

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

DIFFERENTIAL EQUATIONS

Basic Concepts Short Answer Type Questions I

1. Form the differential equation of the family of parabolas

having vertex at origin and axis along positive y-axis.

2. Find the order and degree of the differential equation,

$$\left(rac{ds}{dt}
ight)^4 + 3srac{d^2s}{dt^2} = 0$$

Watch Video Solution

3. Find the order and degree of the differential equation,

$$xy, rac{d^2y}{dx^2} + xigg(rac{dy}{dx}igg)^2 - yrac{dy}{dx} = 0.$$

Watch Video Solution

4. Form a differential equation representing the given family

of curves by eliminating arbitrary constants a and b.

$$rac{x}{a}+rac{y}{b}=1$$

5. Find the order and the degree of the differential equation

$$rac{d^3y}{dx^2}+rac{d^2y}{dx^2}+rac{dy}{dx}=0$$

Watch Video Solution

6. Find the order and degree, if defined of the differential

equation,
$$\left(rac{d^2y}{dx^2}
ight)^3+\left(rac{dy}{dx}
ight)^2- ext{sin.}~rac{dy}{dx}+1=0.$$

Watch Video Solution

7. Find the order and the degree of the differential equation

$$rac{d^3y}{dx^2}+rac{d^2y}{dx^2}+rac{dy}{dx}=0$$

8. Find the differential equation of the family of all straight

lines passing through the origin.

10. If m and n are the order and degree, respectively of the

differential equation
$$y igg(rac{dy}{dx} igg)^3 + x^3 igg(rac{d^2 y}{dx^2} igg)^2 - xy = \sin x$$
 ,

then write the value of m + n.

11. Write the differential equation representing the curve

 $y^2 = 4ax$, where a is an arbitrary constant.

Watch Video Solution

12. Write the degree of the differential equation $\left(\frac{d^2s}{dt^2}\right) + \left(\frac{d^3s}{dt}\right)^3 + 4 = 0.$ Watch Video Solution

13. Write the degree of the differential equation

$$x^3igg(rac{d^2y}{dx^2}igg)^2+x\,\left(rac{dy}{dx}igg)^4=0.$$

14. Write the degree of the differential equation

$$\left(rac{dy}{dx}
ight)^4 = 3x\;rac{d^2y}{dx^2} = 0.$$

Watch Video Solution

15. Write the degree of the differential equation :

$$xigg(rac{d^2y}{dx^2}igg)^3+yigg(rac{dy}{dx}igg)^4+x^3=0$$

Watch Video Solution

16. Write the differential equation formed from the equation

y = mx + c , here m and c are arbitrary constants.

17. Write the degree of the differential equations :

$$\left(rac{d^2y}{dx^2}
ight)-2. \ rac{d^2y}{dx^2}-rac{dy}{dx}+1=0.$$

Watch Video Solution

18. Write the degree of the differential equation :

$$y_{\cdot} \, rac{d^2 y}{dx^2} + \left(rac{dy}{dx}
ight)^3 = x igg(rac{d^3 y}{dx^3}igg)^2.$$

Watch Video Solution

Basic Concepts Short Answer Type Questions li

1. Find the differential equation representing the family of curves y=asin (x+b), where a,b are arbitrary constants.

2. The differential equations of all circles touching the x-axis

at origin is

Basic Concepts Long Answer Type Questions li

1. Form the differential equation of the family of circles touching the y-axis at origin.

2. Form the differential equation of the family of parabolas

having vertex at origin and axis along positive y-axis.

Watch Video Solution

3. Form the differential equation of the family of circles

having centre on y-axis and radius 3 units.

Watch Video Solution

4. Form the differential equation representing the family of

ellipses having foci on x-axis and centre at the origin.

5. Form the differential equation of the family of circles in

the second quadrant and touching the coordinate axes.

Watch Video Solution

6. Find the differential equation of all the circles in the first quadrant which touch the coordinate axes.

Watch Video Solution

7. Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.

8. Obtain the differential equation of all circles of radius r_{\cdot}

Watch Video Solution

Variable Separable Method Short Answer Type Questions Ii

1. Find the equation of the curve passing through the point

(-2,3) given that the slope of the tangent to the curve at

any point $(x,y)israc{2x}{y^2}$.

2. Find the equation of the curve passing through the point

Variable Separable Method Long Answer Type Questions Ii

1. Find the general solution of the differential equations $e^x an y dx + (1 - e^x) \sec^2 y dy = 0$

Watch Video Solution

2. If y(x) is a solution of the differential equation $\left(\frac{2+\sin x}{1+y}\right)\frac{dy}{dx} = -\cos x$ and y(0) = 1, then find the value of $y\left(\frac{\pi}{2}\right)$.

Watch Video Solution

3. Find the particular solution of the differential equation

$$e^x\sqrt{1-y^2}dx+rac{y}{x}dy=0, ext{ given that }y=1$$
 when $x=0$

4. Solve the following differential equation:

$$\cos ec \ x \log y \frac{dy}{dx} + \ x^2 y^2 = 0$$

Vatch Video Solution

5. Find the particular solution of the differential equation

 $\frac{dy}{dx} = \frac{x(2\log x + 1)}{(\sin y + y\cos y)}, \text{ given that } y = \frac{\pi}{2} \text{ when } x = 1.$ Watch Video Solution

6. Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$, given that y = 0 when x = 1.

7. Find the particular solution of the differential equation $x(1+y^2)dx - y(1+x^2)dy = 0$, given that y = 1 when x = 0.

Watch Video Solution

8. Find the particular solution of the differential equation

 $rac{\log(dy)}{dx} = 3x + 4y$ given that y = 0 when x = 0

10. Find the particular solution of the following differential equation:
$$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$$
, given that $y = 1$ when $x = 0$.

11. Find the particular solution of the following differential equaiton :

$$(x+1)rac{dy}{dx}=2e^{-y}-1,y=0$$
 when x = 0.

12. Find the particular solution of the differential equation

 $xyrac{dy}{dx}=(x+2)(y+2), ext{ it being given that y = -1 when x =}$

1.

Watch Video Solution

13. Find the particular solution of the differential equation :

$$xig(x^2-1ig)rac{dy}{dx}=1;y=0;$$
 when $x=2$

Watch Video Solution

14. Solve the following differential equation:
$$3e^x \tan y \, dx + (2 - e^x) \sec^2 y \, dy = 0$$
, given that when $x = 0, \ y = \frac{\pi}{4}$.

16. Solve the following differential equation : $(1+y^2)(1+\log x)dx + x \setminus dy = 0$

Watch Video Solution

17. Find the particular solution of the differential equation $(1+e^{2x})dy+(1+y^2)e^xdx=0,\,\,$ given that y=1 when x=0.

19. Find the particular solution of the differential equation satisfying the given conditions: $\frac{dy}{dx} = y \tan x$, given that y = 1 when x = 0

Linear Differential Equations Long Answer Type Questions I

1. Find the particular solution of the differential equation. $\frac{dy}{dx} + y \cot x = 4x \ \cos ec \, x, \ (x \neq 0), \$ given that y = 0 when $x = \frac{\pi}{2}$.

Watch Video Solution

2.
$$ydx - (x+2y^2)dy = 0$$

3. Solve the differential equation
$$\frac{dy}{dx} + y \sec x = \tan x, 0 \le x < \frac{\pi}{2}.$$

4. Find the general solution of the differential equation $\frac{dy}{dx} + y \cot x = 2x + x^2 \cdot \cot x.$

Watch Video Solution

5. Find the particular solution of the differential equation

$$rac{dy}{dx}+rac{2xy}{1+x^2}=1$$
 when y = 0 and x = 1.

6. Solve
$$(x\log x)rac{dy}{dx} + y = rac{2}{x}\log x.$$

7. Solve the following differential equation :

$$\frac{(x^2 - 1) dy}{dx} + 2x y = \frac{2}{(x^2 - 1)}$$
Watch Video Solution
8. Solve $(1 + x^2) \frac{dy}{dx} + y = e^{\tan^{-1}x}$.
Watch Video Solution
Watch Video Solution

9. Solve the differential equation: $rac{dy}{dx} + y \cot x = 2 \cos x$

10.
$$rac{dy}{dx} + 2y an x = \sin x$$

11. Find the particular solution of the following differential

equation :

$$rac{dy}{dx}-y=\cos x$$
 for x = 0, y = 1.

12. Find the particular solution of the following differential

equaiton given that at x = 2, y = 1

$$x.~rac{dy}{dx}+2y=x^2, (x
eq 0)$$

16. Solve the following differential equation: $\cos^2 x \frac{dy}{dx} + y = \tan x$ Watch Video Solution

18.
$$xdy - \left(y + 2x^2\right)dx = 0$$

19.
$$xdy+ig(y-x^3ig)dx=0$$

20. Solve the following differential equation:

$$(1 + y + x^2)dx + (x + x^3)dy = 0$$

Vatch Video Solution

21. Find the particular solution of the following differential

equation satisfying the given condition : $rac{ig(3x^2+yig)dx}{dy}=x,\ x>0,$ when $x=1,\ y=1$

22. Find the particular solution of the differential equation($an^{-1}y - x$) $dy = (1 + y^2)dx$, given that when $x = 0, \ y = 0$.

23. Find the particular solution of the differential equaiton

 $(x - \sin y)dy + (\tan y)dx = 0$, given that y = 0 when x = 0.

Homogeneous Differential Equations Long Answer Type Questions li 1. In a bank, principle p increases continuously at the rate of

5% per year. Find the principal in terms of time t.

3. Find the equation of a curve passing through $\left(1, \frac{\pi}{4}\right)$ if the slope of the tangent to the curve at any point P(x, y) is

$$rac{y}{x} - \cos^2 \cdot rac{y}{x}$$

4. Find the particular solution of the differential equation

$$xrac{dy}{dx}=y+x\cos ec \Big(rac{y}{x}\Big)=0;$$
 given that $y=0$ when $x=1.$

Watch Video Solution

5. Find the particular solution of the differential equation

$$\left\{xrac{\sin^2 y}{x}-y
ight\}dx+xdy=0$$
, it being given that $y=rac{\pi}{4}$ when $x=1$.

Witch & 1.

Watch Video Solution

6. Solve the following differential equation $x\cos\left(rac{y}{x}
ight)rac{dy}{dx}=y\cos\left(rac{y}{x}
ight)+x, x
eq 0.$

1.

Watch Video Solution

8. Find the particular solution of the differential equation

$$x. \ rac{dy}{dx} - y + \sin \Bigl(rac{y}{x} \Bigr) = 0$$
, given that when x = 2, $y = \pi.$

9. Solve the following differential equation:
$$x \, dy - y \, dx = \sqrt{x^2 + y^2} \, dx$$

10. Solve the following differential equaiton :

$$\Big[x\sin^2 . \, \Big(rac{y}{2}\Big) - y\Big] dx + x dy = 0$$

Watch Video Solution

11. Solve the following differential equaiton :

$$ye^{x\,/\,y}dx=\Big(xe^{x\,/\,y}+y\Big)dy.$$

12. Show that the given differential equation is homogeneous and solve it. $ydx + x \log \Big(rac{y}{x} \Big) dy - 2x dy = 0$

13. Solve the following differential equation:
$$y \, dx + x \log \left(\frac{y}{x} \right) dy = 2x \, dy$$

14. Solve the following differential equation:

$$xy \log\left(\frac{x}{y}\right) dx + \left\{y^2 - x^2 \log\left(\frac{x}{y}\right)\right\} = 0$$

15. Solve the following differential equations

$$egin{aligned} (i)xrac{dy}{dx} &= y-x anrac{y}{x}\ (ii)\Big(x\cos{(\mathrm{y})}/{(\mathrm{x})} + \mathrm{y}\sinrac{y}{x}\Big)ydx &= igg(yrac{\sin(y)}{x} - xrac{\cos(y)}{x}\Big)xdy \end{aligned}$$

Watch Video Solution

Homogeneous Differential Equations Long Answer Type Questions lii

1.
$$ig(x^2+xyig)dy=ig(x^2+y^2ig)dx$$

Watch Video Solution

2. Find the particular solution of the differential equation :

$$xe^{y/x}-y\sin\left(rac{y}{x}
ight)+x.~rac{dy}{dx}\sin\left(rac{y}{x}
ight)=0$$
 For x = 1, y = 0

4. Find the particular solution of the differential equation :

$$x^2 dy = y(x+y) dx = 0$$
, when x = 1, y = 1.

Watch Video Solution

5. Show that the differential equation $x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x - y \sin\left(\frac{y}{x}\right) = 0$ is homogenous. Find

the particular solution of this differential equation, given

that
$$x=1$$
 when $y=rac{\pi}{2}.$

Watch Video Solution

6. Show that the differentia equation $(xe^{y/x} + y) dx = x dy$ is homogeneous. Find the particular solution of this differential equation, given that x = 1 when y = 1.

7. Show that the differential equation
$$\left[x\sin^2\left(\frac{y}{x}\right) - y\right]dx + xdy = 0$$

is homogeneous. Find the particular solution of this differential equation, given that $y = \frac{\pi}{4}$ when x = 1.

8. Find the particular solution of the differential equation :

$$(xdy - ydx)y\sin\left(rac{y}{x}
ight) = (ydx + xdy)x\cos\left(rac{y}{x}
ight)$$
, given

that $y = \pi$ when x = 3.

