into OAA
 - D. (d) All of the above

Answer: D

Watch Video Solution

97. General equation for aerobic respiration is

A.
$$6CO_2+6H_2O
ightarrow C_6H_{12}O_6+6O_2$$

В.
$$C_6 H_{12} O_6 + 6 O_2
ightarrow 6 C O_2 + 6 H_2 O + 686$$
 Ксаl

C.
$$C_6H_{12}O_6
ightarrow 2C_2H_5OH+2CO_2+2ATP$$

D.
$$C_{22}H_{22}O_{116}O_2 o 6CO_2 + 6H_2O + 686 ext{cal}$$

Answer: B

Watch Video Solution

98. The number of glucose molecules required to produce 38 ATP molecules under anaerobic conditions by a yeast cells is

A. (a) 2 B. (b) 1 C. (c) 19 D. (d) 38 **Answer: C** Watch Video Solution 99. One turn of Krebs' cycle produces A. 1 $FADH_2$, 1 NADH and 1 ATP B. 1 $FADH_2$, 2 NADH and 1 ATP C. 1 $FADH_2$, 3 NADH and 1 ATP D. 2 $FADH_2$, 2 NADH and 2 ATP **Answer: C Watch Video Solution**

100. Excess of ATP inhibits respiration by inhibiting one of the following enzymes

A. (a) phosphofructokinase

B. (b) pyruvic dehydrogenase

C. (c) isomerase

D. (d) acomitase

Answer: A

Watch Video Solution

101. Anaerobic respiration of animals/humans produces

A. (a) CO_2 and H_2O

B. (b) C_2H_5OH and CO_2

C. (c) Lactic acid and $H_2{\cal O}$

D. (d) Glucose and O_2

Answer: C

Watch Video Solution

102. Choose the correct statement

A. respiration is carried out by only leaf cells

B. end product of anaerobic respiration is ${\cal CO}_2$ + Pyruvic acid

C. substrate level phosphorylation occurs when lpha-ketoglutaric acid

changes to succinic acid

D. dark respiration in plants occurs only in night

Answer: C

103. In alcoholic fermentation by yeasts, the $NADH_2$ produced during glycolysis is used to reduce

A. Acetaldehyde to ethanol

B. NADP to $NADPH_2$

C. Pyruvic acid to lactic acid

D. Lactic acid to pyrvic acid

Answer: A

Watch Video Solution

104. Maximum energy is obtained by the oxidation of

A. glucose

B. palmitic acid

C. malic acid

D. amino acid

Answer: B

Watch Video Solution

105. Fat has two components, glycerol and fatty acids. They enter common pathway of respiration as

- A. DHAP and ketoglutarate
- B. Di-HAP and acetyl CoA
- C. Glycolic acid and acetyl CoA
- D. OAA and Glyceric acid

Answer: B

Watch Video Solution

106. If it is calculated that less than 5% of the energy of glucose is recovered as ATP in glycolysis, the remaining energy is left in

A. CO_2 and NADPH

B. Pyruvate and $FADH_2$

C. Pyruvate and NADH

 $D. CO_2$ and $NADH_2$

Answer: C

Watch Video Solution

- - A. (a) they respire fat and protein
 - B. (b) they utilize and respire carbohydrate and fat

107. Why the usual RQ for humans lies between 0.7 and 1.0 because

- C. (c) they respire carbohydrate and proteins
- D. (d) they respire proteins and carbohydrate

Answer: B

108. How many molecules of NADH are left at the end of anaerobic respiration

- (a) 2
- (b) 4
- (c) 6
- (d) 0
 - A. 2
 - B. 4
 - C. 6
 - D. 0

Answer: D

A. Flavin & Acetyl CoA B. Fatty acid C. NADH D. NAD^+ **Answer: B Watch Video Solution** 110. A business man of 70 kg weight requires 2800 kcal energy daily. How many glucose molecules and ATP molecules does he require to produce this much energy? A. 20 molecules of glucose and 384 molecules of ATP B. 11 molecules of glucose and 380 molecules of ATP C. 1 Molecule of glucose and 38 molecules of ATP D. 6 molecules of glucose and 584 molecules of ATP

Answer: B

Watch Video Solution

111. Which intermediate product is found in all three of the following process

- (a) anaerobic respiration
- (b) aerobic respiration
- (c) photosynthesis
 - A. succinic acid
 - B. lactic acid
 - C. Ri bulose diphosphate
 - D. Phosphoglyceric acid

Answer: D

112. In glycolysis, enzyme enolase produces
A. PGA
B. PEP
C. PGAL
D. Pyruvate
Answer: B
Watch Video Solution
113. Number of carbon atoms available in acetyl CoA is
113. Number of carbon atoms available in acetyl CoA is A. 6
A. 6
A. 6 B. 4

Answer: D

Watch Video Solution

114. Which can readily respire without oxygen?

- A. Anabaena
- B. Saccharomyces
- C. Mushroom
- D. Fish

Answer: B

Watch Video Solution

115. Cytochrome is a component of ETC in mitochendria/chloroplast, acting as electron acceptor. It is a

A. glycoprotein B. lipid

C. $Ca2^+$ containing metallo flavoprotein

D. Fe^{+++} containing prophyrin pigment protein

Answer: D

Watch Video Solution

116. First oxidative decarboxylation during aerobic respiration occur in

A. cytoplasm

B. mitochondrial inner spac

C. mitochondrial outer space

D. mitochondrial matrix.

Answer: D

117. One mole of glucose on complete oxidation in aerobic respiration yields ?

A. 2870 KJ

B. 5000 KJ

C. 686 KJ

D. 1870 KJ

Answer: A

Watch Video Solution

118. Protons $(asNADH, FADH_2)$ taking par in oxidative phosphorylation enter mitochondira as

A. OAA

B. Acetyl-CoA

C. Pyruvic acid
D. Acetaldehyd
Answer: C
Watch Video Solution
119. Number of multiprotein complexes in ETS in mitochondria is
A. 2
B. 3
C. 4
D. 5
Answer: D
Watch Video Solution

120. Complex V in ETC consists of

- A. (a) $F_0 F_1$
- B. (b) ATP synthase
- C. (c) Both a) and b)
- D. (d) Cytochrome C oxidase

Answer: C

121. In which one of the following do the two names refer to one and the same thing

- A. Citric acid cycle and Calvin cycle
- B. Krebs' cycle and Calvin cycle
- C. TCA cycle and urea cycle
- D. Tricarboxylic acid cycle and citric acid cycle

Answer: D

Watch Video Solution

122. ETC is also called

- A. (a) photooxidation
- B. (b) oxidative phosphorylation
- C. (c) cyclic phosphorylation
- D. (d) noncyclic phosphorylation

Answer: B

Watch Video Solution

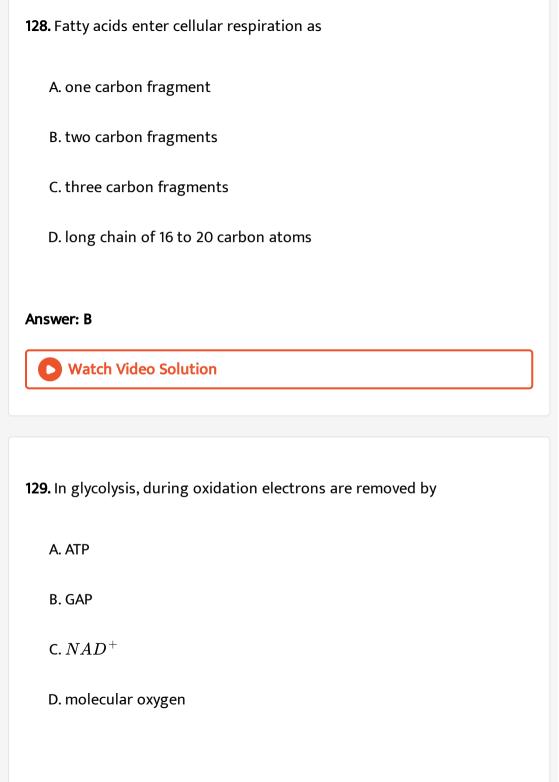
123. Which one of the following enzymes is absent in electron transport system?

A. NADH dehydrogenase B. Cytochrome C-oxidas C. Succinate Q-reductase D. G_e phosphate dehydrogenase Answer: D **Watch Video Solution** 124. Which one of the following enzymes of respiratory pathway has the coenzyme FAD hnked with it? A. Citric acid synthetase B. Fumerase C. Succinic acid dehydrogenase D. Answer: C

125. During the reaction $C_6H_{12}O_6+6O_2 o 6CO_2+6H_2O$ which compound is reduced ?

- A. Oxygen
- B. Carbon dioxide
- C. Glucose
- D. Water

Answer: A


Watch Video Solution

126. Glyceraldehyde-3-phosphate is

A. produced from glucose during glycolysis

B. part of PS-I

C. produced from pyruvate before entering the mitochondria
D. an amino acid used for making protein
Answer: A
Watch Video Solution
127. Dough kept overnight in warm weather becomes soft and spongy due to
A. absorption of carbon dioxide from atmosphere
B. fermentation
C. cohesion
D. osmosis
Answer: B
Watch Video Solution

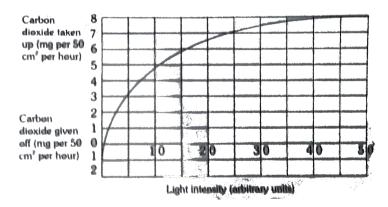
Answer: C

Watch Video Solution

130. The production of ATP by oxidative phosphorylation is driven by energy from

- A. coenzyme A
- B. cytochromes
- C. formation of NADH
- D. diffusion of protons from inter membrane space to the matrix of mitochondrion

Answer: D


- A. use a hydrogen ion (proton) gradient to produce ATP
- B. obtain electron from water
- C. reduce NAD^+ , forming NADP
- D. release oxygen as a by product

Answer: A

Watch Video Solution

132. The graph shows the relation between light intensity and the giving off and taking up of carbon dioxide by the leaves of a plant. Why is most carbon dioxide given off when the light intensity is zero units.

- A. because it is just the start of the experiment
- B. only respiration is taking place at this intensity of light
- C. the rate of photosynthesis is equivalent to the rate of respiration
- D. the rate of photosynthesis is more than the rate of respiration

Answer: B

Watch Video Solution

133. Chemiosmosis is

- A. (a) synthesis of ATP using the driving force of proton gradient across mitochondrial inner membrane
- B. (b) synthesis of ATP by the discharge of chemical potential created
- by protons on different sides of a membrane
- C. (c) chemical synthesis of ATP by taking energy rich bond from a respiratory substrate

Answer: D Watch Video So	lution		
134. Which of the follo	owing process m	nakes direct use of oxyge	en ?
A. (a) Glycolysis			
B. (b) Fermentatio	n		
C. (c) Electron trar	sport chain		
D. (d) Krebs cycle			
Answer: C			
Watch Video So	lution		

- A. evolution of O_2 in photosynthesis
- B. evolution of CO_2 in photosynthesis
- C. evolution of CO_2 in aerobic respiration
- D. evolution of heat in aerobic respiration

Answer: C

Watch Video Solution

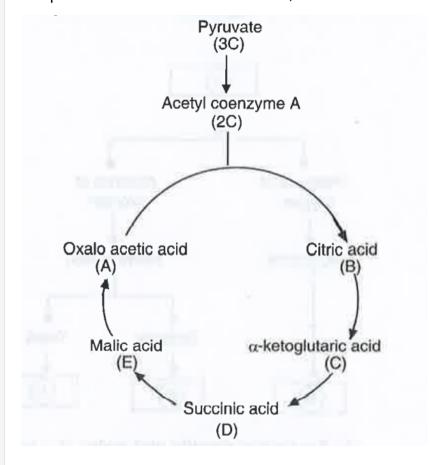
136. During which stage in the complete oxidation of glucose are the greatest number of ATP molecules formed from ADP

Or

Largest amount of phosphate bond energy is produced in the process of respiration during

- A. (a) Electron transport chain
- B. (b) Glycolysis
- C. (c) Krebs' cycle

D. (d) Oxidation of pyruvic acid	
nswer: A	


Watch Video Solution

- 137. In glycolysis ultimately (or end product of glycolysis is)
 - A. Acetyl CoA
 - B. pyruvate
 - C. ethanol
 - D. $CO-2+H_2O$

Answer: B

138. Choose the correct combination of labelling the number of carbon compounds in the substrate molecules, involved in the citric acid cycle

A. (A) 4C, (B) 6C, (C) SC, (D) 4C, (E) 4C

B. (A) 6C, (B) SC, (C) 4C, (D) 3C, (E) 2C

C. (A) 2C, (B) 3C, (C) 4C, (D) SC, (E) 6C

D. (A) 4C, (B) SC, (C) 6C, (D) 4C, (E) 4C

Answer: A

Watch Video Solution

139. Which is not true for glycolysis

- A. End product is CO_2 and H_2O
- B. Substrate level phosphorylation
- C. Production of ATP
- D. Expenditure of ATP

Answer: A

Watch Video Solution

140. How many ATP molecules could maximally be generated from one molecule of glucose, if the complete oxidation of one mole of glucose to

D. Thirty

Answer: A

141. All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membranes in eukaryotes and in cytosol in prokaryotes. This enzyme is

A. malate dehydrogenase

B. succinate dehydrogenase

C. lactate dehydrogenase

D. isocitrate dehydrogenase

Answer: B

Watch Video Solution

142. Which one of the following mammalian cells is not capable of metabolising glucose to carbon-dioxide aerobically?

- A. Liver cells
- B. Red blood cells
- C. White blood cells
- D. Unstriated muscle cells

Answer: B

143. The overall goal of glycolysis, Krebs cycle and the electron transport system is the formation of

A. sugars

B. nucleic acids

C. ATP in small stepwise units

D. ATP in one large oxidation reaction

Answer: C

Watch Video Solution

144. A competitive inhibitor of succinic dehydrogenase is

A. Malonate

B. Succinate

C. Citrate

D. Fumarate

Watch Video Solution

145. In Krebs cycle, the following reactions are involved in the production of 15 ATP molecules by oxidation of food stuffs

- 1. Oxidation of pyruvic acid to acetyl Co-A
- 2. Oxidation of alpha-ketoglutaric acid
- 3. Oxidation of isocitrate
- 4. Oxidation of malate
- 5. Oxidation of succinate
- 6. Conversion of succinyl Coenzyme-A to succinic acid.

The correct sequence of these reactions is:

- A. 1, 2, 4, 3, 5, 6
- B. 1, 3, 2, 6, 5, 4
- C. 1, 4, 3, 2, 5, 6
- D. 1, 2, 4, 5, 3, 6

Answer: B

Watch Video Solution

cytochrome Co-complex

146. Carbon monoxide inhibits mitochondrial electron transport by

- A. Inhibiting the electron transfer of complex
- B. Blocking electron transport at the level of the cytochrome-b
- C. Binding to the oxygen binding site of cytochrome oxidase
- D. Binding to haemoglobin in the erythrocytes and therefore blocking

the transport of oxygen to tissues

Answer: C

- A. Pyruvate kinase
- B. Phosphofructo kinase
- C. Phosphoglucoisomerase
- D. Gluco kinase

Answer: B

Watch Video Solution

148. Match List-I (Compound oxidized during Kreb's cycle) with List-II (Compound formed on oxidation) and select the correct answer using the

codes given below the lists:

List- I (Compound oxidized during Kreb's cycle)	List-II (Compound formed on oxidation)			
A Pyruvic acid	Acetyl Co-A			
B. Isocitric acid	2. Succinyl Co-A			
C. α-Ketoglutaric acid	3. Oxaloacetic acid			
D. Succinic acid	 α–ketoglutaric acid 			
	5. Fumaric acid			

Codes A B C D $(1) \qquad 1 \quad 3 \quad 2 \quad 5$ ${\rm Codes} \ A \ B \ C \ D$ B. (2) 2 1 3 4 Codes A B C Dc. (3) 3 1 2 5 Codes A B C DD. (4) 1 4

2 5

Answer: D

149. If glucose-fed yeast cells are transferred from aerobic environment to anaerobic one, the rate of glucose consumption will

A. Decrease

B. Increase

C. Alter, depending on concentration of other nutrients

D. Will not change

Answer: B

150. Which of the following is not a substrate for decarboxylation?

A. Pyruvate

B. Citrate

C. Alpha-keto-glutarate

D.

Answer: B

Watch Video Solution

151. All of the following are four carbon compounds except

- A. Malic acid
- B. Succinic acid
- C. Pyruvic acid
- D. Oxaloacetic acid

Answer: C

Watch Video Solution

152. The citric acid cycle

A. Is the major anabolic pathway for glucose synthesis

- B. Is an anaerobic process
- C. Generates fewer molecules of ATP than glycolysis
- D. Contains intermediates for amino acid synthesis

Answer: D

Watch Video Solution

- 153. During aerobic respiration, all the ATPs are synthesized as a result of
 - A. Oxidative phosphorylation
 - B. Oxidative and substrate level phosphorylation
 - C. Substrate level phosphorylation
 - D. Oxidative and photophosphorylation

Answer: B

154. Kreb's cycle

- A. Liberates a minor part of energy during respiration
- B. Is operative in photorespiration
- C. Reactions are independent of oxygen supply
- D. Is a link between carbohydrate and nitrogen metabolism

Answer: D

Watch Video Solution

155. Consider the following

- 1. Succinic dehydrogenase
- 2. Aconitase
- 3. α -ketoglutarate dehydrogenase
- 4. Isocitric dehydrogenase

What is the correct order in which the above enzymes catalyze the reaction in Kreb's cycle?

- A. 1-2-3-4
- B. 2 4 1 3
- C. 3 2 4 1
- D. 2-4-3-1

Answer: D

Watch Video Solution

156. Which one of the following is the correct sequence of electron transport in Mitochondria?

- A. (a) NADH to UQ to Cyt b to cyt c_1 to Cyt toCyt a to Cyt a_3 to O_2`
 - B. (b) NADH to Cyt a to Cyt a 3 to UQ to Cytb to Cyt c 1 to Cyt c to O 2`

C. (c) NADH to UQ to Cyt b to Cyta to Cyt a 3 to Cyt c to Cytc 1 to O 2`

D. (d) NADH to Cyt b to Cyt c 1 to Cyt c to UQ to Cyt a to Cyt a 3 to O 2`

Answer: A

157.	Consider	the fol	lowing	enzymes	of gl	vcolvtic	pathway	,
				,	~· ~·	, ,	P ,	,

- 1. Glyceraldehyde-3 phosphate dehydrogenase
- 2. Enolase
- 3. Pyruvate kinase
- 4. Phosphoglycerate kinase

The correct order in which they appear in the pathway is

- A. 2,1,4,3
- B. 3, 2, 1, 4
- C. 4, 3, 2, 1
- D. 1,4,2, 3

Answer: D

158. Consider the following intermediates formed during Krebs cycle

- 1. α -ketoglutarate 2. Isocitrate
- 3. Succinate 4. Malate
- 5. Fumerates

The correct sequences in which the above intermediates are formed is -

- A. 1, 2, 4, 3, 5
- B. 2, 1, 5, 4, 3
- C. 3, 1, 2, 5, 4
- D. 2,1,3, 5,4

Answer: D

Watch Video Solution

159. Consider the following statements in Citric Acid Cycle

- 1. The generation of ATP is done at two steps
- 2. NAD is reduced to NADH at two steps

3. FAD is reduced to $FADH_2$, at one step

Which of the statements given above is/are correct?

- A. 1 and 2 only
- B. 3 only
- C. 1 and 3 only
- D. 1, 2 and 3

Answer: B

Watch Video Solution

- **160.** Consider the following
- 1. Two lactate molecules
- 2. Two Pyruvate molecules
- 3. Two ATP molecules
- 4. Two $NADH+2H^{\,+}$

Which of the above are the end products of aerobic glycolysis?

- A. 1 and 4
- B. 1 and 3
- C. 1, 3 and 4
- D. 2, 3 and 4

Answer: D

Watch Video Solution

- 161. Consider the following:
- 1. Succinate 2. Succinyl CoA
- 3. $NADH + H^+$ 4. CO_2

When α -ketoglutarate dehydrogenase enzyme acts on α -ketoglutarate, which of the above are produced?

- A. 1 and 2 only
 - B. 1 and 3 only
 - C. 1, 3 and 4

D. 2, 3 and 4

Answer: D

Watch Video Solution

162. Which of the following serves as the breakdown site for beta-oxidation?

- A. Cytosol
- B. Extramembrane space of mitochondria
- C. Matrix of mitochondria
- D. Smooth endoplasmic reticulum

Answer: C

163. The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl CoA. Which of the following changes will increase the metabolic consumption of pyruvate?

- A. High levels of ATP
- B. High levels of NADH
- C. Low levels of glucose
- D. Low levels of Acetyl CoA

Answer: D

Watch Video Solution

164. During carbohydrate metabolism, NADH is produced in which of the following location(s)?

- I. Cytosol
- II. Mitochondrial matrix

III. Nucleus

A. I only B. II only C. I and II only D. I, II, and III **Answer: C Watch Video Solution** 165. When examining the TCA cycle, alpha ketoglutarate dehydrogenase complex requires the set of cofactors as which of the following? A. Citrate synthase B. Cis-aconitate C. Pyruvate dehydrogenase D. Fumarate Answer: C

166. For each acetyl Co-A oxidized by the citric acid cycle, what is the energy gain?

- A. Two molecules of NADH, one $FADH_2$ and one nucleoside triphosphate
- B. Three molecules of NADH, one $FADH_2$ and one nucleoside ${\it triphosphate}$
- C. Two molecules of NADH, one $FADH_2$ and two nucleoside triphosphate
- D. Three molecules of NADH, one $FADH_2$ and two nucleoside ${\it triphosphate}$

Answer: B

167. True about citric acid cycle

A. 8 ATP molecules are produced

B. Fat soluble vitamins are required

C. Involved in fatty acid synthesis

 D . O_2 is consumed

Answer: C

Watch Video Solution

168. A person with a coenzyme Q deficiency will have a defect in oxidative phosphorylation. Which of the following would be expected in this person?

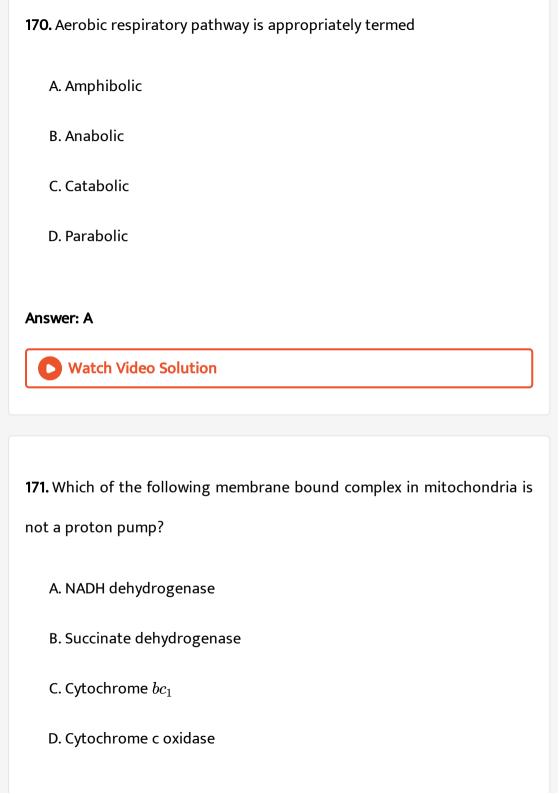
A. (a) accumulation of glucose

B. (b) accumulation of lactate

C. (c) high levels of ATP

D. (d) fructose deficiency

Answer: B


Watch Video Solution

169. Fluoroacetate, a potent toxin extracted from plants, is converted to fluorocitrate, which is a strong inhibitor of the TCA cycle. Which of the following would be expected in a person exposed to fluoroacetate?

- A. an increase in intracellular levels of ATP
- B. an increase in intracellular levels of glucose
- C. a decrease in levels of ethanol
- D. a decrease in the function of the electron transport chain

Answer: D

Answer: B Watch Video Solution 172. Citric acid cycle is......step in carbohydrate metabolism A. First B. Second C. Third D. Fourth **Answer: C** Watch Video Solution 173. Respiratory quotient (R.Q.) for a fatty acid, Tripalmitin is A. 0.9

C. 1
D. 0.7
Answer: D
Watch Video Solution
174. In mitochondria, protons accumulate in the
A. Outer membrane
B. Inner membrane
C. intermembrane space
D. Matrix
Answer: C
Watch Video Solution

B. 1.4

175. Total number of ATP molecules produced per glucose molecule in
eucaryotic cell is

A. 4

B. 36

C. 2

D. 38

Answer: C

Watch Video Solution

176. Two pairs of electrons passing from NADH molecules to oxygen generate

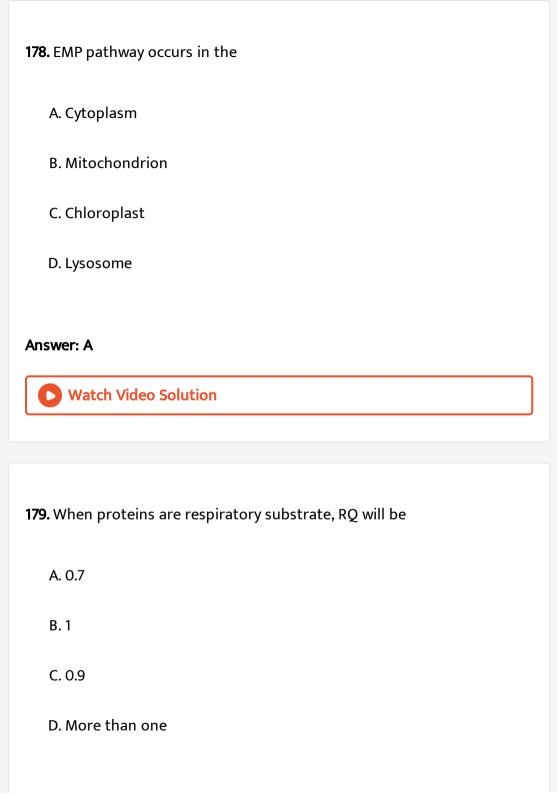
A. (a) 3 ATP

B. (b) 4 ATP

C. (c) 6 ATP

D. (d) 2 ATP

Answer: C


Watch Video Solution

177. Which of these steps in Kreb's cycle indicates substate level phosphorylation

- A. (a) Conversion of succinic acid to alpha -ketoglutaric acid
- B. (b) Conversion of succinic acid to malic acid
- C. (c) Conversion of succinyl CoA to succinic acid
- D. (d) Conversion of citric acid to alpha-ketoglutaric acid

Answer: C

Answer: C

Watch Video Solution

180. Anaerobic respiration in yeast yields

- A. (a) Ethanol and CO_2
- B. (b) Lactic acid and ${\cal O}_2$
- C. (c) CO_2 and water
- D. (d) Pyruvic acid and O_2

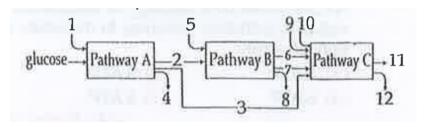
Answer: A

Watch Video Solution

181. Arrange the following compounds of Krebs cycle in an ascending order with respect to the number of carbon atoms they possess

{A) Succinic acid (B) Acetyl Co -A

(C) a - Ketoglutaric acid (D) Citric acid A. A-D-C-B B. C - A - D - B C. B-A-C-D D. D -C- B -A **Answer: C Watch Video Solution** 182. Which of the following biomolecules is common to respirationmediated breakdown of fats, carbohydrates and proteins A. Pyruvic acid B. Acetyl CoA C. Glucose - 6 -phosphate


D. Fructose 1, 6 - bisphosphate

Answer: B

Watch Video Solution

183. The three boxes in this diagram represent the three major biosynthetic pathways in aerobic respiration. Arrows represent net reactants or products.

Arrows numbered 4, 8 and 12 can all be

A. H_2O

 $B. FAD^+ \text{ or } FADH_2$

C. NADH

D. ATP

Answer: D

Watch Video Solution

184. In which one of the following processes CO_2 is not released

- A. Lactate fermentation
- B. Aerobic respiration in plants
- C. Aerobic respiration in animals
- D. Alcoholic fermentation

Answer: A

Watch Video Solution

185. Last $e^{\,-}$ acceptor during ETS is

A. O_2

B. Water C. Cytockrome C D. Cytochrome a_3 Answer: A **Watch Video Solution** 186. Which of the following biomolecules is common to respirationmediated breakdown of fats, carbohydrates and proteins A. Glucose-6-phosphate B. Fructose 1, 6-bisphosphate C. Pyruvic acid

Answer: D

D. Acetyl CoA

187. Oxidative phosphorylation is

A. Formation of ATP by transfer of phosphate group from a substrate to ADP

- B. Oxidation of phosphate group in ATP
- C. Addition of phosphate group to ATP
- D. Formation of ATP by energy released from electrons removed during substrate oxidation

Answer: D

Watch Video Solution

188. Which of the following cell organelles is responsible for extracting energy from carbohydrates to form ATP?

A. Lysosome

- B. Ribosome
- C. Chloroplast
- D. Mitochondrion

Answer: D

Watch Video Solution

189. Which statement is wrong for Krebs' cycle?

A. There are three points in the cycle where $NAD^{\,+}\,$ is reduced to

$$NADH+H^{\,+}$$

- B. There is one point in the cycle where $FAD^{+}\,$ is reduced to $FADH_{2}\,$
- C. During conversion of succinyl CoA to succinic acid, a molecule of

GTP is synthesized

pyruvic acid to yield citric acid

D. The cycle starts with condensation of acetyl group (acetyl CoA) with

Answer: D

Watch Video Solution

190. Which of these statements is incorrect.

- A. Oxidative phosphorylation takes place in outer mitochondrial membrane
- B. Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
- C. Glycolysis occurs in cytosol.
- D. Enzymes of TCA cycle are present in mitochondrial matrix.

Answer: A

