© ${ }^{\text {Td doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

II PUC (ANNUAL EXAMINATION 2019)

Part A

1. Define Binary Operation.

- Watch Video Solution

2. Find the principal value of: $\cos ^{-1}\left(-\frac{1}{2}\right)$

D Watch Video Solution

3. Define a scalar matrix.

- Watch Video Solution

4. Find the value of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$

(D) Watch Video Solution

5. If $y=\sin \left(x^{2}+5\right)$, then $\frac{d y}{d x}=$
6. $\int(1-x) \sqrt{x} d x$

D Watch Video Solution

7. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

(D) Watch Video Solution

8. If as line has direction ratios $2,-1,-2$, determine its direction cosines.
9. Objective function of a linear programming problem is

D Watch Video Solution

10. If $\mathrm{P}(\mathrm{E})=0.6, \mathrm{P}(\mathrm{F})=0.3 P(E \cap F)=0.2$ then find $P(F / E)$.

D Watch Video Solution

Part B

1. Show that the function $f: N \rightarrow N$, given by $f(x)=2 x$, is one-one but not onto.
2. If $\left|\sin ^{-1} x\right|+\left|\cos ^{-1} x\right|=\frac{\pi}{2}$, then $x \in$

- Watch Video Solution

3. Write $\cot ^{-1}\left(\frac{1}{\sqrt{x^{2}-1}}\right),|x|>1$ in the simplest form.

D Watch Video Solution

4. Find the area of triangle whose vertices are (2,7), $(1,1)$ and $(10,8)$.

- Watch Video Solution

5. If $y=(\log)^{\cos x}$ find $\frac{d y}{d x}$.
6. $a x+b y^{2}=\cos y$

D Watch Video Solution

7. Find the approximate change in the volume V of a cube of side x meters caused by increasing by side by 2%.

D Watch Video Solution

8. $\int \frac{1}{\cos ^{2} x(1-\tan x)^{2}} d x$
(D) Watch Video Solution
9. Find $\int \sin 2 x . \cos 3 x d x$.

- Watch Video Solution

10. Determine order and degree (if defined) of differential equations given $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$

D Watch Video Solution

11. If $|\vec{a}|=5,|\vec{a}-\vec{b}|=8 a n d|\vec{a}+\vec{b}|=10$, then find $|\vec{b}|$.
12. Find the projection of vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$

D Watch Video Solution

13. Find the distance of the point $(3,-2,1)$ from the plane $2 x$ -
$y+2 z+3=0$.

D Watch Video Solution

14. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that (i) the problem is solved (ii) exactly one of them solves the problem.
15. Check whether the relation R on R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

2. Prove that $\cos ^{-1} \cdot \frac{4}{5}+\cos ^{-1} \cdot \frac{12}{13}=\cos ^{-1} \cdot \frac{33}{65}$

(D) Watch Video Solution

3. By using the elementary transformation, find the inverse of the matrix, $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.

- Watch Video Solution

4. If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ then show that $\frac{d y}{d x}=\tan \left(\frac{\theta}{2}\right)$.

D Watch Video Solution

5. Verify Rolles theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$.

D Watch Video Solution

6. Find the intervals in which the function f given by

$$
f(x)=2 x^{3}-3 x^{2}-36 x+7 \text { is }
$$

(a) strictly increasing (b) strictly decreasing?

- Watch Video Solution

7. $\int x \log x d x$

- Watch Video Solution

8. $\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} d x$.
(D) Watch Video Solution
9. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.
10. Find the differential equation of the family of curves $y=A e^{2 x}+B e^{-2 x}$, where A and B are arbitrary constants.

- Watch Video Solution

11. Find a unit vector perpendicular to each of the vectors
$(\rightarrow a+\rightarrow b) \quad$ and $\quad(\rightarrow a-\rightarrow b) \quad$, where
$\rightarrow a=\hat{i}+\hat{j}+\hat{k}, \rightarrow b=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

12. Show that the four points with position vectors

$$
4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k} \text { and } 5 \hat{i}+8 \hat{j}+5 \hat{k}
$$

are coplanar.

(D) Watch Video Solution

13. Find the vector equation of the plane passing thrugh the points (2,5,-3),(-2,-3,5),(5,3,-3).

D Watch Video Solution

14. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accidents are $0.01,0.03$ and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he i
15. Let $f: N \vec{Y}$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible and its inverse is (1) $g(y)=\frac{3 y+4}{3}$
$g(y)=4+\frac{y+3}{4}$ (3) $g(y)=\frac{y+3}{4}$ (4) $g(y)=\frac{y-3}{4}$

D Watch Video Solution

2. If $A=[1233-21421]$, then show that $A^{3}-23 A-401=0$.
3. Solve the following system of linear equations by matrix method
$3 x-2 y+3 z=8,2 x+y-z=1,4 x-3 y+2 z=4$

(D) Watch Video Solution

4. If $y=\sin ^{-1} x$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$.

D Watch Video Solution

5. The length x of a rectangle is decreasing at the rate of 3 $\mathrm{cm} /$ minute and the width y is increasing at the rate of $2 \mathrm{~cm} /$ minute. When $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter and (b) the area of the rectangle.
6. Find the integral of $\frac{1}{x^{2}-a^{2}}$ with respectto x and hence evaluate $\int \frac{1}{x^{2}-16} d x$

D Watch Video Solution

7. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and line $x+y=2$ is

- Watch Video Solution

8. Find the general solution of the differential equation $\frac{d y}{d x}+(\sec x) y=\tan x,\left(0 \leq x \leq \frac{\pi}{2}\right)$.
9. Derive the equation of a line in space passing through a given pont and parallel to a given vector in both vector and Cartesian form.

D Watch Video Solution

10. Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that (i) all the five cards are spades? (ii) only 3 cards are spades? none is a spade?

D Watch Video Solution

1. Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ and hence evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x}{\sin ^{5}+x+\cos ^{5} x} d x$.

- Watch Video Solution

2.

Show
that
$\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

- Watch Video Solution

3. Maximize and Minimize $Z=5 x+10 y$, subject to constraints are
$x+2 y \leq 120, x+y \geq 60, x-2 y \geq 0$ and $x, y \geq 0$.
4. The function is defined by
$f(x)=\left\{\begin{array}{lll}k x+1 & \text { if } & x \leq 5 \\ 3 x-5 & \text { if } & x>5\end{array}\right.$ is continuous at $\mathrm{x}=5$. Find
k.
